1
|
Tsai YT, Liu YH, Zheng ZW, Chen CC, Lin MC. Heart Murmur Classification Using a Capsule Neural Network. Bioengineering (Basel) 2023; 10:1237. [PMID: 38002361 PMCID: PMC10669720 DOI: 10.3390/bioengineering10111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
The healthcare industry has made significant progress in the diagnosis of heart conditions due to the use of intelligent detection systems such as electrocardiograms, cardiac ultrasounds, and abnormal sound diagnostics that use artificial intelligence (AI) technology, such as convolutional neural networks (CNNs). Over the past few decades, methods for automated segmentation and classification of heart sounds have been widely studied. In many cases, both experimental and clinical data require electrocardiography (ECG)-labeled phonocardiograms (PCGs) or several feature extraction techniques from the mel-scale frequency cepstral coefficient (MFCC) spectrum of heart sounds to achieve better identification results with AI methods. Without good feature extraction techniques, the CNN may face challenges in classifying the MFCC spectrum of heart sounds. To overcome these limitations, we propose a capsule neural network (CapsNet), which can utilize iterative dynamic routing methods to obtain good combinations for layers in the translational equivariance of MFCC spectrum features, thereby improving the prediction accuracy of heart murmur classification. The 2016 PhysioNet heart sound database was used for training and validating the prediction performance of CapsNet and other CNNs. Then, we collected our own dataset of clinical auscultation scenarios for fine-tuning hyperparameters and testing results. CapsNet demonstrated its feasibility by achieving validation accuracies of 90.29% and 91.67% on the test dataset.
Collapse
Affiliation(s)
- Yu-Ting Tsai
- Master’s Program in Electro-Acoustics, Feng Chia University, Taichung 40724, Taiwan
- Hyper-Automation Laboratory, Feng Chia University, Taichung 40724, Taiwan
| | - Yu-Hsuan Liu
- Master’s Program in Electro-Acoustics, Feng Chia University, Taichung 40724, Taiwan
| | - Zi-Wei Zheng
- Hyper-Automation Laboratory, Feng Chia University, Taichung 40724, Taiwan
- Program of Mechanical and Aeronautical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Chih-Cheng Chen
- Hyper-Automation Laboratory, Feng Chia University, Taichung 40724, Taiwan
- Department of Automatic Control Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Ming-Chih Lin
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Food and Nutrition, Providence University, Taichung 433, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
2
|
Prince J, Maidens J, Kieu S, Currie C, Barbosa D, Hitchcock C, Saltman A, Norozi K, Wiesner P, Slamon N, Del Grippo E, Padmanabhan D, Subramanian A, Manjunath C, Chorba J, Venkatraman S. Deep Learning Algorithms to Detect Murmurs Associated With Structural Heart Disease. J Am Heart Assoc 2023; 12:e030377. [PMID: 37830333 PMCID: PMC10757522 DOI: 10.1161/jaha.123.030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to clinical practice. We evaluated a novel suite of Food and Drug Administration-cleared algorithms trained via deep learning on >15 000 heart sound recordings. Methods and Results We validated the algorithms on a data set of 2375 recordings from 615 unique subjects. This data set was collected in real clinical environments using commercially available digital stethoscopes, annotated by board-certified cardiologists, and paired with echocardiograms as the gold standard. To model the algorithm in clinical practice, we compared its performance against 10 clinicians on a subset of the validation database. Our algorithm reliably detected structural murmurs with a sensitivity of 85.6% and specificity of 84.4%. When limiting the analysis to clearly audible murmurs in adults, performance improved to a sensitivity of 97.9% and specificity of 90.6%. The algorithm also reported timing within the cardiac cycle, differentiating between systolic and diastolic murmurs. Despite optimizing acoustics for the clinicians, the algorithm substantially outperformed the clinicians (average clinician accuracy, 77.9%; algorithm accuracy, 84.7%.) Conclusions The algorithms accurately identified murmurs associated with structural heart disease. Our results illustrate a marked contrast between the consistency of the algorithm and the substantial interobserver variability of clinicians. Our results suggest that adopting machine learning algorithms into clinical practice could improve the detection of structural heart disease to facilitate patient care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kambiz Norozi
- Department of Pediatrics, Pediatric CardiologyWestern UniversityLondonONCanada
- Department of Pediatric Cardiology and Intensive Care MedicineHannover Medical SchoolHannoverGermany
- Children Health Research InstituteLondonONCanada
| | | | | | | | - Deepak Padmanabhan
- Sri Jayadeva Institute of Cardiovascular Sciences and ResearchBengaluruIndia
| | - Anand Subramanian
- Sri Jayadeva Institute of Cardiovascular Sciences and ResearchBengaluruIndia
| | | | - John Chorba
- Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | | |
Collapse
|
3
|
Khan MU, Aziz S, Akram T, Amjad F, Iqtidar K, Nam Y, Khan MA. Expert Hypertension Detection System Featuring Pulse Plethysmograph Signals and Hybrid Feature Selection and Reduction Scheme. SENSORS 2021; 21:s21010247. [PMID: 33401652 PMCID: PMC7794944 DOI: 10.3390/s21010247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022]
Abstract
Hypertension is an antecedent to cardiac disorders. According to the World Health Organization (WHO), the number of people affected with hypertension will reach around 1.56 billion by 2025. Early detection of hypertension is imperative to prevent the complications caused by cardiac abnormalities. Hypertension usually possesses no apparent detectable symptoms; hence, the control rate is significantly low. Computer-aided diagnosis based on machine learning and signal analysis has recently been applied to identify biomarkers for the accurate prediction of hypertension. This research proposes a new expert hypertension detection system (EHDS) from pulse plethysmograph (PuPG) signals for the categorization of normal and hypertension. The PuPG signal data set, including rich information of cardiac activity, was acquired from healthy and hypertensive subjects. The raw PuPG signals were preprocessed through empirical mode decomposition (EMD) by decomposing a signal into its constituent components. A combination of multi-domain features was extracted from the preprocessed PuPG signal. The features exhibiting high discriminative characteristics were selected and reduced through a proposed hybrid feature selection and reduction (HFSR) scheme. Selected features were subjected to various classification methods in a comparative fashion in which the best performance of 99.4% accuracy, 99.6% sensitivity, and 99.2% specificity was achieved through weighted k-nearest neighbor (KNN-W). The performance of the proposed EHDS was thoroughly assessed by tenfold cross-validation. The proposed EHDS achieved better detection performance in comparison to other electrocardiogram (ECG) and photoplethysmograph (PPG)-based methods.
Collapse
Affiliation(s)
- Muhammad Umar Khan
- Department of Electronics Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan; (M.U.K.); (F.A.)
| | - Sumair Aziz
- Department of Electronics Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan; (M.U.K.); (F.A.)
- Correspondence: (S.A.); (Y.N.)
| | - Tallha Akram
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah Campus, Wah Cantonment, Islamabad 45550, Pakistan;
| | - Fatima Amjad
- Department of Electronics Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan; (M.U.K.); (F.A.)
| | - Khushbakht Iqtidar
- Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Yunyoung Nam
- Department of Computer Science and Engineering, Soonchunhyang University, Asan 31538, Korea
- Correspondence: (S.A.); (Y.N.)
| | | |
Collapse
|
4
|
Long Q, Ye X, Zhao Q. Artificial intelligence and automation in valvular heart diseases. Cardiol J 2020; 27:404-420. [PMID: 32567669 DOI: 10.5603/cj.a2020.0087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/11/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
Artificial intelligence (AI) is gradually changing every aspect of social life, and healthcare is no exception. The clinical procedures that were supposed to, and could previously only be handled by human experts can now be carried out by machines in a more accurate and efficient way. The coming era of big data and the advent of supercomputers provides great opportunities to the development of AI technology for the enhancement of diagnosis and clinical decision-making. This review provides an introduction to AI and highlights its applications in the clinical flow of diagnosing and treating valvular heart diseases (VHDs). More specifically, this review first introduces some key concepts and subareas in AI. Secondly, it discusses the application of AI in heart sound auscultation and medical image analysis for assistance in diagnosing VHDs. Thirdly, it introduces using AI algorithms to identify risk factors and predict mortality of cardiac surgery. This review also describes the state-of-the-art autonomous surgical robots and their roles in cardiac surgery and intervention.
Collapse
Affiliation(s)
- Qiang Long
- Department of Cardiac Surgery,Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, China.
| | - Xiaofeng Ye
- Department of Cardiac Surgery,Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, China
| | - Qiang Zhao
- Department of Cardiac Surgery,Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
5
|
Machine learning-based classification of cardiac diseases from PCG recorded heart sounds. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04547-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Classifying Heart Sounds Using Images of Motifs, MFCC and Temporal Features. J Med Syst 2019; 43:168. [DOI: 10.1007/s10916-019-1286-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
|
7
|
Heart Sounds Classification Using Images from Wavelet Transformation. PROGRESS IN ARTIFICIAL INTELLIGENCE 2019. [DOI: 10.1007/978-3-030-30241-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Nogueira DM, Ferreira CA, Jorge AM. Classifying Heart Sounds Using Images of MFCC and Temporal Features. PROGRESS IN ARTIFICIAL INTELLIGENCE 2017. [DOI: 10.1007/978-3-319-65340-2_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
9
|
Oliveira J, Oliveira C, Cardoso B, Sultan MS, Tavares Coimbra M. A multi-spot exploration of the topological structures of the reconstructed phase-space for the detection of cardiac murmurs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:4194-7. [PMID: 26737219 DOI: 10.1109/embc.2015.7319319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acoustic heart signals are generated by a turbulence effect created when the heart valves snap shut, and therefore carrying significant information of the underlying functionality of the cardiovascular system. In this paper, we present a method for heart murmur classification divided into three major steps: a) features are extracted from the heart sound; b) features are selected using a Backward Feature Selection algorithm; c) signals are classified using a K-nearest neighbor's classifier. A new set of fractal features are proposed, which are based on the distinct signatures of complexity and self-similarity registered on the normal and pathogenic cases. The experimental results show that fractal features are the most capable of describing the non-linear structure and the underlying dynamics of heart sounds among the all feature families tested. The classification results achieved for the mitral auscultation spot (88% of accuracy) are in agreement with the current state of the art methods for heart murmur classification.
Collapse
|
10
|
Safara F. Cumulant-based trapezoidal basis selection for heart sound classification. Med Biol Eng Comput 2015; 53:1153-64. [PMID: 26403300 DOI: 10.1007/s11517-015-1394-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 01/12/2015] [Indexed: 10/23/2022]
Abstract
Past decades witnessed the expansion of linear signal processing methods in numerous biomedical applications. However, the nonlinear behavior of biomedical signals revived the interest in nonlinear signal processing methods such as higher-order statistics, in particular higher-order cumulants (HOC). In this paper, HOC are utilized toward heart sound classification. Heart sounds are presented by wavelet packet decomposition trees. Information measures are then defined based on HOC of wavelet packet coefficients, and three basis selection methods are proposed to prune the trees and preserve the most informative nodes for feature extraction. In addition, an approach is introduced to reduce the dimensionality of the search space from the whole wavelet packet tree to a trapezoidal sub-tree of it. This approach can be recommended for signals with a short frequency range. HOC features are extracted from the coefficients of selected nodes and fed into support vector machine classifier. Experimental data is a set of 59 heart sounds from different categories: normal heart sounds, mitral regurgitation, aortic stenosis, and aortic regurgitation. The promising results achieved indicate the capabilities of HOC of wavelet packet coefficients to capture nonlinear characteristics of the heart sounds to be used for basis selection.
Collapse
Affiliation(s)
- Fatemeh Safara
- Faculty of Computer Engineering, Islamic Azad University, Islam-shahr Branch, Tehran, Iran.
| |
Collapse
|
11
|
Leng S, Tan RS, Chai KTC, Wang C, Ghista D, Zhong L. The electronic stethoscope. Biomed Eng Online 2015; 14:66. [PMID: 26159433 PMCID: PMC4496820 DOI: 10.1186/s12938-015-0056-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/11/2015] [Indexed: 11/13/2022] Open
Abstract
Most heart diseases are associated with and reflected by the sounds that the heart produces. Heart auscultation, defined as listening to the heart sound, has been a very important method for the early diagnosis of cardiac dysfunction. Traditional auscultation requires substantial clinical experience and good listening skills. The emergence of the electronic stethoscope has paved the way for a new field of computer-aided auscultation. This article provides an in-depth study of (1) the electronic stethoscope technology, and (2) the methodology for diagnosis of cardiac disorders based on computer-aided auscultation. The paper is based on a comprehensive review of (1) literature articles, (2) market (state-of-the-art) products, and (3) smartphone stethoscope apps. It covers in depth every key component of the computer-aided system with electronic stethoscope, from sensor design, front-end circuitry, denoising algorithm, heart sound segmentation, to the final machine learning techniques. Our intent is to provide an informative and illustrative presentation of the electronic stethoscope, which is valuable and beneficial to academics, researchers and engineers in the technical field, as well as to medical professionals to facilitate its use clinically. The paper provides the technological and medical basis for the development and commercialization of a real-time integrated heart sound detection, acquisition and quantification system.
Collapse
Affiliation(s)
- Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
| | - Ru San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Kevin Tshun Chuan Chai
- Institute of Microelectronics, A*STAR, 11 Science Park Road, Singapore, 117685, Singapore.
| | - Chao Wang
- Institute of Microelectronics, A*STAR, 11 Science Park Road, Singapore, 117685, Singapore.
| | | | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|