1
|
Kumar Meena L, Rather H, Kedaria D, Vasita R. Polymeric microgels for bone tissue engineering applications – a review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1570512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalit Kumar Meena
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Hilal Rather
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Dhaval Kedaria
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
2
|
Dolatshahi-Pirouz A, Nikkhah M, Gaharwar AK, Hashmi B, Guermani E, Aliabadi H, Camci-Unal G, Ferrante T, Foss M, Ingber DE, Khademhosseini A. A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 2014; 4:3896. [PMID: 24473466 PMCID: PMC3905276 DOI: 10.1038/srep03896] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/08/2014] [Indexed: 01/21/2023] Open
Abstract
Development of three dimensional (3D) microenvironments that direct stem cell differentiation into functional cell types remains a major challenge in the field of regenerative medicine. Here, we describe a new platform to address this challenge by utilizing a robotic microarray spotter for testing stem cell fates inside various miniaturized cell-laden gels in a systematic manner. To demonstrate the feasibility of our platform, we evaluated the osteogenic differentiation of human mesenchymal stem cells (hMSCs) within combinatorial 3D niches. We were able to identify specific combinations, that enhanced the expression of osteogenic markers. Notably, these 'hit' combinations directed hMSCs to form mineralized tissue when conditions were translated to 3D macroscale hydrogels, indicating that the miniaturization of the experimental system did not alter stem cell fate. Overall, our findings confirmed that the 3D cell-laden gel microarray can be used for screening of different conditions in a rapid, cost-effective, and multiplexed manner for a broad range of tissue engineering applications.
Collapse
Affiliation(s)
- Alireza Dolatshahi-Pirouz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Mehdi Nikkhah
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Akhilesh K. Gaharwar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Current address: Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843
| | - Basma Hashmi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Enrico Guermani
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hamed Aliabadi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gulden Camci-Unal
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Morten Foss
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|