1
|
Tong L, Li T, Zhang Q, Zhang Q, Zhu R, Du W, Hu P. LiViT-Net: A U-Net-like, lightweight Transformer network for retinal vessel segmentation. Comput Struct Biotechnol J 2024; 24:213-224. [PMID: 38572168 PMCID: PMC10987887 DOI: 10.1016/j.csbj.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate task of precisely segmenting retinal vessels from images, which is critical for diagnosing various eye diseases, presents significant challenges for models due to factors such as scale variation, complex anatomical patterns, low contrast, and limitations in training data. Building on these challenges, we offer novel contributions spanning model architecture, loss function design, robustness, and real-time efficacy. To comprehensively address these challenges, a new U-Net-like, lightweight Transformer network for retinal vessel segmentation is presented. By integrating MobileViT+ and a novel local representation in the encoder, our design emphasizes lightweight processing while capturing intricate image structures, enhancing vessel edge precision. A novel joint loss is designed, leveraging the characteristics of weighted cross-entropy and Dice loss to effectively guide the model through the task's challenges, such as foreground-background imbalance and intricate vascular structures. Exhaustive experiments were performed on three prominent retinal image databases. The results underscore the robustness and generalizability of the proposed LiViT-Net, which outperforms other methods in complex scenarios, especially in intricate environments with fine vessels or vessel edges. Importantly, optimized for efficiency, LiViT-Net excels on devices with constrained computational power, as evidenced by its fast performance. To demonstrate the model proposed in this study, a freely accessible and interactive website was established (https://hz-t3.matpool.com:28765?token=aQjYR4hqMI), revealing real-time performance with no login requirements.
Collapse
Affiliation(s)
- Le Tong
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, No. 100 Haisi Road, Shanghai, 201418, China
| | - Tianjiu Li
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, No. 100 Haisi Road, Shanghai, 201418, China
| | - Qian Zhang
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, No. 100 Haisi Road, Shanghai, 201418, China
| | - Qin Zhang
- Ophthalmology Department, Jing'an District Central Hospital, No. 259, Xikang Road, Shanghai, 200040, China
| | - Renchaoli Zhu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, No. 100 Haisi Road, Shanghai, 201418, China
| | - Wei Du
- Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Pengwei Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
| |
Collapse
|
2
|
Qiu Y, Zhang H, Song C, Zhao X, Li H, Wang X. GKE-TUNet: Geometry-Knowledge Embedded TransUNet Model for Retinal Vessel Segmentation Considering Anatomical Topology. IEEE J Biomed Health Inform 2024; 28:6725-6737. [PMID: 39137084 DOI: 10.1109/jbhi.2024.3442528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Automated retinal vessel segmentation is crucial for computer-aided clinical diagnosis and retinopathy screening. However, deep learning faces challenges in extracting complex intertwined structures and subtle small vessels from densely vascularized regions. To address these issues, we propose a novel segmentation model, called Geometry-Knowledge Embedded TransUNet (GKE-TUNet), which incorporates explicit embedding of topological features of retinal vessel anatomy. In the proposed GKE-TUNet model, a skeleton extraction network is pre-trained to extract the anatomical topology of retinal vessels from refined segmentation labels. During vessel segmentation, the dense skeleton graph is sampled as a graph of key-points and connections and is incorporated into the skip connection layer of TransUNet. The graph vertices are used as node features and correspond to positions in the low-level feature maps. The graph attention network (GAT) is used as the graph convolution backbone network to capture the shape semantics of vessels and the interaction of key locations along the topological direction. Finally, the node features obtained by graph convolution are read out as a sparse feature map based on their corresponding spatial coordinates. To address the problem of sparse feature maps, we employ convolution operators to fuse sparse feature maps with low-level dense feature maps. This fusion is weighted and connected to deep feature maps. Experimental results on the DRIVE, CHASE-DB1, and STARE datasets demonstrate the competitiveness of our proposed method compared to existing ones.
Collapse
|
3
|
Zhou W, Wang X, Yang X, Hu Y, Yi Y. Skeleton-guided multi-scale dual-coordinate attention aggregation network for retinal blood vessel segmentation. Comput Biol Med 2024; 181:109027. [PMID: 39178808 DOI: 10.1016/j.compbiomed.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Deep learning plays a pivotal role in retinal blood vessel segmentation for medical diagnosis. Despite their significant efficacy, these techniques face two major challenges. Firstly, they often neglect the severe class imbalance in fundus images, where thin vessels in the foreground are proportionally minimal. Secondly, they are susceptible to poor image quality and blurred vessel edges, resulting in discontinuities or breaks in vascular structures. In response, this paper proposes the Skeleton-guided Multi-scale Dual-coordinate Attention Aggregation (SMDAA) network for retinal vessel segmentation. SMDAA comprises three innovative modules: Dual-coordinate Attention (DCA), Unbalanced Pixel Amplifier (UPA), and Vessel Skeleton Guidance (VSG). DCA, integrating Multi-scale Coordinate Feature Aggregation (MCFA) and Scale Coordinate Attention Decoding (SCAD), meticulously analyzes vessel structures across various scales, adept at capturing intricate details, thereby significantly enhancing segmentation accuracy. To address class imbalance, we introduce UPA, dynamically allocating more attention to misclassified pixels, ensuring precise extraction of thin and small blood vessels. Moreover, to preserve vessel structure continuity, we integrate vessel anatomy and develop the VSG module to connect fragmented vessel segments. Additionally, a Feature-level Contrast (FCL) loss is introduced to capture subtle nuances within the same category, enhancing the fidelity of retinal blood vessel segmentation. Extensive experiments on three public datasets (DRIVE, STARE, and CHASE_DB1) demonstrate superior performance in comparison to current methods. The code is available at https://github.com/wangwxr/SMDAA_NET.
Collapse
Affiliation(s)
- Wei Zhou
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Xiaorui Wang
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Xuekun Yang
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Yangtao Hu
- Department of Ophthalmology, The 908th Hospital of Chinese People's Liberation Army Joint Logistic SupportForce, Nanchang, China.
| | - Yugen Yi
- School of Software, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
4
|
Wang Z, Jia LV, Liang H. Partial class activation mapping guided graph convolution cascaded U-Net for retinal vessel segmentation. Comput Biol Med 2024; 178:108736. [PMID: 38878402 DOI: 10.1016/j.compbiomed.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 07/24/2024]
Abstract
Accurate segmentation of retinal vessels in fundus images is of great importance for the diagnosis of numerous ocular diseases. However, due to the complex characteristics of fundus images, such as various lesions, image noise and complex background, the pixel features of some vessels have significant differences, which makes it easy for the segmentation networks to misjudge these vessels as noise, thus affecting the accuracy of the overall segmentation. Therefore, accurately segment retinal vessels in complex situations is still a great challenge. To address the problem, a partial class activation mapping guided graph convolution cascaded U-Net for retinal vessel segmentation is proposed. The core idea of the proposed network is first to use the partial class activation mapping guided graph convolutional network to eliminate the differences of local vessels and generate feature maps with global consistency, and subsequently these feature maps are further refined by segmentation network U-Net to achieve better segmentation results. Specifically, a new neural network block, called EdgeConv, is stacked multiple layers to form a graph convolutional network to realize the transfer an update of information from local to global, so as gradually enhance the feature consistency of graph nodes. Simultaneously, in an effort to suppress the noise information that may be transferred in graph convolution and thus reduce adverse effects of noise on segmentation results, the partial class activation mapping is introduced. The partial class activation mapping can guide the information transmission between graph nodes and effectively activate vessel feature through classification labels, thereby improving the accuracy of segmentation. The performance of the proposed method is validated on four different fundus image datasets. Compared with existing state-of-the-art methods, the proposed method can improve the integrity of vessel to a certain extent when the pixel features of local vessels are significantly different, caused by objective factors such as inappropriate illumination and exudates. Moreover, the proposed method shows robustness when segmenting complex retinal vessels.
Collapse
Affiliation(s)
- Zeyu Wang
- College of Computer and Information Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - L V Jia
- College of Computer and Information Sciences, Chongqing Normal University, Chongqing, 401331, China; National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing, 401331, China.
| | - Haocheng Liang
- College of Computer and Information Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
5
|
Matloob Abbasi M, Iqbal S, Aurangzeb K, Alhussein M, Khan TM. LMBiS-Net: A lightweight bidirectional skip connection based multipath CNN for retinal blood vessel segmentation. Sci Rep 2024; 14:15219. [PMID: 38956117 PMCID: PMC11219784 DOI: 10.1038/s41598-024-63496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Blinding eye diseases are often related to changes in retinal structure, which can be detected by analysing retinal blood vessels in fundus images. However, existing techniques struggle to accurately segment these delicate vessels. Although deep learning has shown promise in medical image segmentation, its reliance on specific operations can limit its ability to capture crucial details such as the edges of the vessel. This paper introduces LMBiS-Net, a lightweight convolutional neural network designed for the segmentation of retinal vessels. LMBiS-Net achieves exceptional performance with a remarkably low number of learnable parameters (only 0.172 million). The network used multipath feature extraction blocks and incorporates bidirectional skip connections for the information flow between the encoder and decoder. In addition, we have optimised the efficiency of the model by carefully selecting the number of filters to avoid filter overlap. This optimisation significantly reduces training time and improves computational efficiency. To assess LMBiS-Net's robustness and ability to generalise to unseen data, we conducted comprehensive evaluations on four publicly available datasets: DRIVE, STARE, CHASE_DB1, and HRF The proposed LMBiS-Net achieves significant performance metrics in various datasets. It obtains sensitivity values of 83.60%, 84.37%, 86.05%, and 83.48%, specificity values of 98.83%, 98.77%, 98.96%, and 98.77%, accuracy (acc) scores of 97.08%, 97.69%, 97.75%, and 96.90%, and AUC values of 98.80%, 98.82%, 98.71%, and 88.77% on the DRIVE, STARE, CHEASE_DB, and HRF datasets, respectively. In addition, it records F1 scores of 83.43%, 84.44%, 83.54%, and 78.73% on the same datasets. Our evaluations demonstrate that LMBiS-Net achieves high segmentation accuracy (acc) while exhibiting both robustness and generalisability across various retinal image datasets. This combination of qualities makes LMBiS-Net a promising tool for various clinical applications.
Collapse
Affiliation(s)
- Mufassir Matloob Abbasi
- Department of Electrical Engineering, Abasyn University Islamabad Campus (AUIC), Islamabad, 44000, Pakistan
| | - Shahzaib Iqbal
- Department of Electrical Engineering, Abasyn University Islamabad Campus (AUIC), Islamabad, 44000, Pakistan.
| | - Khursheed Aurangzeb
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, P. O. Box 51178, 11543, Saudi Arabia
| | - Musaed Alhussein
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, P. O. Box 51178, 11543, Saudi Arabia
| | - Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Qian G, Wang H, Wang Y, Chen X, Yu D, Luo S, Sun Y, Xu P, Ye J. Cascade spatial and channel-wise multifusion network with criss cross augmentation for corneal segmentation and reconstruction. Comput Biol Med 2024; 177:108602. [PMID: 38805809 DOI: 10.1016/j.compbiomed.2024.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
High-quality 3D corneal reconstruction from AS-OCT images has demonstrated significant potential in computer-aided diagnosis, enabling comprehensive observation of corneal thickness, precise assessment of morphological characteristics, as well as location and quantification of keratitis-affected regions. However, it faces two main challenges: (1) prevalent medical image segmentation networks often struggle to accurately process low-contrast corneal regions, which is a vital pre-processing step for 3D corneal reconstruction, and (2) there are no reconstruction methods that can be directly applied to AS-OCT sequences with 180-degree scanning. To combat these, we propose CSCM-CCA-Net, a simple yet efficient network for accurate corneal segmentation. This network incorporates two key techniques: cascade spatial and channel-wise multifusion (CSCM), which captures intricate contextual interdependencies and effectively extracts low-contrast and obscure corneal features; and criss cross augmentation (CCA), which enhances shape-preserved feature representation to improve segmentation accuracy. Based on the obtained corneal segmentation results, we reconstruct the 3D volume data and generate a topographic map of corneal thickness through corneal image alignment. Additionally, we design a transfer function based on the analysis of intensity histogram and gradient histogram to explore more internal cues for better visualization results. Experimental results on CORNEA benchmark demonstrate the impressive performance of our proposed method in terms of both corneal segmentation and 3D reconstruction. Furthermore, we compare CSCM-CCA-Net with state-of-the-art medical image segmentation approaches using three challenging medical fundus segmentation datasets (DRIVE, CHASEDB1, FIVES), highlighting its superiority in terms of segmentation accuracy. The code and models will be made available at https://github.com/qianguiping/CSCM-CCA-Net.
Collapse
Affiliation(s)
- Guiping Qian
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China.
| | - Huaqiong Wang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China
| | - Yaqi Wang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China
| | - Xiaodiao Chen
- School of Computer, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Dingguo Yu
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China
| | - Shan Luo
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China
| | - Yiming Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310005, China
| | - Peifang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310005, China
| | - Juan Ye
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310005, China
| |
Collapse
|
7
|
Huang Z, Zhao Y, Yu Z, Qin P, Han X, Wang M, Liu M, Gregersen H. BiU-net: A dual-branch structure based on two-stage fusion strategy for biomedical image segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 252:108235. [PMID: 38776830 DOI: 10.1016/j.cmpb.2024.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/28/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Computer-based biomedical image segmentation plays a crucial role in planning of assisted diagnostics and therapy. However, due to the variable size and irregular shape of the segmentation target, it is still a challenge to construct an effective medical image segmentation structure. Recently, hybrid architectures based on convolutional neural networks (CNNs) and transformers were proposed. However, most current backbones directly replace one or all convolutional layers with transformer blocks, regardless of the semantic gap between features. Thus, how to sufficiently and effectively eliminate the semantic gap as well as combine the global and local information is a critical challenge. METHODS To address the challenge, we propose a novel structure, called BiU-Net, which integrates CNNs and transformers with a two-stage fusion strategy. In the first fusion stage, called Single-Scale Fusion (SSF) stage, the encoding layers of the CNNs and transformers are coupled, with both having the same feature map size. The SSF stage aims to reconstruct local features based on CNNs and long-range information based on transformers in each encoding block. In the second stage, Multi-Scale Fusion (MSF), BiU-Net interacts with multi-scale features from various encoding layers to eliminate the semantic gap between deep and shallow layers. Furthermore, a Context-Aware Block (CAB) is embedded in the bottleneck to reinforce multi-scale features in the decoder. RESULTS Experiments on four public datasets were conducted. On the BUSI dataset, our BiU-Net achieved 85.50 % on Dice coefficient (Dice), 76.73 % on intersection over union (IoU), and 97.23 % on accuracy (ACC). Compared to the state-of-the-art method, BiU-Net improves Dice by 1.17 %. For the Monuseg dataset, the proposed method attained the highest scores, reaching 80.27 % and 67.22 % for Dice and IoU. The BiU-Net achieves 95.33 % and 81.22 % Dice on the PH2 and DRIVE datasets. CONCLUSIONS The results of our experiments showed that BiU-Net transcends existing state-of-the-art methods on four publicly available biomedical datasets. Due to the powerful multi-scale feature extraction ability, our proposed BiU-Net is a versatile medical image segmentation framework for various types of medical images. The source code is released on (https://github.com/ZYLandy/BiU-Net).
Collapse
Affiliation(s)
- Zhiyong Huang
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.
| | - Yunlan Zhao
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Zhi Yu
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Pinzhong Qin
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Xiao Han
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Mengyao Wang
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Man Liu
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Hans Gregersen
- California Medical Innovations Institute, San Diego 92121, California
| |
Collapse
|
8
|
Chen J, Li M, Han H, Zhao Z, Chen X. SurgNet: Self-Supervised Pretraining With Semantic Consistency for Vessel and Instrument Segmentation in Surgical Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1513-1525. [PMID: 38090838 DOI: 10.1109/tmi.2023.3341948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Blood vessel and surgical instrument segmentation is a fundamental technique for robot-assisted surgical navigation. Despite the significant progress in natural image segmentation, surgical image-based vessel and instrument segmentation are rarely studied. In this work, we propose a novel self-supervised pretraining method (SurgNet) that can effectively learn representative vessel and instrument features from unlabeled surgical images. As a result, it allows for precise and efficient segmentation of vessels and instruments with only a small amount of labeled data. Specifically, we first construct a region adjacency graph (RAG) based on local semantic consistency in unlabeled surgical images and use it as a self-supervision signal for pseudo-mask segmentation. We then use the pseudo-mask to perform guided masked image modeling (GMIM) to learn representations that integrate structural information of intraoperative objectives more effectively. Our pretrained model, paired with various segmentation methods, can be applied to perform vessel and instrument segmentation accurately using limited labeled data for fine-tuning. We build an Intraoperative Vessel and Instrument Segmentation (IVIS) dataset, comprised of ~3 million unlabeled images and over 4,000 labeled images with manual vessel and instrument annotations to evaluate the effectiveness of our self-supervised pretraining method. We also evaluated the generalizability of our method to similar tasks using two public datasets. The results demonstrate that our approach outperforms the current state-of-the-art (SOTA) self-supervised representation learning methods in various surgical image segmentation tasks.
Collapse
|
9
|
Li J, Gao G, Yang L, Liu Y. A retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Comput Biol Med 2024; 172:108315. [PMID: 38503093 DOI: 10.1016/j.compbiomed.2024.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
The incidence of blinding eye diseases is highly correlated with changes in retinal morphology, and is clinically detected by segmenting retinal structures in fundus images. However, some existing methods have limitations in accurately segmenting thin vessels. In recent years, deep learning has made a splash in the medical image segmentation, but the lack of edge information representation due to repetitive convolution and pooling, limits the final segmentation accuracy. To this end, this paper proposes a pixel-level retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Here, a multiple dimension attention enhancement (MDAE) block is proposed to acquire more local edge information. Meanwhile, a deep guidance fusion (DGF) block and a cross-pooling semantic enhancement (CPSE) block are proposed simultaneously to acquire more global contexts. Further, the predictions of different decoding stages are learned and aggregated by an adaptive weight learner (AWL) unit to obtain the best weights for effective feature fusion. The experimental results on three public fundus image datasets show that proposed network could effectively enhance the segmentation performance on retinal blood vessels. In particular, the proposed method achieves AUC of 98.30%, 98.75%, and 98.71% on the DRIVE, CHASE_DB1, and STARE datasets, respectively, while the F1 score on all three datasets exceeded 83%. The source code of the proposed model is available at https://github.com/gegao310/VesselSeg-Pytorch-master.
Collapse
Affiliation(s)
- Jianyong Li
- College of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450002, China
| | - Ge Gao
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan Province, 450001, China.
| | - Lei Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan Province, 450001, China.
| | - Yanhong Liu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan Province, 450001, China
| |
Collapse
|
10
|
Ahmad N, Lai KT, Tanveer M. Retinal Blood Vessel Tracking and Diameter Estimation via Gaussian Process With Rider Optimization Algorithm. IEEE J Biomed Health Inform 2024; 28:1173-1184. [PMID: 37022382 DOI: 10.1109/jbhi.2022.3229743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retinal blood vessels structure analysis is an important step in the detection of ocular diseases such as diabetic retinopathy and retinopathy of prematurity. Accurate tracking and estimation of retinal blood vessels in terms of their diameter remains a major challenge in retinal structure analysis. In this research, we develop a rider-based Gaussian approach for accurate tracking and diameter estimation of retinal blood vessels. The diameter and curvature of the blood vessel are assumed as the Gaussian processes. The features are determined for training the Gaussian process using Radon transform. The kernel hyperparameter of Gaussian processes is optimized using Rider Optimization Algorithm for evaluating the direction of the vessel. Multiple Gaussian processes are used for detecting the bifurcations and the difference in the prediction direction is quantified. The performance of the proposed Rider-based Gaussian process is evaluated with mean and standard deviation. Our method achieved high performance with the standard deviation of 0.2499 and mean average of 0.0147, which outperformed the state-of-the-art method by 6.32%. Although the proposed model outperformed the state-of-the-art method in normal blood vessels, in future research, one can include tortuous blood vessels of different retinopathy patients, which would be more challenging due to large angle variations. We used Rider-based Gaussian process for tracking blood vessels to obtain the diameter of retinal blood vessels, and the method performed well on the "STrutred Analysis of the REtina (STARE) Database" accessed on Oct. 2020 (https://cecas.clemson.edu/~ahoover/stare/). To the best of our knowledge, this experiment is one of the most recent analysis using this type of algorithm.
Collapse
|
11
|
Bhati A, Gour N, Khanna P, Ojha A, Werghi N. An interpretable dual attention network for diabetic retinopathy grading: IDANet. Artif Intell Med 2024; 149:102782. [PMID: 38462283 DOI: 10.1016/j.artmed.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 03/12/2024]
Abstract
Diabetic retinopathy (DR) is the most prevalent cause of visual impairment in adults worldwide. Typically, patients with DR do not show symptoms until later stages, by which time it may be too late to receive effective treatment. DR Grading is challenging because of the small size and variation in lesion patterns. The key to fine-grained DR grading is to discover more discriminating elements such as cotton wool, hard exudates, hemorrhages, microaneurysms etc. Although deep learning models like convolutional neural networks (CNN) seem ideal for the automated detection of abnormalities in advanced clinical imaging, small-size lesions are very hard to distinguish by using traditional networks. This work proposes a bi-directional spatial and channel-wise parallel attention based network to learn discriminative features for diabetic retinopathy grading. The proposed attention block plugged with a backbone network helps to extract features specific to fine-grained DR-grading. This scheme boosts classification performance along with the detection of small-sized lesion parts. Extensive experiments are performed on four widely used benchmark datasets for DR grading, and performance is evaluated on different quality metrics. Also, for model interpretability, activation maps are generated using the LIME method to visualize the predicted lesion parts. In comparison with state-of-the-art methods, the proposed IDANet exhibits better performance for DR grading and lesion detection.
Collapse
Affiliation(s)
- Amit Bhati
- PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
| | - Neha Gour
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Pritee Khanna
- PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India.
| | - Aparajita Ojha
- PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
| | - Naoufel Werghi
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Zhang Y, Yu M, Tong C, Zhao Y, Han J. CA-UNet Segmentation Makes a Good Ischemic Stroke Risk Prediction. Interdiscip Sci 2024; 16:58-72. [PMID: 37626263 DOI: 10.1007/s12539-023-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023]
Abstract
Stroke is still the World's second major factor of death, as well as the third major factor of death and disability. Ischemic stroke is a type of stroke, in which early detection and treatment are the keys to preventing ischemic strokes. However, due to the limitation of privacy protection and labeling difficulties, there are only a few studies on the intelligent automatic diagnosis of stroke or ischemic stroke, and the results are unsatisfactory. Therefore, we collect some data and propose a 3D carotid Computed Tomography Angiography (CTA) image segmentation model called CA-UNet for fully automated extraction of carotid arteries. We explore the number of down-sampling times applicable to carotid segmentation and design a multi-scale loss function to resolve the loss of detailed features during the process of down-sampling. Moreover, based on CA-Unet, we propose an ischemic stroke risk prediction model to predict the risk in patients using their 3D CTA images, electronic medical records, and medical history. We have validated the efficacy of our segmentation model and prediction model through comparison tests. Our method can provide reliable diagnoses and results that benefit patients and medical professionals.
Collapse
Affiliation(s)
- Yuqi Zhang
- School of Computer Science and Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Mengbo Yu
- School of Computer Science and Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Chao Tong
- School of Computer Science and Engineering, Beihang University, Beijing, China.
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China.
| | - Yanqing Zhao
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Jintao Han
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Jiang M, Zhu Y, Zhang X. CoVi-Net: A hybrid convolutional and vision transformer neural network for retinal vessel segmentation. Comput Biol Med 2024; 170:108047. [PMID: 38295476 DOI: 10.1016/j.compbiomed.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
Retinal vessel segmentation plays a crucial role in the diagnosis and treatment of ocular pathologies. Current methods have limitations in feature fusion and face challenges in simultaneously capturing global and local features from fundus images. To address these issues, this study introduces a hybrid network named CoVi-Net, which combines convolutional neural networks and vision transformer. In our proposed model, we have integrated a novel module for local and global feature aggregation (LGFA). This module facilitates remote information interaction while retaining the capability to effectively gather local information. In addition, we introduce a bidirectional weighted feature fusion module (BWF). Recognizing the variations in semantic information across layers, we allocate adjustable weights to different feature layers for adaptive feature fusion. BWF employs a bidirectional fusion strategy to mitigate the decay of effective information. We also incorporate horizontal and vertical connections to enhance feature fusion and utilization across various scales, thereby improving the segmentation of multiscale vessel images. Furthermore, we introduce an adaptive lateral feature fusion (ALFF) module that refines the final vessel segmentation map by enriching it with more semantic information from the network. In the evaluation of our model, we employed three well-established retinal image databases (DRIVE, CHASEDB1, and STARE). Our experimental results demonstrate that CoVi-Net outperforms other state-of-the-art techniques, achieving a global accuracy of 0.9698, 0.9756, and 0.9761 and an area under the curve of 0.9880, 0.9903, and 0.9915 on DRIVE, CHASEDB1, and STARE, respectively. We conducted ablation studies to assess the individual effectiveness of the three modules. In addition, we examined the adaptability of our CoVi-Net model for segmenting lesion images. Our experiments indicate that our proposed model holds promise in aiding the diagnosis of retinal vascular disorders.
Collapse
Affiliation(s)
- Minshan Jiang
- Shanghai Key Laboratory of Contemporary Optics System, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yongfei Zhu
- Shanghai Key Laboratory of Contemporary Optics System, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuedian Zhang
- Shanghai Key Laboratory of Contemporary Optics System, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
14
|
Sun K, Chen Y, Dong F, Wu Q, Geng J, Chen Y. Retinal vessel segmentation method based on RSP-SA Unet network. Med Biol Eng Comput 2024; 62:605-620. [PMID: 37964177 DOI: 10.1007/s11517-023-02960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
Segmenting retinal vessels plays a significant role in the diagnosis of fundus disorders. However, there are two problems in the retinal vessel segmentation methods. First, fine-grained features of fine blood vessels are difficult to be extracted. Second, it is easy to lose track of the details of blood vessel edges. To solve the problems above, the Residual SimAM Pyramid-Spatial Attention Unet (RSP-SA Unet) is proposed, in which the encoding, decoding, and upsampling layers of the Unet are mainly improved. Firstly, the RSP structure proposed in this paper approximates a residual structure combined with SimAM and Pyramid Segmentation Attention (PSA), which is applied to the encoding and decoding parts to extract multi-scale spatial information and important features across dimensions at a finer level. Secondly, the spatial attention (SA) is used in the upsampling layer to perform multi-attention mapping on the input feature map, which could enhance the segmentation effect of small blood vessels with low contrast. Finally, the RSP-SA Unet is verified on the CHASE_DB1, DRIVE, and STARE datasets, and the segmentation accuracy (ACC) of the RSP-SA Unet could reach 0.9763, 0.9704, and 0.9724, respectively. Area under the ROC curve (AUC) could reach 0.9896, 0.9858, and 0.9906, respectively. The RSP-SA Unet overall performance is better than the comparison methods.
Collapse
Affiliation(s)
- Kun Sun
- The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
- Teaching Demonstration Center for Measurement and Control Technology and Instrumentation, National Experimental, Harbin University of Science and Technology, Harbin, China
| | - Yang Chen
- The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
- Teaching Demonstration Center for Measurement and Control Technology and Instrumentation, National Experimental, Harbin University of Science and Technology, Harbin, China
| | - Fuxuan Dong
- The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
- Teaching Demonstration Center for Measurement and Control Technology and Instrumentation, National Experimental, Harbin University of Science and Technology, Harbin, China
| | - Qing Wu
- The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China.
- Teaching Demonstration Center for Measurement and Control Technology and Instrumentation, National Experimental, Harbin University of Science and Technology, Harbin, China.
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin, China.
| | - Jiameng Geng
- The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
- Teaching Demonstration Center for Measurement and Control Technology and Instrumentation, National Experimental, Harbin University of Science and Technology, Harbin, China
| | - Yinsheng Chen
- The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
- Teaching Demonstration Center for Measurement and Control Technology and Instrumentation, National Experimental, Harbin University of Science and Technology, Harbin, China
| |
Collapse
|
15
|
Bhimavarapu U, Chintalapudi N, Battineni G. Automatic Detection and Classification of Hypertensive Retinopathy with Improved Convolution Neural Network and Improved SVM. Bioengineering (Basel) 2024; 11:56. [PMID: 38247933 PMCID: PMC10813404 DOI: 10.3390/bioengineering11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Hypertensive retinopathy (HR) results from the microvascular retinal changes triggered by hypertension, which is the most common leading cause of preventable blindness worldwide. Therefore, it is necessary to develop an automated system for HR detection and evaluation using retinal images. We aimed to propose an automated approach to identify and categorize the various degrees of HR severity. A new network called the spatial convolution module (SCM) combines cross-channel and spatial information, and the convolution operations extract helpful features. The present model is evaluated using publicly accessible datasets ODIR, INSPIREVR, and VICAVR. We applied the augmentation to artificially increase the dataset of 1200 fundus images. The different HR severity levels of normal, mild, moderate, severe, and malignant are finally classified with the reduced time when compared to the existing models because in the proposed model, convolutional layers run only once on the input fundus images, which leads to a speedup and reduces the processing time in detecting the abnormalities in the vascular structure. According to the findings, the improved SVM had the highest detection and classification accuracy rate in the vessel classification with an accuracy of 98.99% and completed the task in 160.4 s. The ten-fold classification achieved the highest accuracy of 98.99%, i.e., 0.27 higher than the five-fold classification accuracy and the improved KNN classifier achieved an accuracy of 98.72%. When computation efficiency is a priority, the proposed model's ability to quickly recognize different HR severity levels is significant.
Collapse
Affiliation(s)
- Usharani Bhimavarapu
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India
| | - Nalini Chintalapudi
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy;
| | - Gopi Battineni
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy;
| |
Collapse
|
16
|
Qiu Z, Hu Y, Chen X, Zeng D, Hu Q, Liu J. Rethinking Dual-Stream Super-Resolution Semantic Learning in Medical Image Segmentation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:451-464. [PMID: 37812562 DOI: 10.1109/tpami.2023.3322735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Image segmentation is fundamental task for medical image analysis, whose accuracy is improved by the development of neural networks. However, the existing algorithms that achieve high-resolution performance require high-resolution input, resulting in substantial computational expenses and limiting their applicability in the medical field. Several studies have proposed dual-stream learning frameworks incorporating a super-resolution task as auxiliary. In this paper, we rethink these frameworks and reveal that the feature similarity between tasks is insufficient to constrain vessels or lesion segmentation in the medical field, due to their small proportion in the image. To address this issue, we propose a DS2F (Dual-Stream Shared Feature) framework, including a Shared Feature Extraction Module (SFEM). Specifically, we present Multi-Scale Cross Gate (MSCG) utilizing multi-scale features as a novel example of SFEM. Then we define a proxy task and proxy loss to enable the features focus on the targets based on the assumption that a limited set of shared features between tasks is helpful for their performance. Extensive experiments on six publicly available datasets across three different scenarios are conducted to verify the effectiveness of our framework. Furthermore, various ablation studies are conducted to demonstrate the significance of our DS2F.
Collapse
|
17
|
Li JN, Zhang SW, Qiang YR, Zhou QY. A novel cross-layer dual encoding-shared decoding network framework with spatial self-attention mechanism for hippocampus segmentation. Comput Biol Med 2023; 167:107584. [PMID: 37883852 DOI: 10.1016/j.compbiomed.2023.107584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/21/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Accurate segmentation of the hippocampus from the brain magnetic resonance images (MRIs) is a crucial task in the neuroimaging research, since its structural integrity is strongly related to several neurodegenerative disorders, such as Alzheimer's disease (AD). Automatic segmentation of the hippocampus structures is challenging due to the small volume, complex shape, low contrast and discontinuous boundaries of hippocampus. Although some methods have been developed for the hippocampus segmentation, most of them paid too much attention to the hippocampus shape and volume instead of considering the spatial information. Additionally, the extracted features are independent of each other, ignoring the correlation between the global and local information. In view of this, here we proposed a novel cross-layer dual Encoding-Shared Decoding network framework with Spatial self-Attention mechanism (called ESDSA) for hippocampus segmentation in human brains. Considering that the hippocampus is a relatively small part in MRI, we introduced the spatial self-attention mechanism in ESDSA to capture the spatial information of hippocampus for improving the segmentation accuracy. We also designed a cross-layer dual encoding-shared decoding network to effectively extract the global information of MRIs and the spatial information of hippocampus. The spatial features of hippocampus and the features extracted from the MRIs were combined to realize the hippocampus segmentation. Results on the baseline T1-weighted structural MRI data show that the performance of our ESDSA is superior to other state-of-the-art methods, and the dice similarity coefficient of ESDSA achieves 89.37%. In addition, the dice similarity coefficient of the Spatial Self-Attention mechanism (SSA) strategy and the dual Encoding-Shared Decoding (ESD) strategy is 9.47%, 5.35% higher than that of the baseline U-net, respectively, indicating that the strategies of SSA and ESD can effectively enhance the segmentation accuracy of human brain hippocampus.
Collapse
Affiliation(s)
- Jia-Ni Li
- MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shao-Wu Zhang
- MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yan-Rui Qiang
- MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qin-Yi Zhou
- MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
18
|
Li P, Qiu Z, Zhan Y, Chen H, Yuan S. Multi-scale Bottleneck Residual Network for Retinal Vessel Segmentation. J Med Syst 2023; 47:102. [PMID: 37776409 DOI: 10.1007/s10916-023-01992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/30/2023] [Indexed: 10/02/2023]
Abstract
Precise segmentation of retinal vessels is crucial for the prevention and diagnosis of ophthalmic diseases. In recent years, deep learning has shown outstanding performance in retinal vessel segmentation. Many scholars are dedicated to studying retinal vessel segmentation methods based on color fundus images, but the amount of research works on Scanning Laser Ophthalmoscopy (SLO) images is very scarce. In addition, existing SLO image segmentation methods still have difficulty in balancing accuracy and model parameters. This paper proposes a SLO image segmentation model based on lightweight U-Net architecture called MBRNet, which solves the problems in the current research through Multi-scale Bottleneck Residual (MBR) module and attention mechanism. Concretely speaking, the MBR module expands the receptive field of the model at a relatively low computational cost and retains more detailed information. Attention Gate (AG) module alleviates the disturbance of noise so that the network can concentrate on vascular characteristics. Experimental results on two public SLO datasets demonstrate that by comparison to existing methods, the MBRNet has better segmentation performance with relatively few parameters.
Collapse
Affiliation(s)
- Peipei Li
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Zhao Qiu
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China.
| | - Yuefu Zhan
- Affiliated maternal and child health hospital (Children's hospital) of Hainan medical university/Hainan Women and Children's Medical Center, Haikou, 570312, China.
| | - Huajing Chen
- Hainan Provincial Public Security Department, Haikou, 570203, China
| | - Sheng Yuan
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| |
Collapse
|
19
|
Zhu YF, Xu X, Zhang XD, Jiang MS. CCS-UNet: a cross-channel spatial attention model for accurate retinal vessel segmentation. BIOMEDICAL OPTICS EXPRESS 2023; 14:4739-4758. [PMID: 37791275 PMCID: PMC10545190 DOI: 10.1364/boe.495766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 10/05/2023]
Abstract
Precise segmentation of retinal vessels plays an important role in computer-assisted diagnosis. Deep learning models have been applied to retinal vessel segmentation, but the efficacy is limited by the significant scale variation of vascular structures and the intricate background of retinal images. This paper supposes a cross-channel spatial attention U-Net (CCS-UNet) for accurate retinal vessel segmentation. In comparison to other models based on U-Net, our model employes a ResNeSt block for the encoder-decoder architecture. The block has a multi-branch structure that enables the model to extract more diverse vascular features. It facilitates weight distribution across channels through the incorporation of soft attention, which effectively aggregates contextual information in vascular images. Furthermore, we suppose an attention mechanism within the skip connection. This mechanism serves to enhance feature integration across various layers, thereby mitigating the degradation of effective information. It helps acquire cross-channel information and enhance the localization of regions of interest, ultimately leading to improved recognition of vascular structures. In addition, the feature fusion module (FFM) module is used to provide semantic information for a more refined vascular segmentation map. We evaluated CCS-UNet based on five benchmark retinal image datasets, DRIVE, CHASEDB1, STARE, IOSTAR and HRF. Our proposed method exhibits superior segmentation efficacy compared to other state-of-the-art techniques with a global accuracy of 0.9617/0.9806/0.9766/0.9786/0.9834 and AUC of 0.9863/0.9894/0.9938/0.9902/0.9855 on DRIVE, CHASEDB1, STARE, IOSTAR and HRF respectively. Ablation studies are also performed to evaluate the the relative contributions of different architectural components. Our proposed model is potential for diagnostic aid of retinal diseases.
Collapse
Affiliation(s)
| | | | - Xue-dian Zhang
- Shanghai Key Laboratory of Contemporary Optics System, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min-shan Jiang
- Shanghai Key Laboratory of Contemporary Optics System, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
20
|
Ryu J, Rehman MU, Nizami IF, Chong KT. SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation. Comput Biol Med 2023; 163:107132. [PMID: 37343468 DOI: 10.1016/j.compbiomed.2023.107132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Retinal vessel segmentation is an important task in medical image analysis and has a variety of applications in the diagnosis and treatment of retinal diseases. In this paper, we propose SegR-Net, a deep learning framework for robust retinal vessel segmentation. SegR-Net utilizes a combination of feature extraction and embedding, deep feature magnification, feature precision and interference, and dense multiscale feature fusion to generate accurate segmentation masks. The model consists of an encoder module that extracts high-level features from the input images and a decoder module that reconstructs the segmentation masks by combining features from the encoder module. The encoder module consists of a feature extraction and embedding block that enhances by dense multiscale feature fusion, followed by a deep feature magnification block that magnifies the retinal vessels. To further improve the quality of the extracted features, we use a group of two convolutional layers after each DFM block. In the decoder module, we utilize a feature precision and interference block and a dense multiscale feature fusion block (DMFF) to combine features from the encoder module and reconstruct the segmentation mask. We also incorporate data augmentation and pre-processing techniques to improve the generalization of the trained model. Experimental results on three fundus image publicly available datasets (CHASE_DB1, STARE, and DRIVE) demonstrate that SegR-Net outperforms state-of-the-art models in terms of accuracy, sensitivity, specificity, and F1 score. The proposed framework can provide more accurate and more efficient segmentation of retinal blood vessels in comparison to the state-of-the-art techniques, which is essential for clinical decision-making and diagnosis of various eye diseases.
Collapse
Affiliation(s)
- Jihyoung Ryu
- Electronics and Telecommunications Research Institute, 176-11 Cheomdan Gwagi-ro, Buk-gu, Gwangju 61012, Republic of Korea.
| | - Mobeen Ur Rehman
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Imran Fareed Nizami
- Department of Electrical Engineering, Bahria University, Islamabad, Pakistan.
| | - Kil To Chong
- Electronics and Telecommunications Research Institute, 176-11 Cheomdan Gwagi-ro, Buk-gu, Gwangju 61012, Republic of Korea; Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
21
|
Li Y, Zhang Y, Liu JY, Wang K, Zhang K, Zhang GS, Liao XF, Yang G. Global Transformer and Dual Local Attention Network via Deep-Shallow Hierarchical Feature Fusion for Retinal Vessel Segmentation. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:5826-5839. [PMID: 35984806 DOI: 10.1109/tcyb.2022.3194099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clinically, retinal vessel segmentation is a significant step in the diagnosis of fundus diseases. However, recent methods generally neglect the difference of semantic information between deep and shallow features, which fail to capture the global and local characterizations in fundus images simultaneously, resulting in the limited segmentation performance for fine vessels. In this article, a global transformer (GT) and dual local attention (DLA) network via deep-shallow hierarchical feature fusion (GT-DLA-dsHFF) are investigated to solve the above limitations. First, the GT is developed to integrate the global information in the retinal image, which effectively captures the long-distance dependence between pixels, alleviating the discontinuity of blood vessels in the segmentation results. Second, DLA, which is constructed using dilated convolutions with varied dilation rates, unsupervised edge detection, and squeeze-excitation block, is proposed to extract local vessel information, consolidating the edge details in the segmentation result. Finally, a novel deep-shallow hierarchical feature fusion (dsHFF) algorithm is studied to fuse the features in different scales in the deep learning framework, respectively, which can mitigate the attenuation of valid information in the process of feature fusion. We verified the GT-DLA-dsHFF on four typical fundus image datasets. The experimental results demonstrate our GT-DLA-dsHFF achieves superior performance against the current methods and detailed discussions verify the efficacy of the proposed three modules. Segmentation results of diseased images show the robustness of our proposed GT-DLA-dsHFF. Implementation codes will be available on https://github.com/YangLibuaa/GT-DLA-dsHFF.
Collapse
|
22
|
Shen N, Xu T, Bian Z, Huang S, Mu F, Huang B, Xiao Y, Li J. SCANet: A Unified Semi-Supervised Learning Framework for Vessel Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2476-2489. [PMID: 35862338 DOI: 10.1109/tmi.2022.3193150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Automatic subcutaneous vessel imaging with near-infrared (NIR) optical apparatus can promote the accuracy of locating blood vessels, thus significantly contributing to clinical venipuncture research. Though deep learning models have achieved remarkable success in medical image segmentation, they still struggle in the subfield of subcutaneous vessel segmentation due to the scarcity and low-quality of annotated data. To relieve it, this work presents a novel semi-supervised learning framework, SCANet, that achieves accurate vessel segmentation through an alternate training strategy. The SCANet is composed of a multi-scale recurrent neural network that embeds coarse-to-fine features and two auxiliary branches, a consistency decoder and an adversarial learning branch, responsible for strengthening fine-grained details and eliminating differences between ground-truths and predictions, respectively. Equipped with a novel semi-supervised alternate training strategy, the three components work collaboratively, enabling SCANet to accurately segment vessel regions with only a handful of labeled data and abounding unlabeled data. Moreover, to mitigate the shortage of annotated data in this field, we provide a new subcutaneous vessel dataset, VESSEL-NIR. Extensive experiments on a wide variety of tasks, including the segmentation of subcutaneous vessels, retinal vessels, and skin lesions, well demonstrate the superiority and generality of our approach.
Collapse
|
23
|
Khan TM, Naqvi SS, Robles-Kelly A, Razzak I. Retinal vessel segmentation via a Multi-resolution Contextual Network and adversarial learning. Neural Netw 2023; 165:310-320. [PMID: 37327578 DOI: 10.1016/j.neunet.2023.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Timely and affordable computer-aided diagnosis of retinal diseases is pivotal in precluding blindness. Accurate retinal vessel segmentation plays an important role in disease progression and diagnosis of such vision-threatening diseases. To this end, we propose a Multi-resolution Contextual Network (MRC-Net) that addresses these issues by extracting multi-scale features to learn contextual dependencies between semantically different features and using bi-directional recurrent learning to model former-latter and latter-former dependencies. Another key idea is training in adversarial settings for foreground segmentation improvement through optimization of the region-based scores. This novel strategy boosts the performance of the segmentation network in terms of the Dice score (and correspondingly Jaccard index) while keeping the number of trainable parameters comparatively low. We have evaluated our method on three benchmark datasets, including DRIVE, STARE, and CHASE, demonstrating its superior performance as compared with competitive approaches elsewhere in the literature.
Collapse
Affiliation(s)
- Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan
| | - Antonio Robles-Kelly
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Locked Bag 20000, Geelong, Australia; Defence Science and Technology Group, 5111, Edinburgh, SA, Australia
| | - Imran Razzak
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
24
|
Shi T, Ding X, Zhou W, Pan F, Yan Z, Bai X, Yang X. Affinity Feature Strengthening for Accurate, Complete and Robust Vessel Segmentation. IEEE J Biomed Health Inform 2023; 27:4006-4017. [PMID: 37163397 DOI: 10.1109/jbhi.2023.3274789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms. However, achieving high pixel-wise accuracy, complete topology structure and robustness to various contrast variations are critical and challenging, and most existing methods focus only on achieving one or two of these aspects. In this paper, we present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach. Specifically, we compute a multiscale affinity field for each pixel, capturing its semantic relationships with neighboring pixels in the predicted mask image. This field represents the local geometry of vessel segments of different sizes, allowing us to learn spatial- and scale-aware adaptive weights to strengthen vessel features. We evaluate our AFN on four different types of vascular datasets: X-ray angiography coronary vessel dataset (XCAD), portal vein dataset (PV), digital subtraction angiography cerebrovascular vessel dataset (DSA) and retinal vessel dataset (DRIVE). Extensive experimental results demonstrate that our AFN outperforms the state-of-the-art methods in terms of both higher accuracy and topological metrics, while also being more robust to various contrast changes.
Collapse
|
25
|
Wu J, Xuan S. Scale-aware dense residual retinal vessel segmentation network with multi-output weighted loss. BMC Med Imaging 2023; 23:100. [PMID: 37516821 PMCID: PMC10387208 DOI: 10.1186/s12880-023-01061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/21/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Retinal vessel segmentation provides an important basis for determining the geometric characteristics of retinal vessels and the diagnosis of related diseases. The retinal vessels are mainly composed of coarse vessels and fine vessels, and the vessels have the problem of uneven distribution of coarse and fine vessels. At present, the common retinal blood vessel segmentation network based on deep learning can easily extract coarse vessels, but it ignores the more difficult to extract fine vessels. METHODS Scale-aware dense residual model, multi-output weighted loss and attention mechanism are proposed and incorporated into the U-shape network. The model is proposed to extract image features through residual module, and using a multi-scale feature aggregation method to extract the deep information of the network after the last encoder layer, and upsampling output at each decoder layer, compare the output results of each decoder layer with the ground truth separately to obtain multiple output losses, and the last layer of the decoder layers is used as the final prediction output. RESULT The proposed network is tested on DRIVE and STARE. The evaluation indicators used in this paper are dice, accuracy, mIoU and recall rate. On the DRIVE dataset, the four indicators are respectively 80.40%, 96.67%, 82.14% and 88.10%; on the STARE dataset, the four indicators are respectively 83.41%, 97.39%, 84.38% and 88.84%. CONCLUSION The experiment result proves that the network in this paper has better performance, can extract more continuous fine vessels, and reduces the problem of missing segmentation and false segmentation to a certain extent.
Collapse
Affiliation(s)
- Jiwei Wu
- School of Artificial Intelligence, Guangxi Minzu University, Daxue East Road 188, Nanning, China
| | - Shibin Xuan
- School of Artificial Intelligence, Guangxi Minzu University, Daxue East Road 188, Nanning, China.
- Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Nanning, China.
| |
Collapse
|
26
|
Zhang H, Qiu Y, Song C, Li J. Landmark-Assisted Anatomy-Sensitive Retinal Vessel Segmentation Network. Diagnostics (Basel) 2023; 13:2260. [PMID: 37443654 DOI: 10.3390/diagnostics13132260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Automatic retinal vessel segmentation is important for assisting clinicians in diagnosing ophthalmic diseases. The existing deep learning methods remain constrained in instance connectivity and thin vessel detection. To this end, we propose a novel anatomy-sensitive retinal vessel segmentation framework to preserve instance connectivity and improve the segmentation accuracy of thin vessels. This framework uses TransUNet as its backbone and utilizes self-supervised extracted landmarks to guide network learning. TransUNet is designed to simultaneously benefit from the advantages of convolutional and multi-head attention mechanisms in extracting local features and modeling global dependencies. In particular, we introduce contrastive learning-based self-supervised extraction anatomical landmarks to guide the model to focus on learning the morphological information of retinal vessels. We evaluated the proposed method on three public datasets: DRIVE, CHASE-DB1, and STARE. Our method demonstrates promising results on the DRIVE and CHASE-DB1 datasets, outperforming state-of-the-art methods by improving the F1 scores by 0.36% and 0.31%, respectively. On the STARE dataset, our method achieves results close to the best-performing methods. Visualizations of the results highlight the potential of our method in maintaining topological continuity and identifying thin blood vessels. Furthermore, we conducted a series of ablation experiments to validate the effectiveness of each module in our model and considered the impact of image resolution on the results.
Collapse
Affiliation(s)
- Haifeng Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yunlong Qiu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Chonghui Song
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jiale Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
27
|
Tan Y, Zhao SX, Yang KF, Li YJ. A lightweight network guided with differential matched filtering for retinal vessel segmentation. Comput Biol Med 2023; 160:106924. [PMID: 37146492 DOI: 10.1016/j.compbiomed.2023.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
The geometric morphology of retinal vessels reflects the state of cardiovascular health, and fundus images are important reference materials for ophthalmologists. Great progress has been made in automated vessel segmentation, but few studies have focused on thin vessel breakage and false-positives in areas with lesions or low contrast. In this work, we propose a new network, differential matched filtering guided attention UNet (DMF-AU), to address these issues, incorporating a differential matched filtering layer, feature anisotropic attention, and a multiscale consistency constrained backbone to perform thin vessel segmentation. The differential matched filtering is used for the early identification of locally linear vessels, and the resulting rough vessel map guides the backbone to learn vascular details. Feature anisotropic attention reinforces the vessel features of spatial linearity at each stage of the model. Multiscale constraints reduce the loss of vessel information while pooling within large receptive fields. In tests on multiple classical datasets, the proposed model performed well compared with other algorithms on several specially designed criteria for vessel segmentation. DMF-AU is a high-performance, lightweight vessel segmentation model. The source code is at https://github.com/tyb311/DMF-AU.
Collapse
Affiliation(s)
- Yubo Tan
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| | - Shi-Xuan Zhao
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| | - Kai-Fu Yang
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| | - Yong-Jie Li
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| |
Collapse
|
28
|
Zhang H, Zhong X, Li G, Liu W, Liu J, Ji D, Li X, Wu J. BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation. Comput Biol Med 2023; 159:106960. [PMID: 37099973 DOI: 10.1016/j.compbiomed.2023.106960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
Medical image segmentation enables doctors to observe lesion regions better and make accurate diagnostic decisions. Single-branch models such as U-Net have achieved great progress in this field. However, the complementary local and global pathological semantics of heterogeneous neural networks have not yet been fully explored. The class-imbalance problem remains a serious issue. To alleviate these two problems, we propose a novel model called BCU-Net, which leverages the advantages of ConvNeXt in global interaction and U-Net in local processing. We propose a new multilabel recall loss (MRL) module to relieve the class imbalance problem and facilitate deep-level fusion of local and global pathological semantics between the two heterogeneous branches. Extensive experiments were conducted on six medical image datasets including retinal vessel and polyp images. The qualitative and quantitative results demonstrate the superiority and generalizability of BCU-Net. In particular, BCU-Net can handle diverse medical images with diverse resolutions. It has a flexible structure owing to its plug-and-play characteristics, which promotes its practicality.
Collapse
Affiliation(s)
- Hongbin Zhang
- School of Software, East China Jiaotong University, China.
| | - Xiang Zhong
- School of Software, East China Jiaotong University, China.
| | - Guangli Li
- School of Information Engineering, East China Jiaotong University, China.
| | - Wei Liu
- School of Software, East China Jiaotong University, China.
| | - Jiawei Liu
- School of Software, East China Jiaotong University, China.
| | - Donghong Ji
- School of Cyber Science and Engineering, Wuhan University, China.
| | - Xiong Li
- School of Software, East China Jiaotong University, China.
| | - Jianguo Wu
- The Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
29
|
Islam MT, Khan HA, Naveed K, Nauman A, Gulfam SM, Kim SW. LUVS-Net: A Lightweight U-Net Vessel Segmentor for Retinal Vasculature Detection in Fundus Images. ELECTRONICS 2023; 12:1786. [DOI: 10.3390/electronics12081786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This paper presents LUVS-Net, which is a lightweight convolutional network for retinal vessel segmentation in fundus images that is designed for resource-constrained devices that are typically unable to meet the computational requirements of large neural networks. The computational challenges arise due to low-quality retinal images, wide variance in image acquisition conditions and disparities in intensity. Consequently, the training of existing segmentation methods requires a multitude of trainable parameters for the training of networks, resulting in computational complexity. The proposed Lightweight U-Net for Vessel Segmentation Network (LUVS-Net) can achieve high segmentation performance with only a few trainable parameters. This network uses an encoder–decoder framework in which edge data are transposed from the first layers of the encoder to the last layer of the decoder, massively improving the convergence latency. Additionally, LUVS-Net’s design allows for a dual-stream information flow both inside as well as outside of the encoder–decoder pair. The network width is enhanced using group convolutions, which allow the network to learn a larger number of low- and intermediate-level features. Spatial information loss is minimized using skip connections, and class imbalances are mitigated using dice loss for pixel-wise classification. The performance of the proposed network is evaluated on the publicly available retinal blood vessel datasets DRIVE, CHASE_DB1 and STARE. LUVS-Net proves to be quite competitive, outperforming alternative state-of-the-art segmentation methods and achieving comparable accuracy using trainable parameters that are reduced by two to three orders of magnitude compared with those of comparative state-of-the-art methods.
Collapse
Affiliation(s)
- Muhammad Talha Islam
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Haroon Ahmed Khan
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
- Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Ali Nauman
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Sardar Muhammad Gulfam
- Department of Electrical and Computer Engineering, Abbottabad Campus, COMSATS University Islamabad (CUI), Abbottabad 22060, Pakistan
| | - Sung Won Kim
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| |
Collapse
|
30
|
Sun K, Chen Y, Chao Y, Geng J, Chen Y. A retinal vessel segmentation method based improved U-Net model. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Wang G, Huang Y, Ma K, Duan Z, Luo Z, Xiao P, Yuan J. Automatic vessel crossing and bifurcation detection based on multi-attention network vessel segmentation and directed graph search. Comput Biol Med 2023; 155:106647. [PMID: 36848799 DOI: 10.1016/j.compbiomed.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Analysis of the vascular tree is the basic premise to automatically diagnose retinal biomarkers associated with ophthalmic and systemic diseases, among which accurate identification of intersection and bifurcation points is quite challenging but important for disentangling complex vascular network and tracking vessel morphology. In this paper, we present a novel directed graph search-based multi-attentive neural network approach to automatically segment the vascular network and separate intersections and bifurcations from color fundus images. Our approach uses multi-dimensional attention to adaptively integrate local features and their global dependencies while learning to focus on target structures at different scales to generate binary vascular maps. A directed graphical representation of the vascular network is constructed to represent the topology and spatial connectivity of the vascular structures. Using local geometric information including color difference, diameter, and angle, the complex vascular tree is decomposed into multiple sub-trees to finally classify and label vascular feature points. The proposed method has been tested on the DRIVE dataset and the IOSTAR dataset containing 40 images and 30 images, respectively, with 0.863 and 0.764 F1-score of detection points and average accuracy of 0.914 and 0.854 for classification points. These results demonstrate the superiority of our proposed method outperforming state-of-the-art methods in feature point detection and classification.
Collapse
Affiliation(s)
- Gengyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China; School of Life Sciences, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yuancong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ke Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhengyu Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhongzhou Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
32
|
Li X, Song J, Jiao W, Zheng Y. MINet: Multi-scale input network for fundus microvascular segmentation. Comput Biol Med 2023; 154:106608. [PMID: 36731364 DOI: 10.1016/j.compbiomed.2023.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Vessel segmentation in fundus images is a key procedure in the diagnosis of ophthalmic diseases, which can play a role in assisting doctors in diagnosis. Although current deep learning-based methods can achieve high accuracy in segmenting fundus vessel images, the results are not satisfactory in segmenting microscopic vessels that are close to the background region. The reason for this problem is that thin blood vessels contain very little information, with the convolution operation of each layer in the deep network, this part of the information will be randomly lost. To improve the segmentation ability of the small blood vessel region, a multi-input network (MINet) was proposed to segment vascular regions more accurately. We designed a multi-input fusion module (MIF) in the encoder, which is proposed to acquire multi-scale features in the encoder stage while preserving the microvessel feature information. In addition, to further aggregate multi-scale information from adjacent regions, a multi-scale atrous spatial pyramid (MASP) module is proposed. This module can enhance the extraction of vascular information without reducing the resolution loss. In order to better recover segmentation results with details, we designed a refinement module, which acts on the last layer of the network output to refine the results of the last layer of the network to get more accurate segmentation results. We use the HRF, CHASE_DB1 public dataset to validate the fundus vessel segmentation performance of the MINet model. Also, we merged these two public datasets with our collected Ultra-widefield fundus image (UWF) data as one dataset to test the generalization ability of the model. Experimental results show that MINet achieves an F1 score of 0.8324 on the microvessel segmentation task, achieving a high accuracy compared to the current mainstream models.
Collapse
Affiliation(s)
- Xuecheng Li
- School of Information Science & Engineering, Shandong Normal University, No. 1 Daxue Road, Changqing District, Jinan 250358, China
| | - Jingqi Song
- School of Information Science & Engineering, Shandong Normal University, No. 1 Daxue Road, Changqing District, Jinan 250358, China
| | - Wanzhen Jiao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwuwei Seventh Road, Huaiyin District, Jinan 250021, China
| | - Yuanjie Zheng
- School of Information Science & Engineering, Shandong Normal University, No. 1 Daxue Road, Changqing District, Jinan 250358, China.
| |
Collapse
|
33
|
Arsalan M, Khan TM, Naqvi SS, Nawaz M, Razzak I. Prompt Deep Light-Weight Vessel Segmentation Network (PLVS-Net). IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1363-1371. [PMID: 36194721 DOI: 10.1109/tcbb.2022.3211936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Achieving accurate retinal vessel segmentation is critical in the progression and diagnosis of vision-threatening diseases such as diabetic retinopathy and age-related macular degeneration. Existing vessel segmentation methods are based on encoder-decoder architectures, which frequently fail to take into account the retinal vessel structure's context in their analysis. As a result, such methods have difficulty bridging the semantic gap between encoder and decoder characteristics. This paper proposes a Prompt Deep Light-weight Vessel Segmentation Network (PLVS-Net) to address these issues by using prompt blocks. Each prompt block use combination of asymmetric kernel convolutions, depth-wise separable convolutions, and ordinary convolutions to extract useful features. This novel strategy improves the performance of the segmentation network while simultaneously decreasing the number of trainable parameters. Our method outperformed competing approaches in the literature on three benchmark datasets, including DRIVE, STARE, and CHASE.
Collapse
|
34
|
Wang J, Zhou L, Yuan Z, Wang H, Shi C. MIC-Net: multi-scale integrated context network for automatic retinal vessel segmentation in fundus image. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:6912-6931. [PMID: 37161134 DOI: 10.3934/mbe.2023298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
PURPOSE Accurate retinal vessel segmentation is of great value in the auxiliary screening of various diseases. However, due to the low contrast between the ends of the branches of the fundus blood vessels and the background, and the variable morphology of the optic disc and cup in the retinal image, the task of high-precision retinal blood vessel segmentation still faces difficulties. METHOD This paper proposes a multi-scale integrated context network, MIC-Net, which fully fuses the encoder-decoder features, and extracts multi-scale information. First, a hybrid stride sampling (HSS) block was designed in the encoder to minimize the loss of helpful information caused by the downsampling operation. Second, a dense hybrid dilated convolution (DHDC) was employed in the connection layer. On the premise of preserving feature resolution, it can perceive richer contextual information. Third, a squeeze-and-excitation with residual connections (SERC) was introduced in the decoder to adjust the channel attention adaptively. Finally, we utilized a multi-layer feature fusion mechanism in the skip connection part, which enables the network to consider both low-level details and high-level semantic information. RESULTS We evaluated the proposed method on three public datasets DRIVE, STARE and CHASE. In the experimental results, the Area under the receiver operating characteristic (ROC) and the accuracy rate (Acc) achieved high performances of 98.62%/97.02%, 98.60%/97.76% and 98.73%/97.38%, respectively. CONCLUSIONS Experimental results show that the proposed method can obtain comparable segmentation performance compared with the state-of-the-art (SOTA) methods. Specifically, the proposed method can effectively reduce the small blood vessel segmentation error, thus proving it a promising tool for auxiliary diagnosis of ophthalmic diseases.
Collapse
Affiliation(s)
- Jinke Wang
- Department of Software Engineering, Harbin University of Science and Technology, Rongcheng 264300, China
- School of Automation, Harbin University of Science and Technology, Harbin 150080, China
| | - Lubiao Zhou
- School of Automation, Harbin University of Science and Technology, Harbin 150080, China
| | - Zhongzheng Yuan
- Department of Software Engineering, Harbin University of Science and Technology, Rongcheng 264300, China
| | - Haiying Wang
- School of Automation, Harbin University of Science and Technology, Harbin 150080, China
| | - Changfa Shi
- Mobile E-business Collaborative Innovation Center of Hunan Province, Hunan University of Technology and Business, Changsha 410205, China
| |
Collapse
|
35
|
Du J, Guan K, Liu P, Li Y, Wang T. Boundary-Sensitive Loss Function With Location Constraint for Hard Region Segmentation. IEEE J Biomed Health Inform 2023; 27:992-1003. [PMID: 36378793 DOI: 10.1109/jbhi.2022.3222390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In computer-aided diagnosis and treatment planning, accurate segmentation of medical images plays an essential role, especially for some hard regions including boundaries, small objects and background interference. However, existing segmentation loss functions including distribution-, region- and boundary-based losses cannot achieve satisfactory performances on these hard regions. In this paper, a boundary-sensitive loss function with location constraint is proposed for hard region segmentation in medical images, which provides three advantages: i) our Boundary-Sensitive loss (BS-loss) can automatically pay more attention to the hard-to-segment boundaries (e.g., thin structures and blurred boundaries), thus obtaining finer object boundaries; ii) BS-loss also can adjust its attention to small objects during training to segment them more accurately; and iii) our location constraint can alleviate the negative impact of the background interference, through the distribution matching of pixels between prediction and Ground Truth (GT) along each axis. By resorting to the proposed BS-loss and location constraint, the hard regions in both foreground and background are considered. Experimental results on three public datasets demonstrate the superiority of our method. Specifically, compared to the second-best method tested in this study, our method improves performance on hard regions in terms of Dice similarity coefficient (DSC) and 95% Hausdorff distance (95%HD) of up to 4.17% and 73% respectively. In addition, it also achieves the best overall segmentation performance. Hence, we can conclude that our method can accurately segment these hard regions and improve the overall segmentation performance in medical images.
Collapse
|
36
|
Retinal blood vessel segmentation by using the MS-LSDNet network and geometric skeleton reconnection method. Comput Biol Med 2023; 153:106416. [PMID: 36586230 DOI: 10.1016/j.compbiomed.2022.106416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
Automatic retinal blood vessel segmentation is a key link in the diagnosis of ophthalmic diseases. Recent deep learning methods have achieved high accuracy in vessel segmentation but still face challenges in maintaining vascular structural connectivity. Therefore, this paper proposes a novel retinal blood vessel segmentation strategy that includes three stages: vessel structure detection, vessel branch extraction and broken vessel segment reconnection. First, we propose a multiscale linear structure detection network (MS-LSDNet), which improves the detection ability of fine blood vessels by learning the types of rich hierarchical features. In addition, to maintain the connectivity of the vascular structure in the process of binarization of the vascular probability map, an adaptive hysteresis threshold method for vascular extraction is proposed. Finally, we propose a vascular tree structure reconstruction algorithm based on a geometric skeleton to connect the broken vessel segments. Experimental results on three publicly available datasets show that compared with current state-of-the-art algorithms, our strategy effectively maintains the connectivity of retinal vascular tree structure.
Collapse
|
37
|
Imran SMA, Saleem MW, Hameed MT, Hussain A, Naqvi RA, Lee SW. Feature preserving mesh network for semantic segmentation of retinal vasculature to support ophthalmic disease analysis. Front Med (Lausanne) 2023; 9:1040562. [PMID: 36714120 PMCID: PMC9880050 DOI: 10.3389/fmed.2022.1040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Ophthalmic diseases are approaching an alarming count across the globe. Typically, ophthalmologists depend on manual methods for the analysis of different ophthalmic diseases such as glaucoma, Sickle cell retinopathy (SCR), diabetic retinopathy, and hypertensive retinopathy. All these manual assessments are not reliable, time-consuming, tedious, and prone to error. Therefore, automatic methods are desirable to replace conventional approaches. The accuracy of this segmentation of these vessels using automated approaches directly depends on the quality of fundus images. Retinal vessels are assumed as a potential biomarker for the diagnosis of many ophthalmic diseases. Mostly newly developed ophthalmic diseases contain minor changes in vasculature which is a critical job for the early detection and analysis of disease. Method Several artificial intelligence-based methods suggested intelligent solutions for automated retinal vessel detection. However, existing methods exhibited significant limitations in segmentation performance, complexity, and computational efficiency. Specifically, most of the existing methods failed in detecting small vessels owing to vanishing gradient problems. To overcome the stated problems, an intelligence-based automated shallow network with high performance and low cost is designed named Feature Preserving Mesh Network (FPM-Net) for the accurate segmentation of retinal vessels. FPM-Net employs a feature-preserving block that preserves the spatial features and helps in maintaining a better segmentation performance. Similarly, FPM-Net architecture uses a series of feature concatenation that also boosts the overall segmentation performance. Finally, preserved features, low-level input image information, and up-sampled spatial features are aggregated at the final concatenation stage for improved pixel prediction accuracy. The technique is reliable since it performs better on the DRIVE database, CHASE-DB1 database, and STARE dataset. Results and discussion Experimental outcomes confirm that FPM-Net outperforms state-of-the-art techniques with superior computational efficiency. In addition, presented results are achieved without using any preprocessing or postprocessing scheme. Our proposed method FPM-Net gives improvement results which can be observed with DRIVE datasets, it gives Se, Sp, and Acc as 0.8285, 0.98270, 0.92920, for CHASE-DB1 dataset 0.8219, 0.9840, 0.9728 and STARE datasets it produces 0.8618, 0.9819 and 0.9727 respectively. Which is a remarkable difference and enhancement as compared to the conventional methods using only 2.45 million trainable parameters.
Collapse
Affiliation(s)
| | | | | | - Abida Hussain
- Faculty of CS and IT, Superior University, Lahore, Pakistan
| | - Rizwan Ali Naqvi
- Department of Unmanned Vehicle Engineering, Sejong University, Seoul, Republic of Korea,*Correspondence: Rizwan Ali Naqvi ✉
| | - Seung Won Lee
- School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea,Seung Won Lee ✉
| |
Collapse
|
38
|
Liu Y, Shen J, Yang L, Bian G, Yu H. ResDO-UNet: A deep residual network for accurate retinal vessel segmentation from fundus images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Fan X, Kang X, Tian S, Wu W, Yu L. Warp-based edge feature reinforcement network for medical image segmentation. Med Phys 2022; 49:7609-7622. [PMID: 35870115 DOI: 10.1002/mp.15872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2022] [Accepted: 07/10/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rapid and accurate segmentation of medical images can provide important guidance in the early stages of life-threatening diseases. PURPOSE However, fuzzy edges and high similarity with the background in images usually cause undersegmentation or oversegmentation. To solve these problems. METHODS We propose a novel edge features-reinforcement (EFR) module that uses relative frequency changes before and after warping images to extract edge information. Then, the EFR module leverages deep features to guide shallow features to produce a band-shaped edge attention map for reinforcing the edge region of all channels. We also propose a multiscale context exploration (MCE) module to fuse multiscale features and to extract channel and spatial correlations, which allows a model to focus on the parts that contribute most to the final segmentation. We construct EFR-Net by embedding EFR and MCE modules on the encoder-decoder architecture. RESULTS We verify EFR-Net's performance with four medical datasets: retinal vessel segmentation dataset DRIVE, endoscopic polyp segmentation dataset CVC-ClinicDB, dermoscopic image dataset ISIC2018, and aortic true lumen dataset Aorta-computed tomography (CT). The proposed model achieves Dice similarity coefficients (DSCs) of 81.61%, 92.87%, 89.87%, and 96.98% on DRIVE, CVC-ClinicDB, ISIC2018, and Aorta-CT, respectively, which are better than those of current mainstream methods. In particular, the DSC of polyp segmentation increased by 3.87%. CONCLUSION Through quantitative and qualitative research, our method is determined to surpass current mainstream segmentation methods, and EFR modules can effectively improve the edge prediction effect of color images and CT images. The proposed modules are easily embedded in other encoder-decoder architectures, which has the potential to be applied and expanded.
Collapse
Affiliation(s)
- Xin Fan
- School of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Xiaojing Kang
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, China
| | - Shengwei Tian
- College of Software, Xinjiang University, Urumqi, China.,Key Laboratory of Software Engineering Technology, College of Software, Xin Jiang University, Urumuqi, China
| | - Weidong Wu
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, China
| | - Long Yu
- College of Software, Xinjiang University, Urumqi, China.,Signal and Signal Processing Laboratory, College of Information Science and Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
40
|
Elaouaber Z, Feroui A, Lazouni M, Messadi M. Blood vessel segmentation using deep learning architectures for aid diagnosis of diabetic retinopathy. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2145999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Z.A. Elaouaber
- Biomedical engineering, Universite Abou Bekr Belkaid Tlemcen Faculte de Technologie, Algeria, Tlemcen
| | - A. Feroui
- Biomedical engineering, Universite Abou Bekr Belkaid Tlemcen Faculte de Technologie, Algeria, Tlemcen
| | - M.E.A. Lazouni
- Biomedical engineering, Universite Abou Bekr Belkaid Tlemcen Faculte de Technologie, Algeria, Tlemcen
| | - M. Messadi
- Biomedical engineering, Universite Abou Bekr Belkaid Tlemcen Faculte de Technologie, Algeria, Tlemcen
| |
Collapse
|
41
|
Zhong X, Zhang H, Li G, Ji D. Do you need sharpened details? Asking MMDC-Net: Multi-layer multi-scale dilated convolution network for retinal vessel segmentation. Comput Biol Med 2022; 150:106198. [PMID: 37859292 DOI: 10.1016/j.compbiomed.2022.106198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022]
Abstract
Convolutional neural networks (CNN), especially numerous U-shaped models, have achieved great progress in retinal vessel segmentation. However, a great quantity of global information in fundus images has not been fully explored. And the class imbalance problem of background and blood vessels is still serious. To alleviate these issues, we design a novel multi-layer multi-scale dilated convolution network (MMDC-Net) based on U-Net. We propose an MMDC module to capture sufficient global information under diverse receptive fields through a cascaded mode. Then, we place a new multi-layer fusion (MLF) module behind the decoder, which can not only fuse complementary features but filter noisy information. This enables MMDC-Net to capture the blood vessel details after continuous up-sampling. Finally, we employ a recall loss to resolve the class imbalance problem. Extensive experiments have been done on diverse fundus color image datasets, including STARE, CHASEDB1, DRIVE, and HRF. HRF has a large resolution of 3504 × 2336 whereas others have a small resolution of slightly more than 512 × 512. Qualitative and quantitative results verify the superiority of MMDC-Net. Notably, satisfactory accuracy and sensitivity are acquired by our model. Hence, some key blood vessel details are sharpened. In addition, a large number of further validations and discussions prove the effectiveness and generalization of the proposed MMDC-Net.
Collapse
Affiliation(s)
- Xiang Zhong
- School of Software, East China Jiaotong University, China
| | - Hongbin Zhang
- School of Software, East China Jiaotong University, China.
| | - Guangli Li
- School of Information Engineering, East China Jiaotong University, China
| | - Donghong Ji
- School of Cyber Science and Engineering, Wuhan University, China
| |
Collapse
|
42
|
Guo S. CSGNet: Cascade semantic guided net for retinal vessel segmentation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
43
|
Zhang H, Zhong X, Li Z, Chen Y, Zhu Z, Lv J, Li C, Zhou Y, Li G. TiM-Net: Transformer in M-Net for Retinal Vessel Segmentation. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9016401. [PMID: 35859930 PMCID: PMC9293566 DOI: 10.1155/2022/9016401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
retinal image is a crucial window for the clinical observation of cardiovascular, cerebrovascular, or other correlated diseases. Retinal vessel segmentation is of great benefit to the clinical diagnosis. Recently, the convolutional neural network (CNN) has become a dominant method in the retinal vessel segmentation field, especially the U-shaped CNN models. However, the conventional encoder in CNN is vulnerable to noisy interference, and the long-rang relationship in fundus images has not been fully utilized. In this paper, we propose a novel model called Transformer in M-Net (TiM-Net) based on M-Net, diverse attention mechanisms, and weighted side output layers to efficaciously perform retinal vessel segmentation. First, to alleviate the effects of noise, a dual-attention mechanism based on channel and spatial is designed. Then the self-attention mechanism in Transformer is introduced into skip connection to re-encode features and model the long-range relationship explicitly. Finally, a weighted SideOut layer is proposed for better utilization of the features from each side layer. Extensive experiments are conducted on three public data sets to show the effectiveness and robustness of our TiM-Net compared with the state-of-the-art baselines. Both quantitative and qualitative results prove its clinical practicality. Moreover, variants of TiM-Net also achieve competitive performance, demonstrating its scalability and generalization ability. The code of our model is available at https://github.com/ZX-ECJTU/TiM-Net.
Collapse
Affiliation(s)
- Hongbin Zhang
- School of Software, East China Jiaotong University, Nanchang, China
| | - Xiang Zhong
- School of Software, East China Jiaotong University, Nanchang, China
| | - Zhijie Li
- School of Software, East China Jiaotong University, Nanchang, China
| | - Yanan Chen
- School of International, East China Jiaotong University, Nanchang, China
| | - Zhiliang Zhu
- School of Software, East China Jiaotong University, Nanchang, China
| | - Jingqin Lv
- School of Software, East China Jiaotong University, Nanchang, China
| | - Chuanxiu Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Ying Zhou
- Medical School, Nanchang University, Nanchang, China
| | - Guangli Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| |
Collapse
|
44
|
Film and Video Quality Optimization Using Attention Mechanism-Embedded Lightweight Neural Network Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8229580. [PMID: 35720938 PMCID: PMC9200523 DOI: 10.1155/2022/8229580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
In filming, the collected video may be blurred due to camera shake and object movement, causing the target edge to be unclear or deforming the targets. In order to solve these problems and deeply optimize the quality of movie videos, this work proposes a video deblurring (VD) algorithm based on neural network (NN) model and attention mechanism (AM). Based on the scale recurrent network, Haar planar wavelet transform (WT) is introduced to preprocess the video image and to deblur the video image in the wavelet domain. Additionally, the spatial and channel AMs are fused into the overall network framework to improve the feature expression ability. Further, the residual inception spatial-channel attention (RISCA) mechanism is introduced to extract the multiscale feature information from video images. Meanwhile, skip spatial-channel attention (SSCA) accelerates the network training time to achieve a better VD effect. Finally, relevant experiments are designed, factoring in peak signal-to-noise ratio (PSNR) and structural similarity (SSI). The experimental findings corroborate that the proposed Haar and attention video deblurring (HAVD) outperforms multisize network Haar (MSNH) in PSNR and structural similarity (SSIM), improved by 0.10 dB and 0.005, respectively. Therefore, embedding the dual AMs can improve the model performance and optimize the video quality. This work provides technical support for solving the video distortion problems.
Collapse
|
45
|
Ye Y, Pan C, Wu Y, Wang S, Xia Y. MFI-Net: Multiscale Feature Interaction Network for Retinal Vessel Segmentation. IEEE J Biomed Health Inform 2022; 26:4551-4562. [PMID: 35696471 DOI: 10.1109/jbhi.2022.3182471] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Segmentation of retinal vessels on fundus images plays a critical role in the diagnosis of micro-vascular and ophthalmological diseases. Although being extensively studied, this task remains challenging due to many factors including the highly variable vessel width and poor vessel-background contrast. In this paper, we propose a multiscale feature interaction network (MFI-Net) for retinal vessel segmentation, which is a U-shaped convolutional neural network equipped with the pyramid squeeze-and-excitation (PSE) module, coarse-to-fine (C2F) module, deep supervision, and feature fusion. We extend the SE operator to multiscale features, resulting in the PSE module, which uses the channel attention learned at multiple scales to enhance multiscale features and enables the network to handle the vessels with variable width. We further design the C2F module to generate and re-process the residual feature maps, aiming to preserve more vessel details during the decoding process. The proposed MFI-Net has been evaluated against several public models on the DRIVE, STARE, CHASE_DB1, and HRF datasets. Our results suggest that both PSE and C2F modules are effective in improving the accuracy of MFI-Net, and also indicate that our model has superior segmentation performance and generalization ability over existing models on four public datasets.
Collapse
|
46
|
Li Y, Ren T, Li J, Li X, Li A. Multi-perspective label based deep learning framework for cerebral vasculature segmentation in whole-brain fluorescence images. BIOMEDICAL OPTICS EXPRESS 2022; 13:3657-3671. [PMID: 35781963 PMCID: PMC9208593 DOI: 10.1364/boe.458111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/23/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The popularity of fluorescent labelling and mesoscopic optical imaging techniques enable the acquisition of whole mammalian brain vasculature images at capillary resolution. Segmentation of the cerebrovascular network is essential for analyzing the cerebrovascular structure and revealing the pathogenesis of brain diseases. Existing deep learning methods use a single type of annotated labels with the same pixel weight to train the neural network and segment vessels. Due to the variation in the shape, density and brightness of vessels in whole-brain fluorescence images, it is difficult for a neural network trained with a single type of label to segment all vessels accurately. To address this problem, we proposed a deep learning cerebral vasculature segmentation framework based on multi-perspective labels. First, the pixels in the central region of thick vessels and the skeleton region of vessels were extracted separately using morphological operations based on the binary annotated labels to generate two different labels. Then, we designed a three-stage 3D convolutional neural network containing three sub-networks, namely thick-vessel enhancement network, vessel skeleton enhancement network and multi-channel fusion segmentation network. The first two sub-networks were trained by the two labels generated in the previous step, respectively, and pre-segmented the vessels. The third sub-network was responsible for fusing the pre-segmented results to precisely segment the vessels. We validated our method on two mouse cerebral vascular datasets generated by different fluorescence imaging modalities. The results showed that our method outperforms the state-of-the-art methods, and the proposed method can be applied to segment the vasculature on large-scale volumes.
Collapse
Affiliation(s)
- Yuxin Li
- Shaanxi Key Laboratory of Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Tong Ren
- Shaanxi Key Laboratory of Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Junhuai Li
- Shaanxi Key Laboratory of Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China
| |
Collapse
|
47
|
CSAUNet: A cascade self-attention u-shaped network for precise fundus vessel segmentation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Li S, Lu C, Kong X, Zhu J, He X, Zhang N. MSFF-Net: Multi-Scale Feature Fusion Network for Gastrointestinal Vessel Segmentation. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Guo S. LightEyes: A Lightweight Fundus Segmentation Network for Mobile Edge Computing. SENSORS (BASEL, SWITZERLAND) 2022; 22:3112. [PMID: 35590802 PMCID: PMC9104959 DOI: 10.3390/s22093112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/04/2022]
Abstract
Fundus is the only structure that can be observed without trauma to the human body. By analyzing color fundus images, the diagnosis basis for various diseases can be obtained. Recently, fundus image segmentation has witnessed vast progress with the development of deep learning. However, the improvement of segmentation accuracy comes with the complexity of deep models. As a result, these models show low inference speeds and high memory usages when deploying to mobile edges. To promote the deployment of deep fundus segmentation models to mobile devices, we aim to design a lightweight fundus segmentation network. Our observation comes from the fact that high-resolution representations could boost the segmentation of tiny fundus structures, and the classification of small fundus structures depends more on local features. To this end, we propose a lightweight segmentation model called LightEyes. We first design a high-resolution backbone network to learn high-resolution representations, so that the spatial relationship between feature maps can be always retained. Meanwhile, considering high-resolution features means high memory usage; for each layer, we use at most 16 convolutional filters to reduce memory usage and decrease training difficulty. LightEyes has been verified on three kinds of fundus segmentation tasks, including the hard exudate, the microaneurysm, and the vessel, on five publicly available datasets. Experimental results show that LightEyes achieves highly competitive segmentation accuracy and segmentation speed compared with state-of-the-art fundus segmentation models, while running at 1.6 images/s Cambricon-1A speed and 51.3 images/s GPU speed with only 36k parameters.
Collapse
Affiliation(s)
- Song Guo
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
50
|
Shen X, Xu J, Jia H, Fan P, Dong F, Yu B, Ren S. Self-attentional microvessel segmentation via squeeze-excitation transformer Unet. Comput Med Imaging Graph 2022; 97:102055. [DOI: 10.1016/j.compmedimag.2022.102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/17/2022] [Accepted: 03/12/2022] [Indexed: 11/27/2022]
|