1
|
Kish B, Jean Chen J, Tong Y. Effects of clamping end-tidal CO 2 on neurofluidic low-frequency oscillations. NMR IN BIOMEDICINE 2024; 37:e5084. [PMID: 38104563 PMCID: PMC11162899 DOI: 10.1002/nbm.5084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
In recent years, low-frequency oscillations (LFOs) (0.01-0.1 Hz) have been a subject of interest in resting-state functional magnetic resonance imaging research. They are believed to have many possible driving mechanisms, from both regional and global sources. Internal fluctuations in the partial pressure of CO2 (PCO2) has long been thought of as one of these major driving forces, but its exact contributions compared with other mechanisms have yet to be fully understood. This study examined the effects of end-tidal PCO2 (PetCO2) oscillations on LF cerebral hemodynamics and cerebrospinal fluid (CSF) dynamics under "clamped PetCO2" and "free-breathing" conditions. Under clamped PetCO2, a participant's PetCO2 levels were fixed to their baseline average, whereas PetCO2 was not controlled in free breathing. Under clamped PetCO2, the fractional amplitude of hemodynamic LFOs in the occipital and sensorimotor cortex and temporal lobes were found to be significantly reduced. Additionally, the fractional amplitude of CSF LFOs, measured at the fourth ventricle, was found to be reduced by almost one-half. However, the spatiotemporal distributions of blood and CSF delay times, as measured by cross-correlation in the LF domain, were not significantly altered between conditions. This study demonstrates that, while PCO2 oscillations significantly mediate LFOs, especially those observed in the CSF, other mechanisms are able to maintain LFOs, with high correlation, even in their absence.
Collapse
Affiliation(s)
- Brianna Kish
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - J. Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
3
|
Rodrigues LM, Rocha C, Ferreira H, Silva H. Different lasers reveal different skin microcirculatory flowmotion - data from the wavelet transform analysis of human hindlimb perfusion. Sci Rep 2019; 9:16951. [PMID: 31740748 PMCID: PMC6861459 DOI: 10.1038/s41598-019-53213-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Laser Doppler flowmetry (LDF) and reflection photoplethysmography (PPG) are standard technologies to access microcirculatory function in vivo. However, different light frequencies mean different interaction with tissues, such that LDF and PPG flowmotion curves might have distinct meanings, particularly during adaptative (homeostatic) processes. Therefore, we analyzed LDF and PPG perfusion signals obtained in response to opposite challenges. Young healthy volunteers, both sexes, were assigned to Group 1 (n = 29), submitted to a normalized Swedish massage procedure in one lower limb, increasing perfusion, or Group 2 (n = 14), submitted to a hyperoxia challenge test, decreasing perfusion. LDF (Periflux 5000) and PPG (PLUX-Biosignals) green light sensors applied distally on both lower limbs recorded perfusion changes for each experimental protocol. Both techniques detected the perfusion increase with massage, and the perfusion decrease with hyperoxia, in both limbs. Further analysis with the wavelet transform (WT) revealed better depth-related discriminative ability for PPG (more superficial, less blood sampling) compared with LDF in both challenges. Spectral amplitude profiles consistently demonstrated better sensitivity for LDF, especially regarding the lowest frequency components. Strong correlations between components were not found. Therefore, LDF and PPG flowmotion curves are not equivalent, a relevant finding to better study microcirculatory physiology.
Collapse
Affiliation(s)
- L Monteiro Rodrigues
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Av Campo Grande, 1749 024, Lisboa, Portugal.
- Pharmacol. Sc Depart - Universidade de Lisboa, Faculty of Pharmacy, Av Prof Gama Pinto, 1649 003, Lisboa, Portugal.
| | - Clemente Rocha
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Av Campo Grande, 1749 024, Lisboa, Portugal
| | - Hugo Ferreira
- IBEB - Biophysics and Biomedical Engineering Institute, Universidade de Lisboa Faculty of Sciences, Campo Grande, 1749 016, Lisboa, Portugal
| | - Henrique Silva
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Av Campo Grande, 1749 024, Lisboa, Portugal
- Pharmacol. Sc Depart - Universidade de Lisboa, Faculty of Pharmacy, Av Prof Gama Pinto, 1649 003, Lisboa, Portugal
| |
Collapse
|
4
|
Noordmans H, van Blooijs D, Siero J, Zwanenburg J, Klaessens J, Ramsey NF. Detailed view on slow sinusoidal, hemodynamic oscillations on the human brain cortex by Fourier transforming oxy/deoxy hyperspectral images. Hum Brain Mapp 2018; 39:3558-3573. [PMID: 29693304 PMCID: PMC6099526 DOI: 10.1002/hbm.24194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Slow sinusoidal, hemodynamic oscillations (SSHOs) around 0.1 Hz are frequently seen in mammalian and human brains. In four patients undergoing epilepsy surgery, subtle but robust fluctuations in oxy- and deoxyhemoglobin were detected using hyperspectral imaging of the cortex. These SSHOs were stationary during the entire 4 to 10 min acquisition time. By Fourier filtering the oxy- and deoxyhemoglobin time signals with a small bandwidth, SSHOs became visible within localized regions of the brain, with distinctive frequencies and a continuous phase variation within that region. SSHOs of deoxyhemoglobin appeared to have an opposite phase and 11% smaller amplitude with respect to the oxyhemoglobin SSHOs. Although the origin of SSHOs remains unclear, we find indications that the observed SSHOs may embody a local propagating hemodynamic wave with velocities in line with capillary blood velocities, and conceivably related to vasomotion and maintenance of adequate tissue perfusion. Hyperspectral imaging of the human cortex during surgery allow in-depth characterization of SSHOs, and may give further insight in the nature and potential (clinical) use of SSHOs.
Collapse
Affiliation(s)
- H.J. Noordmans
- FB Medical Technology and Clinical Physics, University Medical Center UtrechtThe Netherlands
| | - D. van Blooijs
- Department of Neurology and NeurosurgeryBrain Center Rudolf Magnus, University Medical Center UtrechtThe Netherlands
| | - J.C.W. Siero
- Department of RadiologyUniversity Medical Center UtrechtThe Netherlands
- Spinoza Centre for NeuroimagingAmsterdamThe Netherlands
| | - J.J.M. Zwanenburg
- Department of RadiologyUniversity Medical Center UtrechtThe Netherlands
| | - J.H.G.M. Klaessens
- Department of Physics and Medical TechnologyVU University Medical CenterAmsterdamThe Netherlands
| | - N. F. Ramsey
- Department of Neurology and NeurosurgeryBrain Center Rudolf Magnus, University Medical Center UtrechtThe Netherlands
| |
Collapse
|
5
|
Li Y, Zhang H, Yu M, Yu W, Frederick BD, Tong Y. Systemic low-frequency oscillations observed in the periphery of healthy human subjects. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 29729091 PMCID: PMC5935293 DOI: 10.1117/1.jbo.23.5.057001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 04/09/2018] [Indexed: 05/15/2023]
Abstract
This study investigated the relationships of systemic low-frequency oscillations (sLFOs) measured at different peripheral sites in resting state, during passive leg raising (PLR), and during a paced breathing (PB) test. Twenty-five healthy subjects (21 to 57 years old; males: 13 and females: 12) were recruited for these experiments. During the experiments, the fluctuations of oxyhemoglobin concentration were measured at six peripheral sites (left and right toes, fingertips, and earlobes) using a multichannel near-infrared spectroscopy instrument developed by our group. We applied cross-correlation and frequency component analyses on the data. The results showed that the sLFO signals in the symmetric peripheral sites were highly correlated, with time delays close to zero, whereas the correlation coefficients decreased between the sLFO signals of asymmetric sites, with delays up to several seconds. Furthermore, in PLR/PB tests, we found that PB caused wider and more robust changes in hemoglobin concentrations at peripheral sites compared to PLR. Among six peripheral sites, earlobes were the most sensitive to these perturbations, followed by fingertips, and then toes. Lastly, we showed that the perturbation signals may have different coupling mechanisms than the sLFO signals. The study deepened our understanding of the sLFO signals and establishes baseline measures for developing perfusion biomarkers to assess peripheral vascular integrity.
Collapse
Affiliation(s)
- Yingwei Li
- Yanshan University, School of Information Science and Engineering, Hebei, China
- McLean Hospital, Brain Imaging Center, Belmont, Massachusetts, United States
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Haibing Zhang
- Yanshan University, School of Information Science and Engineering, Hebei, China
| | - Meiling Yu
- Yanshan University, School of Information Science and Engineering, Hebei, China
| | - Weiwei Yu
- Yanshan University, School of Information Science and Engineering, Hebei, China
| | - Blaise deB Frederick
- McLean Hospital, Brain Imaging Center, Belmont, Massachusetts, United States
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| |
Collapse
|
6
|
Blackwood SJ, Dwyer RM, Bradley EA, Keske MA, Richards SM, Rattigan S. Determination of Skeletal Muscle Microvascular Flowmotion with Contrast-Enhanced Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2013-2023. [PMID: 28655467 DOI: 10.1016/j.ultrasmedbio.2017.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Most methods of assessing flowmotion (rhythmic oscillation of blood flow through tissue) are limited to small sections of tissue and are invasive in tissues other than skin. To overcome these limitations, we adapted the contrast-enhanced ultrasound (CEUS) technique to assess microvascular flowmotion throughout a large region of tissue, in a non-invasive manner and in real time. Skeletal muscle flowmotion was assessed in anaesthetised Sprague Dawley rats, using CEUS and laser Doppler flowmetry (LDF) for comparison. Wavelet transformation of CEUS and LDF data was used to quantify flowmotion. The α-adrenoceptor antagonist phentolamine was infused to predictably blunt the neurogenic component of flowmotion. Both techniques identified similar flowmotion patterns, validating the use of CEUS to assess flowmotion. This study demonstrates for the first time that the novel technique of CEUS can be adapted for determination of skeletal muscle flowmotion in large regions of skeletal muscle.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| | - Renee M Dwyer
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Eloise A Bradley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
7
|
Witte H, Putsche P, Hemmelmann C, Schelenz C, Leistritz L. Analysis and modeling of time-variant amplitude-frequency couplings of and between oscillations of EEG bursts. BIOLOGICAL CYBERNETICS 2008; 99:139-157. [PMID: 18688638 DOI: 10.1007/s00422-008-0245-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 07/07/2008] [Indexed: 05/26/2023]
Abstract
Low-frequency (0.5-2.5 Hz) and individually defined high-frequency (7-11 or 8-12 Hz; 11-15 or 14-18 Hz) oscillatory components of the electroencephalogram (EEG) burst activity derived from thiopental-induced burst-suppression patterns (BSP) were investigated in seven sedated patients (17-26 years old) with severe head injury. The predominant high-frequency burst oscillations (>7 Hz) were detected for each patient by means of time-variant amplitude spectrum analysis. Thereafter, the instantaneous envelope (IE) and the instantaneous frequency (IF) were computed for these low- and high-frequency bands to quantify amplitude-frequency dependencies (envelope-envelope, envelope-frequency, and frequency-frequency correlations). Time-variant phase-locking, phase synchronization, and quadratic phase couplings are associated with the observed amplitude-frequency characteristics. Additionally, these time-variant analyses were carried out for modeled burst patterns. Coupled Duffing oscillators were adapted to each EEG burst and by means of these models data-based burst simulations were generated. Results are: (1) strong envelope-envelope correlations (IE courses) can be demonstrated; (2) it can be shown that a rise of the IE is associated with an increase of the IF (only for the frequency bands 0.5-2.5 and 7-11 or 8-12 Hz); (3) the rise characteristics of all individually averaged envelope-frequency courses (IE-IF) are strongly correlated; (4) for the 7-11 or 8-12 Hz oscillation these associations are weaker and the variation between the time courses of the patients is higher; (5) for both frequency ranges a quantitative amplitude-frequency dependency can be shown because higher IE peak maxima are accompanied by stronger IF changes; (6) the time range of significant phase-locking within the 7-11 or 8-12 Hz frequency bands and of the strongest quadratic phase couplings (between 0.5-2.5 and 7-11 or 8-12 Hz) is between 0 and 1,000 ms; (7) all phase coupling characteristics of the modeled bursts accord well with the corresponding characteristics of the measured EEG burst data. All amplitude-frequency dependencies and phase locking/coupling properties described here are known from and can be discussed using coupled Duffing oscillators which are characterized by autoresonance properties.
Collapse
Affiliation(s)
- Herbert Witte
- Institute of Medical Statistics, Computer Sciences and Documentation, Medical Faculty of the Friedrich Schiller University Jena, 07740, Jena, Germany.
| | | | | | | | | |
Collapse
|