1
|
Teng C, Cong L, Tian Q, Liu K, Cheng S, Zhang T, Dang W, Hou Y, Ma J, Hui D, Hu W. EEG microstate in people with different degrees of fear of heights during virtual high-altitude exposure. Brain Res Bull 2024; 218:111112. [PMID: 39486463 DOI: 10.1016/j.brainresbull.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Previous neuroimaging studies based on electroencephalography (EEG) microstate analysis have identified abnormal neural electric activity in patients with psychiatric diseases. However, the microstate information in individuals with different degrees of fear of heights (FoH) remains unknown so far. The aim of the study was therefore to explore the changes of EEG microstate characteristics in different FoH individuals when exposed to high-altitude stimulated by virtual reality (VR). First, acrophobia questionnaire (AQ) before the experiment and 32-channel EEG signals under the virtual high-altitude exposure were collected from 69 subjects. Second, each subject was divided into one of three levels of FoH including no-FoH, mild or moderate FoH (m-FoH) and severe FoH (s-FoH) groups according to their AQ scores. Third, using microstate analysis, we transformed EEG data into sequences of characteristic topographic maps and computed EEG microstate features including microstate basic parameters, microstate sequences complexity and microstate energy. Finally, the extracted features as inputs were sent to train and test an support vector machine (SVM) for classifying different FoH groups. The results demonstrated that five types of microstates (labeled as A, B, C, D and F) were identified across all subjects, of which microstates A-D resembled the four typical microstate classes and microstate F was a non-canonical microstate. Significantly decreased occurrence, coverage and duration of microstate F and transition probabilities from other microstates to microstate F in m-FoH and s-FoH groups were observed compared to no-FoH group. It was also demonstrated that both m-FoH and s-FoH groups showed a notable reduction in sample entropy and Lempel-Ziv complexity. Moreover, energies of microstate D for m-FoH group and microstate B for s-FoH group in right parietal, parietooccipital and occipital regions exhibited prominent decreases as comparison to people without FoH. But, no significant differences were found between m-FoH and s-FoH groups. Additionally, the results indicated that AQ-anxiety scores were negatively correlated with microstate basic metrics as well as microstate energy. For classification, the performance of SVM reached a relatively high accuracy of 89 % for distinguishing no-FoH from m-FoH. In summary, the findings highlight the alterations of EEG microstates in people with fear of heights induced by virtual high-altitude, reflecting potentially underlying abnormalities in the allocation of neural assemblies. Therefore, the combination of EEG microstate analysis and VR may be a potential valuable approach for the diagnosis of fear of heights.
Collapse
Affiliation(s)
- Chaolin Teng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lin Cong
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qiumei Tian
- Department of Gastroenterology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Ke Liu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shan Cheng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Taihui Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Weitao Dang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yajing Hou
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin Ma
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Duoduo Hui
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Wendong Hu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Michel CM, Brechet L, Schiller B, Koenig T. Current State of EEG/ERP Microstate Research. Brain Topogr 2024; 37:169-180. [PMID: 38349451 PMCID: PMC10884048 DOI: 10.1007/s10548-024-01037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
The analysis of EEG microstates for investigating rapid whole-brain network dynamics during rest and tasks has become a standard practice in the EEG research community, leading to a substantial increase in publications across various affective, cognitive, social and clinical neuroscience domains. Recognizing the growing significance of this analytical method, the authors aim to provide the microstate research community with a comprehensive discussion on methodological standards, unresolved questions, and the functional relevance of EEG microstates. In August 2022, a conference was hosted in Bern, Switzerland, which brought together many researchers from 19 countries. During the conference, researchers gave scientific presentations and engaged in roundtable discussions aiming at establishing steps toward standardizing EEG microstate analysis methods. Encouraged by the conference's success, a special issue was launched in Brain Topography to compile the current state-of-the-art in EEG microstate research, encompassing methodological advancements, experimental findings, and clinical applications. The call for submissions for the special issue garnered 48 contributions from researchers worldwide, spanning reviews, meta-analyses, tutorials, and experimental studies. Following a rigorous peer-review process, 33 papers were accepted whose findings we will comprehensively discuss in this Editorial.
Collapse
Affiliation(s)
- Christoph M Michel
- Functional Brain Mapping Lab, Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland.
- Center for Biomedical Imaging (CIBM), Lausanne, Geneva, Switzerland.
| | - Lucie Brechet
- Department of Readaptation and Geriatrics, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Bastian Schiller
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Teng CL, Cong L, Wang W, Cheng S, Wu M, Dang WT, Jia M, Ma J, Xu J, Hu WD. Disrupted properties of functional brain networks in major depressive disorder during emotional face recognition: an EEG study via graph theory analysis. Front Hum Neurosci 2024; 18:1338765. [PMID: 38415279 PMCID: PMC10897049 DOI: 10.3389/fnhum.2024.1338765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Previous neuroimaging studies have revealed abnormal brain networks in patients with major depressive disorder (MDD) in emotional processing. While any cognitive task consists of a series of stages, little is yet known about the topology of functional brain networks in MDD for these stages during emotional face recognition. To address this problem, electroencephalography (EEG)-based functional brain networks of MDD patients at different stages of facial information processing were investigated in this study. First, EEG signals were collected from 16 patients with MDD and 18 age-, gender-, and education-matched normal subjects when performing an emotional face recognition task. Second, the global field power (GFP) method was employed to divide group-averaged event-related potentials into different stages. Third, using the phase transfer entropy (PTE) approach, the brain networks of MDD patients and normal individuals were constructed for each stage in negative and positive face processing, respectively. Finally, we compared the topological properties of brain networks of each stage between the two groups using graph theory approaches. The results showed that the analyzed three stages of emotional face processing corresponded to specific neurophysiological phases, namely, visual perception, face recognition, and emotional decision-making. It was also demonstrated that depressed patients showed abnormally decreased characteristic path length at the visual perception stage of negative face recognition and normalized characteristic path length in the stage of emotional decision-making during positive face processing compared to healthy subjects. Furthermore, while both the MDD and normal groups' brain networks were found to exhibit small-world network characteristics, the brain network of patients with depression tended to be randomized. Moreover, for patients with MDD, the centro-parietal region may lose its status as a hub in the process of facial expression identification. Together, our findings suggested that altered emotional function in MDD patients might be associated with disruptions in the topological organization of functional brain networks during emotional face recognition, which further deepened our understanding of the emotion processing dysfunction underlying MDD.
Collapse
Affiliation(s)
- Chao-Lin Teng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lin Cong
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Cheng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Min Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei-Tao Dang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Min Jia
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Ma
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen-Dong Hu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Zhou DD, Li HZ, Wang W, Kuang L. Changes in oscillatory patterns of microstate sequence in patients with first-episode psychosis. Sci Data 2024; 11:38. [PMID: 38182586 PMCID: PMC10770397 DOI: 10.1038/s41597-023-02892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024] Open
Abstract
We aimed to utilize chaos game representation (CGR) for the investigation of microstate sequences and explore its potential as neurobiomarkers for psychiatric disorders. We applied our proposed method to a public dataset including 82 patients with first-episode psychosis (FEP) and 61 control subjects. Two time series were constructed: one using the microstate spacing distance in CGR and the other using complex numbers representing the microstate coordinates in CGR. Power spectral features of both time series and frequency matrix CGR (FCGR) were compared between groups and employed in a machine learning application. The four canonical microstates (A, B, C, and D) were identified using both shared and separate templates. Our results showed the microstate oscillatory pattern exhibited alterations in the FEP group. Using oscillatory features improved machine learning performance compared with classical features and FCGR. This study opens up new avenues for exploring the use of CGR in analyzing EEG microstate sequences. Features derived from microstate sequence CGR offer fine-grained neurobiomarkers for psychiatric disorders.
Collapse
Affiliation(s)
- Dong-Dong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Hong-Zhi Li
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Truong NCD, Wang X, Liu H. Temporal and spectral analyses of EEG microstate reveals neural effects of transcranial photobiomodulation on the resting brain. Front Neurosci 2023; 17:1247290. [PMID: 37916179 PMCID: PMC10616257 DOI: 10.3389/fnins.2023.1247290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction The quantification of electroencephalography (EEG) microstates is an effective method for analyzing synchronous neural firing and assessing the temporal dynamics of the resting state of the human brain. Transcranial photobiomodulation (tPBM) is a safe and effective modality to improve human cognition. However, it is unclear how prefrontal tPBM neuromodulates EEG microstates both temporally and spectrally. Methods 64-channel EEG was recorded from 45 healthy subjects in both 8-min active and sham tPBM sessions, using a 1064-nm laser applied to the right forehead of the subjects. After EEG data preprocessing, time-domain EEG microstate analysis was performed to obtain four microstate classes for both tPBM and sham sessions throughout the pre-, during-, and post-stimulation periods, followed by extraction of the respective microstate parameters. Moreover, frequency-domain analysis was performed by combining multivariate empirical mode decomposition with the Hilbert-Huang transform. Results Statistical analyses revealed that tPBM resulted in (1) a significant increase in the occurrence of microstates A and D and a significant decrease in the contribution of microstate C, (2) a substantial increase in the transition probabilities between microstates A and D, and (3) a substantial increase in the alpha power of microstate D. Discussion These findings confirm the neurophysiological effects of tPBM on EEG microstates of the resting brain, particularly in class D, which represents brain activation across the frontal and parietal regions. This study helps to better understand tPBM-induced dynamic alterations in EEG microstates that may be linked to the tPBM mechanism of action for the enhancement of human cognition.
Collapse
Affiliation(s)
| | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
6
|
Lapointe AP, Li D, Hudetz AG, Vlisides PE. Microstate analyses as an indicator of anesthesia-induced unconsciousness. Clin Neurophysiol 2023; 147:81-87. [PMID: 36739618 DOI: 10.1016/j.clinph.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The objective of this study was to identify differences in electroencephalographic microstate topographies across three perioperative phases: anesthetic pre-induction, surgical anesthesia, and post-anesthesia care unit (PACU) admission. METHODS Whole-scalp 16-channel electroencephalographic recordings were taken throughout the perioperative period on n = 22 adult, non-cardiac surgical patients. RESULTS Several differences between perioperative periods were identified. Most notably, during surgical anesthesia, patients demonstrated increased mean duration and, consequently, a reduction in the occurrence of microstates when compared to both preoperative baseline and PACU admission. We also observed the presence of microstate F with propofol anesthesia during surgery, which had been previously identified with propofol infusion in laboratory settings using human volunteers. Finally, we observed inverse age effects with mean occurrence and duration of microstates, particularly during PACU recovery. CONCLUSIONS Microstate duration is significantly increased during surgery compared to both pre-induction and PACU recovery. These data suggest that microstate topographies may be useful in monitoring anesthetic depth. SIGNIFICANCE This work highlights the potential for microstate analysis in the perioperative setting. We identified distinct topographical signatures across perioperative periods and with increasing age, which is predictive of post-operative delirium.
Collapse
Affiliation(s)
- Andrew P Lapointe
- Hotchkiss Brain Institute, Cummins School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada; Department of Radiology, Cummins School of Medicine, University of Calgary, Teaching Research and Wellness Building, Experimental Imaging Centre (Level P2E), 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; Department of Anesthesiology, Center for Consciousness Science, University of Michigan, USA.
| | - Duan Li
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, USA
| | - Phillip E Vlisides
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, USA
| |
Collapse
|
7
|
A seizure detection method based on hypergraph features and machine learning. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Liu Z, Si L, Wang T, Wang G. Brain connectivity changes of propofol-induced altered states of consciousness using High-Density EEG Source Estimation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:267-271. [PMID: 36085815 DOI: 10.1109/embc48229.2022.9871256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Through source estimation, high-density electroencephalogram (EEG) signals at scalp level can be converted into signals at cerebral cortex level, which helps to measure cortical activity during anesthesia induced changes in consciousness level to explore the mechanism. In this research, the high-density EEG of propofol-induced consciousness states alterations in 20 healthy adults were converted into cortical signals of 68 regions of interest (ROI), after alpha bandpass filtering, the pairwise orthogonal power envelope connectivity (PEC) was calculated. Then, due to the number of PECs was huge, the least absolute shrinkage and selection operator (LASSO) was used to select as few PECs as possible as the indicators to distinguish baseline (BS) and moderate sedation (MD) states. The results show that most PECs that can be used as indicators are related to ROI related to default mode network (DMN). At the same time, changes of thalamocortical connectivity and frontal-parietal connectivity could be observed, similar to the neuroimaging method of directly measuring cerebral cortical activity. By extracting the PEC as a classifier to classify the BS and MD States, the accuracy could reach more than 70%. Therefore, this method can not only reflect the mechanism of cortical activity alterations induced by anesthetics, but also provide a new idea for monitoring the depth of anesthesia in the future. Clinical Relevance - This shows that the high-density EEG of scalp level can be converted into cortical signals by source estimation, which is similar to the neuroimaging method of directly measuring cortical activity.
Collapse
|
9
|
Liu Z, Si L, Xu W, Zhang K, Wang Q, Chen B, Wang G. Characteristics of EEG Microstate Sequences During Propofol-Induced Alterations of Brain Consciousness States. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1631-1641. [PMID: 35696466 DOI: 10.1109/tnsre.2022.3182705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Monitoring the consciousness states of patients and ensuring the appropriate depth of anesthesia (DOA) is critical for the safe implementation of surgery. In this study, a high-density electroencephalogram (EEG) combined with blood drug concentration and behavioral response indicators was used to monitor propofol-induced sedation and evaluate the alterations in consciousness states. Microstate analysis, which can reflect the semi-stable state of the sub-second activation of the brain functional network, can be used to assess the brain's consciousness states. In this research, the EEG microstate sequences were constructed to compare the characteristics of corresponding sequences. Compared with the baseline (BS) state, the microstate sequences in the moderate sedation (MD) state exhibited higher complexity indexes of the multiscale sample entropy. With respect to the transition probability (TP) of microstates, most microstates tended to be converted into microstate C in the BS state. In contrast, they tended to be converted into microstate F in the MD state. The significant difference between the expected TP and observed TP could lead to the conclusion that hidden layers were present when there were changes in the consciousness states. According to the hidden Markov model, the accuracy of distinguishing the BS and MD states was 80.16%. The characteristics of microstate sequence revealed the variations in the brain states caused by alterations in consciousness states during anesthesia from a new perspective and presented a new idea for monitoring the DOA.
Collapse
|
10
|
Chang Q, Li C, Zhang J, Wang C. Dynamic brain functional network based on EEG microstate during sensory gating in schizophrenia. J Neural Eng 2022; 19. [PMID: 35130537 DOI: 10.1088/1741-2552/ac5266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/07/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cognitive impairment is one of the core symptoms of schizophrenia, with an emphasis on dysfunctional information processing. Sensory gating deficits have consistently been reported in schizophrenia, but the underlying physiological mechanism is not well-understood. We report the discovery and characterization of P50 dynamic brain connections based on microstate analysis. APPROACH We identify five main microstates associated with the P50 response and the difference between the first and second click presentation (S1-S2-P50) in first-episode schizophrenia patients (FESZ), ultra-high-risk individuals (UHR) and healthy controls (HC). The we used the signal segments composed of consecutive time points with the same microstate label to construct brain functional networks. MAIN RESULTS The microstate with a prefrontal extreme location during the response to the S1 of P50 are statistically different in duration, occurrence and coverage among the FESZ, UHR and HC groups. In addition, a microstate with anterior-posterior orientation was found to be associated with S1-S2-P50 and its coverage was found to differ among the FESZ, UHR and HC groups. Source location of microstates showed that activated brain regions were mainly concentrated in the right temporal lobe. Furthermore, the connectivities between brain regions involved in P50 processing of HC were widely different from those of FESZ and UHR. SIGNIFICANCE Our results indicate that P50 suppression deficits in schizophrenia may be due to both aberrant baseline sensory perception and adaptation to repeated stimulus. Our findings provide new insight into the mechanisms of P50 suppression in the early stage of schizophrenia.
Collapse
Affiliation(s)
- Qi Chang
- BeiHang University School of Biological Science and Medical Engineering, Xueyuan Road 37#, Haidian district, Beijing, 100191, P.R. China, Beijing, 100191, CHINA
| | - Cancheng Li
- School of Biological and Medical Engineering , Beihang University, Xueyuan Road 37#, Haidian district, Beijing, Beijing, 100083, CHINA
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Xueyuan Road 37#, Haidian district, Beijing, Beijing, 100083, CHINA
| | - Chuanyue Wang
- Beijing An Ding Hospital, 5 Ankang Hutong, Dewai Avenue, Xicheng District, Beijing, Beijing, 100088, CHINA
| |
Collapse
|
11
|
Yuan Z, Peng Y, Wang L, Song S, Chen S, Yang L, Liu H, Wang H, Shi G, Han C, Cammon JA, Zhang Y, Qiao J, Wang G. Effect of BCI-Controlled Pedaling Training System With Multiple Modalities of Feedback on Motor and Cognitive Function Rehabilitation of Early Subacute Stroke Patients. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2569-2577. [PMID: 34871175 DOI: 10.1109/tnsre.2021.3132944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain-computer interfaces (BCIs) are currently integrated into traditional rehabilitation interventions after stroke. Although BCIs bring many benefits to the rehabilitation process, their effects are limited since many patients cannot concentrate during training. Despite this outcome post-stroke motor-attention dual-task training using BCIs has remained mostly unexplored. This study was a randomized placebo-controlled blinded-endpoint clinical trial to investigate the effects of a BCI-controlled pedaling training system (BCI-PT) on the motor and cognitive function of stroke patients during rehabilitation. A total of 30 early subacute ischemic stroke patients with hemiplegia and cognitive impairment were randomly assigned to the BCI-PT or traditional pedaling training. We used single-channel Fp1 to collect electroencephalography data and analyze the attention index. The BCI-PT system timely provided visual, auditory, and somatosensory feedback to enhance the patient's participation to pedaling based on the real-time attention index. After 24 training sessions, the attention index of the experimental group was significantly higher than that of the control group. The lower limbs motor function (FMA-L) increased by an average of 4.5 points in the BCI-PT group and 2.1 points in the control group (P = 0.022) after treatments. The difference was still significant after adjusting for the baseline indicators ( β = 2.41 , 95%CI: 0.48-4.34, P = 0.024). We found that BCI-PT significantly improved the patient's lower limb motor function by increasing the patient's participation. (clinicaltrials.gov: NCT04612426).
Collapse
|
12
|
Chen YF, Fan SZ, Abbod MF, Shieh JS, Zhang M. Electroencephalogram variability analysis for monitoring depth of anesthesia. J Neural Eng 2021; 18. [PMID: 34695812 DOI: 10.1088/1741-2552/ac3316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022]
Abstract
Objective. In this paper, a new approach of extracting and measuring the variability in electroencephalogram (EEG) was proposed to assess the depth of anesthesia (DOA) under general anesthesia.Approach. The EEG variability (EEGV) was extracted as a fluctuation in time interval that occurs between two local maxima of EEG. Eight parameters related to EEGV were measured in time and frequency domains, and compared with state-of-the-art DOA estimation parameters, including sample entropy, permutation entropy, median frequency and spectral edge frequency of EEG. The area under the receiver-operator characteristics curve (AUC) and Pearson correlation coefficient were used to validate its performance on 56 patients.Main results. Our proposed EEGV-derived parameters yield significant difference for discriminating between awake and anesthesia stages at a significance level of 0.05, as well as improvement in AUC and correlation coefficient on average, which surpasses the conventional features of EEG in detection accuracy of unconscious state and tracking the level of consciousness.Significance. To sum up, EEGV analysis provides a new perspective in quantifying EEG and corresponding parameters are powerful and promising for monitoring DOA under clinical situations.
Collapse
Affiliation(s)
- Yi-Feng Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, ShenZhen, GuangDong, 518055, People's Republic of China.,Shenzhen Key Laboratory of Smart Healthcare Engineering, the Department of Biomedical Engineering, Southern University of Science and Technology, ShenZhen, GuangDong, 518055, People's Republic of China
| | - Shou-Zen Fan
- Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Maysam F Abbod
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Jiann-Shing Shieh
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Mingming Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, the Department of Biomedical Engineering, Southern University of Science and Technology, ShenZhen, GuangDong, 518055, People's Republic of China
| |
Collapse
|
13
|
Teng CL, Zhang YY, Wang W, Luo YY, Wang G, Xu J. A Novel Method Based on Combination of Independent Component Analysis and Ensemble Empirical Mode Decomposition for Removing Electrooculogram Artifacts From Multichannel Electroencephalogram Signals. Front Neurosci 2021; 15:729403. [PMID: 34707475 PMCID: PMC8542780 DOI: 10.3389/fnins.2021.729403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
Electrooculogram (EOG) is one of common artifacts in recorded electroencephalogram (EEG) signals. Many existing methods including independent component analysis (ICA) and wavelet transform were applied to eliminate EOG artifacts but ignored the possible impact of the nature of EEG signal. Therefore, the removal of EOG artifacts still faces a major challenge in EEG research. In this paper, the ensemble empirical mode decomposition (EEMD) and ICA algorithms were combined to propose a novel EEMD-based ICA method (EICA) for removing EOG artifacts from multichannel EEG signals. First, the ICA method was used to decompose original EEG signals into multiple independent components (ICs), and the EOG-related ICs were automatically identified through the kurtosis method. Then, by performing the EEMD algorithm on EOG-related ICs, the intrinsic mode functions (IMFs) linked to EOG were discriminated and eliminated. Finally, artifact-free IMFs were projected to obtain the ICs without EOG artifacts, and the clean EEG signals were ultimately reconstructed by the inversion of ICA. Both EOGs correction from simulated EEG signals and real EEG data were studied, which verified that the proposed method could achieve an improved performance in EOG artifacts rejection. By comparing with other existing approaches, the EICA obtained the optimal performance with the highest increase in signal-to-noise ratio and decrease in root mean square error and correlation coefficient after EOG artifacts removal, which demonstrated that the proposed method could more effectively eliminate blink artifacts from multichannel EEG signals with less error influence. This study provided a novel promising method to eliminate EOG artifacts with high performance, which is of great importance for EEG signals processing and analysis.
Collapse
Affiliation(s)
- Chao-Lin Teng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Yi-Yang Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuan-Yuan Luo
- Department of Psychology, Xi'an Mental Health Center, Xi'an, China
| | - Gang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, China
| |
Collapse
|
14
|
Cao Z, John AR, Chen HT, Martens KE, Georgiades M, Gilat M, Nguyen HT, Lewis SJG, Lin CT. Identification of EEG Dynamics During Freezing of Gait and Voluntary Stopping in Patients With Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1774-1783. [PMID: 34428144 DOI: 10.1109/tnsre.2021.3107106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mobility is severely impacted in patients with Parkinson's disease (PD), who often experience involuntary stopping from the freezing of gait (FOG). Understanding the neurophysiological difference between "voluntary stopping" and "involuntary stopping" caused by FOG is vital for the detection of and potential intervention for FOG in the daily lives of patients. This study characterised the electroencephalographic (EEG) signature associated with FOG in contrast to voluntary stopping. The protocol consisted of a timed up-and-go (TUG) task and an additional TUG task with a voluntary stopping component, where participants reacted to verbal "stop" and "walk" instructions by voluntarily stopping or walking. Event-related spectral perturbation (ERSP) analysis was performed to study the dynamics of the EEG spectra induced by different walking phases, including normal walking, voluntary stopping and episodes of involuntary stopping (FOG), as well as the transition windows between normal walking and voluntary stopping or FOG. These results demonstrate for the first time that the EEG signal during the transition from walking to voluntary stopping is distinguishable from that during the transition to involuntary stopping caused by FOG. The EEG signature of voluntary stopping exhibits a significantly decreased power spectrum compared with that of FOG episodes, with distinctly different patterns in the delta and low-beta power in the central area. These findings suggest the possibility of a practical EEG-based tool that can accurately predict FOG episodes, excluding the potential confounding of voluntary stopping.
Collapse
|
15
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Menon DK, Stamatakis EA. Brain network integration dynamics are associated with loss and recovery of consciousness induced by sevoflurane. Hum Brain Mapp 2021; 42:2802-2822. [PMID: 33738899 PMCID: PMC8127159 DOI: 10.1002/hbm.25405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
The dynamic interplay of integration and segregation in the brain is at the core of leading theoretical accounts of consciousness. The human brain dynamically alternates between a sub-state where integration predominates, and a predominantly segregated sub-state, with different roles in supporting cognition and behaviour. Here, we combine graph theory and dynamic functional connectivity to compare resting-state functional MRI data from healthy volunteers before, during, and after loss of responsiveness induced with different concentrations of the inhalational anaesthetic, sevoflurane. We show that dynamic states characterised by high brain integration are especially vulnerable to general anaesthesia, exhibiting attenuated complexity and diminished small-world character. Crucially, these effects are reversed upon recovery, demonstrating their association with consciousness. Higher doses of sevoflurane (3% vol and burst-suppression) also compromise the temporal balance of integration and segregation in the human brain. Additionally, we demonstrate that reduced anticorrelations between the brain's default mode and executive control networks dynamically reconfigure depending on the brain's state of integration or segregation. Taken together, our results demonstrate that the integrated sub-state of brain connectivity is especially vulnerable to anaesthesia, in terms of both its complexity and information capacity, whose breakdown represents a generalisable biomarker of loss of consciousness and its recovery.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Andreas Ranft
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Rüdiger Ilg
- Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
- Department of NeurologyAsklepios ClinicBad TölzGermany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - David K. Menon
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Wolfon Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Emmanuel A. Stamatakis
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
16
|
Zhang K, Shi W, Wang C, Li Y, Liu Z, Liu T, Li J, Yan X, Wang Q, Cao Z, Wang G. Reliability of EEG microstate analysis at different electrode densities during propofol-induced transitions of brain states. Neuroimage 2021; 231:117861. [PMID: 33592245 DOI: 10.1016/j.neuroimage.2021.117861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022] Open
Abstract
Electroencephalogram (EEG) microstate analysis is a promising and effective spatio-temporal method that can segment signals into several quasi-stable classes, providing a great opportunity to investigate short-range and long-range neural dynamics. However, there are still many controversies in terms of reproducibility and reliability when selecting different parameters or datatypes. In this study, five electrode configurations (91, 64, 32, 19, and 8 channels) were used to measure the reliability of microstate analysis at different electrode densities during propofol-induced sedation. First, the microstate topography and parameters at five different electrode densities were compared in the baseline (BS) condition and the moderate sedation (MD) condition, respectively. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) were introduced to quantify the consistency of the microstate parameters. Second, statistical analysis and classification between BS and MD were performed to determine whether the microstate differences between different conditions remained stable at different electrode densities, and ICC was also calculated between the different conditions to measure the consistency of the results in a single condition. The results showed that in both the BS or MD condition, respectively, there were few significant differences in the microstate parameters among the 91-, 64-, and 32-channel configurations, with most of the differences observed between the 19- or 8-channel configurations and the other configurations. The ICC and CV data also showed that the consistency among the 91-, 64-, and 32-channel configurations was better than that among all five electrode configurations after including the 19- and 8-channel configurations. Furthermore, the significant differences between the conditions in the 91-channel configuration remained stable at the 64- and 32-channel resolutions, but disappeared at the 19- and 8-channel resolutions. In addition, the classification and ICC results showed that the microstate analysis became unreliable with fewer than 20 electrodes. The findings of this study support the hypothesis that microstate analysis of different brain states is more reliable with higher electrode densities; the use of a small number of channels is not recommended.
Collapse
Affiliation(s)
- Kexu Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China
| | - Wen Shi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; The Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Chang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China
| | - Yamin Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China
| | - Tun Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China; Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China; Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xiangguo Yan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zehong Cao
- School of Information and Communication Technology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Gang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China.
| |
Collapse
|