1
|
Alam M, Truong DQ, Khadka N, Bikson M. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Phys Med Biol 2016; 61:4506-21. [DOI: 10.1088/0031-9155/61/12/4506] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
2
|
Metwally MK, Han SM, Kim TS. The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation. Med Biol Eng Comput 2015; 53:1085-101. [PMID: 25940845 DOI: 10.1007/s11517-015-1301-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/23/2015] [Indexed: 11/27/2022]
Abstract
Transcranial direct current stimulation (tDCS) is considered to be a promising technique for noninvasive brain stimulation and brain disease therapy. Recent studies have investigated the distribution of the electric field (EF) magnitude over gyri and sulci and the effect of tissue homogeneity with isotropic electrical conductivities. However, it is well known that the skull and white matter (WM) are highly anisotropic electrically, requiring investigations of their anisotropic effects on the magnitude and the directional components of the induced EF due to the high dependency between neuromodulation and the EF direction. In this study, we investigated the effects of the skull and WM anisotropy on the radial and tangential components of the EF via gyri-specific high-resolution finite element head models. For tDCS, three configurations were investigated: the conventional rectangular pad electrode, a 4(cathodes) +1(anode) ring configuration, and a bilateral configuration. The results showed that the skull anisotropy has a crucial influence on the distribution of the radial EF component. The affected cortical regions by the radial EF were reduced about 22 % when considering the skull anisotropy in comparison with the regions with the skull isotropy. On the other hand, the WM anisotropy strongly alters the EF directionality, especially within the sulci. The electric current tends to flow radially to the cortical surface with the WM anisotropy. This effect increases the affected cortical areas by the radial EF component within the sulcal regions. Our results suggest that one must examine the distribution of the EF components in tDCS, not just the magnitude of the EF alone.
Collapse
Affiliation(s)
- Mohamed K Metwally
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Seung Moo Han
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Tae-Seong Kim
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| |
Collapse
|
3
|
Clemens B, Jung S, Mingoia G, Weyer D, Domahs F, Willmes K. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest. PLoS One 2014; 9:e95984. [PMID: 24760013 PMCID: PMC3997501 DOI: 10.1371/journal.pone.0095984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/02/2014] [Indexed: 01/07/2023] Open
Abstract
Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.
Collapse
Affiliation(s)
- Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Brain Imaging Facility, Interdisciplinary Center for Clinical Research, Medical School, RWTH Aachen University, Aachen, Germany
- Neurological Clinic, Section Neuropsychology, Medical School, RWTH Aachen University, Aachen, Germany
- * E-mail:
| | - Stefanie Jung
- Department of Psychology, Eberhard Karls University, Tübingen, Germany
- Knowledge Media Research Center, IWM-KMRC, Tübingen, Germany
| | - Gianluca Mingoia
- Brain Imaging Facility, Interdisciplinary Center for Clinical Research, Medical School, RWTH Aachen University, Aachen, Germany
| | - David Weyer
- Brain Imaging Facility, Interdisciplinary Center for Clinical Research, Medical School, RWTH Aachen University, Aachen, Germany
| | - Frank Domahs
- Department of Germanic Linguistics, Philipps-University Marburg, Marburg, Germany
| | - Klaus Willmes
- Brain Imaging Facility, Interdisciplinary Center for Clinical Research, Medical School, RWTH Aachen University, Aachen, Germany
- Neurological Clinic, Section Neuropsychology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Caparelli-Daquer EM, Zimmermann TJ, Mooshagian E, Parra LC, Rice JK, Datta A, Bikson M, Wassermann EM. A pilot study on effects of 4×1 high-definition tDCS on motor cortex excitability. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:735-8. [PMID: 23365997 DOI: 10.1109/embc.2012.6346036] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-Definition transcranial Direct Current Stimulation (HD-tDCS) using specialized small electrodes has been proposed as a focal, non-invasive neuromodulatory technique. Here we provide the first evidence of a change in cortical excitability after HD-tDCS of the motor cortex, using TMS motor evoked potential (MEP) as the measure of excitability. Stimulation for 20 minutes at 1 mA with an anode centered over the hand area of the motor cortex and four surrounding return electrodes (anodal 4×1 montage) produced a significant increase in MEP amplitude and variability after stimulation, compared to sham stimulation. Stimulation was well tolerated by all subjects with adverse effects limited to transient sensation under the electrodes. A high-resolution computational model confirmed predictions of increased focality using the 4×1 HD tDCS montage compared to conventional tDCS. Simulations also indicated that variability in placement of the center electrode relative to the location of the target (central sulcus) could account for increasing variability. These results provide support for the careful use of this technique where focal tDCS is desired.
Collapse
Affiliation(s)
- Egas M Caparelli-Daquer
- Departmento de Ciencias Fisiologicas, Universidade do Estado do Rio de Janeiro, UERJ. Av. Professor Manuel de Abreu 444, Pavilhao Americo Piquet Carneiro, 5 andar Vila Isabel, Rio de Janeiro, RJ, CEP: 20550-170
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Lee WH, Deng ZD, Kim TS, Laine AF, Lisanby SH, Peterchev AV. Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity. Neuroimage 2012; 59:2110-23. [PMID: 22032945 PMCID: PMC3495594 DOI: 10.1016/j.neuroimage.2011.10.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/14/2011] [Accepted: 10/10/2011] [Indexed: 11/30/2022] Open
Abstract
We present the first computational study investigating the electric field (E-field) strength generated by various electroconvulsive therapy (ECT) electrode configurations in specific brain regions of interest (ROIs) that have putative roles in the therapeutic action and/or adverse side effects of ECT. This study also characterizes the impact of the white matter (WM) conductivity anisotropy on the E-field distribution. A finite element head model incorporating tissue heterogeneity and WM anisotropic conductivity was constructed based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI data. We computed the spatial E-field distributions generated by three standard ECT electrode placements including bilateral (BL), bifrontal (BF), and right unilateral (RUL) and an investigational electrode configuration for focal electrically administered seizure therapy (FEAST). The key results are that (1) the median E-field strength over the whole brain is 3.9, 1.5, 2.3, and 2.6 V/cm for the BL, BF, RUL, and FEAST electrode configurations, respectively, which coupled with the broad spread of the BL E-field suggests a biophysical basis for observations of superior efficacy of BL ECT compared to BF and RUL ECT; (2) in the hippocampi, BL ECT produces a median E-field of 4.8 V/cm that is 1.5-2.8 times stronger than that for the other electrode configurations, consistent with the more pronounced amnestic effects of BL ECT; and (3) neglecting the WM conductivity anisotropy results in E-field strength error up to 18% overall and up to 39% in specific ROIs, motivating the inclusion of the WM conductivity anisotropy in accurate head models. This computational study demonstrates how the realistic finite element head model incorporating tissue conductivity anisotropy provides quantitative insight into the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation paradigms with improved risk/benefit ratio.
Collapse
Affiliation(s)
- Won Hee Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Zhi-De Deng
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Tae-Seong Kim
- Department of Biomedical Engineering, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Andrew F. Laine
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah H. Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27710, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Duke University, Durham, NC 27710, USA
| |
Collapse
|
6
|
Datta A, Truong D, Minhas P, Parra LC, Bikson M. Inter-Individual Variation during Transcranial Direct Current Stimulation and Normalization of Dose Using MRI-Derived Computational Models. Front Psychiatry 2012; 3:91. [PMID: 23097644 PMCID: PMC3477710 DOI: 10.3389/fpsyt.2012.00091] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Transcranial Direct Current Stimulation (tDCS) is a non-invasive, versatile, and safe neuromodulation technology under investigation for the treatment of neuropsychiatric disorders, adjunct to rehabilitation, and cognitive enhancement in healthy adults. Despite promising results, there is variability in responsiveness. One potential source of variability is the intensity of current delivered to the brain which is a function of both the operator controlled tDCS dose (electrode montage and total applied current) and subject specific anatomy. We are interested in both the scale of this variability across anatomical typical adults and methods to normalize inter-individual variation by customizing tDCS dose. Computational FEM simulations are a standard technique to predict brain current flow during tDCS and can be based on subject specific anatomical MRI. OBJECTIVE To investigate this variability, we modeled multiple tDCS montages across three adults (ages 34-41, one female). RESULTS Conventional pad stimulation led to diffuse modulation with maximum current flow between the pads across all subjects. There was high current flow directly under the pad for one subject while the location of peak induced cortical current flow was variable. The High-Definition tDCS montage led to current flow restricted to within the ring perimeter across all subjects. The current flow profile across all subjects and montages was influenced by details in cortical gyri/sulci. CONCLUSION This data suggests that subject specific modeling can facilitate consistent and more efficacious tDCS.
Collapse
Affiliation(s)
- Abhishek Datta
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of City University of New York New York, NY, USA ; Soterix Medical New York, NY, USA
| | | | | | | | | |
Collapse
|
7
|
Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci 2011; 31:15284-93. [PMID: 22031874 DOI: 10.1523/jneurosci.0542-11.2011] [Citation(s) in RCA: 407] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvement of cognition and mood, and have been suggested for the treatment of several neurological and psychiatric disorders. Although modeled mathematically, the distribution, direction, and extent of tDCS-mediated effects on brain physiology are not well understood. The current study investigates whether tDCS of the human prefrontal cortex modulates resting-state network (RSN) connectivity measured by functional magnetic resonance imaging (fMRI). Thirteen healthy subjects underwent real and sham tDCS in random order on separate days. tDCS was applied for 20 min at 2 mA with the anode positioned over the left DLPFC and the cathode over the right supraorbital region. Patterns of resting-state brain connectivity were assessed before and after tDCS with 3 T fMRI, and changes were analyzed for relevant networks related to the stimulation-electrode localizations. At baseline, four RSNs were detected, corresponding to the default mode network (DMN), the left and right frontal-parietal networks (FPNs) and the self-referential network. After real tDCS and compared with sham tDCS, significant changes of regional brain connectivity were found for the DMN and the FPNs both close to the primary stimulation site and in connected brain regions. These findings show that prefrontal tDCS modulates resting-state functional connectivity in distinct functional networks of the human brain.
Collapse
|