1
|
Liu M, Wu S, Chen R, Lin Z, Wang Y, Meijering E. Brain Image Segmentation for Ultrascale Neuron Reconstruction via an Adaptive Dual-Task Learning Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2574-2586. [PMID: 38373129 DOI: 10.1109/tmi.2024.3367384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Accurate morphological reconstruction of neurons in whole brain images is critical for brain science research. However, due to the wide range of whole brain imaging, uneven staining, and optical system fluctuations, there are significant differences in image properties between different regions of the ultrascale brain image, such as dramatically varying voxel intensities and inhomogeneous distribution of background noise, posing an enormous challenge to neuron reconstruction from whole brain images. In this paper, we propose an adaptive dual-task learning network (ADTL-Net) to quickly and accurately extract neuronal structures from ultrascale brain images. Specifically, this framework includes an External Features Classifier (EFC) and a Parameter Adaptive Segmentation Decoder (PASD), which share the same Multi-Scale Feature Encoder (MSFE). MSFE introduces an attention module named Channel Space Fusion Module (CSFM) to extract structure and intensity distribution features of neurons at different scales for addressing the problem of anisotropy in 3D space. Then, EFC is designed to classify these feature maps based on external features, such as foreground intensity distributions and image smoothness, and select specific PASD parameters to decode them of different classes to obtain accurate segmentation results. PASD contains multiple sets of parameters trained by different representative complex signal-to-noise distribution image blocks to handle various images more robustly. Experimental results prove that compared with other advanced segmentation methods for neuron reconstruction, the proposed method achieves state-of-the-art results in the task of neuron reconstruction from ultrascale brain images, with an improvement of about 49% in speed and 12% in F1 score.
Collapse
|
2
|
Li M, Zheng H, Koh JC, Choe GY, Choi EJ, Nahm FS, Lee PB. Development of a Deep Learning Model for the Analysis of Dorsal Root Ganglion Chromatolysis in Rat Spinal Stenosis. J Pain Res 2024; 17:1369-1380. [PMID: 38600989 PMCID: PMC11005935 DOI: 10.2147/jpr.s444055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Objective To create a deep learning (DL) model that can accurately detect and classify three distinct types of rat dorsal root ganglion neurons: normal, segmental chromatolysis, and central chromatolysis. The DL model has the potential to improve the efficiency and precision of neuron classification in research related to spinal injuries and diseases. Methods H&E slide images were divided into an internal training set (80%) and a test set (20%). The training dataset was labeled by two pathologists using pre-defined grades. Using this dataset, a two-component DL model was developed with the first component being a convolutional neural network (CNN) that was trained to detect the region of interest (ROI) and the second component being another CNN used for classification. Results A total of 240 lumbar dorsal root ganglion (DRG) pathology slide images from rats were analyzed. The internal testing results showed an accuracy of 93.13%, and the external dataset testing demonstrated an accuracy of 93.44%. Conclusion The DL model demonstrated a level of agreement comparable to that of pathologists in detecting and classifying normal and segmental chromatolysis neurons, although its agreement was slightly lower for central chromatolysis neurons. Significance: DL in improving the accuracy and efficiency of pathological analysis suggests that it may have a role in enhancing medical decision-making.
Collapse
Affiliation(s)
- Meihui Li
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Haiyan Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jae Chul Koh
- Department of Anesthesiology and Pain Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ghee Young Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Joo Choi
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Francis Sahngun Nahm
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Pyung Bok Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
3
|
Caznok Silveira AC, Antunes ASLM, Athié MCP, da Silva BF, Ribeiro dos Santos JV, Canateli C, Fontoura MA, Pinto A, Pimentel-Silva LR, Avansini SH, de Carvalho M. Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders. Front Neurosci 2024; 18:1340345. [PMID: 38445254 PMCID: PMC10912403 DOI: 10.3389/fnins.2024.1340345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ana Clara Caznok Silveira
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | | | - Maria Carolina Pedro Athié
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara Filomena da Silva
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Camila Canateli
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marina Alves Fontoura
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Allan Pinto
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Simoni Helena Avansini
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Murilo de Carvalho
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
4
|
Chen R, Liu M, Chen W, Wang Y, Meijering E. Deep learning in mesoscale brain image analysis: A review. Comput Biol Med 2023; 167:107617. [PMID: 37918261 DOI: 10.1016/j.compbiomed.2023.107617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Mesoscale microscopy images of the brain contain a wealth of information which can help us understand the working mechanisms of the brain. However, it is a challenging task to process and analyze these data because of the large size of the images, their high noise levels, the complex morphology of the brain from the cellular to the regional and anatomical levels, the inhomogeneous distribution of fluorescent labels in the cells and tissues, and imaging artifacts. Due to their impressive ability to extract relevant information from images, deep learning algorithms are widely applied to microscopy images of the brain to address these challenges and they perform superiorly in a wide range of microscopy image processing and analysis tasks. This article reviews the applications of deep learning algorithms in brain mesoscale microscopy image processing and analysis, including image synthesis, image segmentation, object detection, and neuron reconstruction and analysis. We also discuss the difficulties of each task and possible directions for further research.
Collapse
Affiliation(s)
- Runze Chen
- College of Electrical and Information Engineering, National Engineering Laboratory for Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China
| | - Min Liu
- College of Electrical and Information Engineering, National Engineering Laboratory for Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China; Research Institute of Hunan University in Chongqing, Chongqing, 401135, China.
| | - Weixun Chen
- College of Electrical and Information Engineering, National Engineering Laboratory for Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China
| | - Yaonan Wang
- College of Electrical and Information Engineering, National Engineering Laboratory for Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China
| | - Erik Meijering
- School of Computer Science and Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
5
|
Liu Y, Wang G, Ascoli GA, Zhou J, Liu L. Neuron tracing from light microscopy images: automation, deep learning and bench testing. Bioinformatics 2022; 38:5329-5339. [PMID: 36303315 PMCID: PMC9750132 DOI: 10.1093/bioinformatics/btac712] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Large-scale neuronal morphologies are essential to neuronal typing, connectivity characterization and brain modeling. It is widely accepted that automation is critical to the production of neuronal morphology. Despite previous survey papers about neuron tracing from light microscopy data in the last decade, thanks to the rapid development of the field, there is a need to update recent progress in a review focusing on new methods and remarkable applications. RESULTS This review outlines neuron tracing in various scenarios with the goal to help the community understand and navigate tools and resources. We describe the status, examples and accessibility of automatic neuron tracing. We survey recent advances of the increasingly popular deep-learning enhanced methods. We highlight the semi-automatic methods for single neuron tracing of mammalian whole brains as well as the resulting datasets, each containing thousands of full neuron morphologies. Finally, we exemplify the commonly used datasets and metrics for neuron tracing bench testing.
Collapse
Affiliation(s)
- Yufeng Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Gaoyu Wang
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Jiangning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
6
|
3D vessel-like structure segmentation in medical images by an edge-reinforced network. Med Image Anal 2022; 82:102581. [DOI: 10.1016/j.media.2022.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/04/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
|
7
|
Farooqui NA, Mishra AK, Mehra R. Concatenated deep features with modified LSTM for enhanced crop disease classification. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2022. [DOI: 10.1007/s41315-022-00258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Chen W, Liu M, Du H, Radojevic M, Wang Y, Meijering E. Deep-Learning-Based Automated Neuron Reconstruction From 3D Microscopy Images Using Synthetic Training Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1031-1042. [PMID: 34847022 DOI: 10.1109/tmi.2021.3130934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Digital reconstruction of neuronal structures from 3D microscopy images is critical for the quantitative investigation of brain circuits and functions. It is a challenging task that would greatly benefit from automatic neuron reconstruction methods. In this paper, we propose a novel method called SPE-DNR that combines spherical-patches extraction (SPE) and deep-learning for neuron reconstruction (DNR). Based on 2D Convolutional Neural Networks (CNNs) and the intensity distribution features extracted by SPE, it determines the tracing directions and classifies voxels into foreground or background. This way, starting from a set of seed points, it automatically traces the neurite centerlines and determines when to stop tracing. To avoid errors caused by imperfect manual reconstructions, we develop an image synthesizing scheme to generate synthetic training images with exact reconstructions. This scheme simulates 3D microscopy imaging conditions as well as structural defects, such as gaps and abrupt radii changes, to improve the visual realism of the synthetic images. To demonstrate the applicability and generalizability of SPE-DNR, we test it on 67 real 3D neuron microscopy images from three datasets. The experimental results show that the proposed SPE-DNR method is robust and competitive compared with other state-of-the-art neuron reconstruction methods.
Collapse
|
9
|
Yang B, Liu M, Wang Y, Zhang K, Meijering E. Structure-Guided Segmentation for 3D Neuron Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:903-914. [PMID: 34748483 DOI: 10.1109/tmi.2021.3125777] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Digital reconstruction of neuronal morphologies in 3D microscopy images is critical in the field of neuroscience. However, most existing automatic tracing algorithms cannot obtain accurate neuron reconstruction when processing 3D neuron images contaminated by strong background noises or containing weak filament signals. In this paper, we present a 3D neuron segmentation network named Structure-Guided Segmentation Network (SGSNet) to enhance weak neuronal structures and remove background noises. The network contains a shared encoding path but utilizes two decoding paths called Main Segmentation Branch (MSB) and Structure-Detection Branch (SDB), respectively. MSB is trained on binary labels to acquire the 3D neuron image segmentation maps. However, the segmentation results in challenging datasets often contain structural errors, such as discontinued segments of the weak-signal neuronal structures and missing filaments due to low signal-to-noise ratio (SNR). Therefore, SDB is presented to detect the neuronal structures by regressing neuron distance transform maps. Furthermore, a Structure Attention Module (SAM) is designed to integrate the multi-scale feature maps of the two decoding paths, and provide contextual guidance of structural features from SDB to MSB to improve the final segmentation performance. In the experiments, we evaluate our model in two challenging 3D neuron image datasets, the BigNeuron dataset and the Extended Whole Mouse Brain Sub-image (EWMBS) dataset. When using different tracing methods on the segmented images produced by our method rather than other state-of-the-art segmentation methods, the distance scores gain 42.48% and 35.83% improvement in the BigNeuron dataset and 37.75% and 23.13% in the EWMBS dataset.
Collapse
|
10
|
Huang Q, Cao T, Zeng S, Li A, Quan T. Minimizing probability graph connectivity cost for discontinuous filamentary structures tracing in neuron image. IEEE J Biomed Health Inform 2022; 26:3092-3103. [PMID: 35104232 DOI: 10.1109/jbhi.2022.3147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuron tracing from optical image is critical in understanding brain function in diseases. A key problem is to trace discontinuous filamentary structures from noisy background, which is commonly encountered in neuronal and some medical images. Broken traces lead to cumulative topological errors, and current methods were hard to assemble various fragmentary traces for correct connection. In this paper, we propose a graph connectivity theoretical method for precise filamentary structure tracing in neuron image. First, we build the initial subgraphs of signals via a region-to-region based tracing method on CNN predicted probability. CNN technique removes noise interference, whereas its prediction for some elongated fragments is still incomplete. Second, we reformulate the global connection problem of individual or fragmented subgraphs under heuristic graph restrictions as a dynamic linear programming function via minimizing graph connectivity cost, where the connected cost of breakpoints are calculated using their probability strength via minimum cost path. Experimental results on challenging neuronal images proved that the proposed method outperformed existing methods and achieved similar results of manual tracing, even in some complex discontinuous issues. Performances on vessel images indicate the potential of the method for some other tubular objects tracing.
Collapse
|
11
|
Jiang Y, Chen W, Liu M, Wang Y, Meijering E. DeepRayburst for Automatic Shape Analysis of Tree-Like Structures in Biomedical Images. IEEE J Biomed Health Inform 2021; 26:2204-2215. [PMID: 34727041 DOI: 10.1109/jbhi.2021.3124514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Precise quantification of tree-like structures from biomedical images, such as neuronal shape reconstruction and retinal blood vessel caliber estimation, is increasingly important in understanding normal function and pathologic processes in biology. Some handcrafted methods have been proposed for this purpose in recent years. However, they are designed only for a specific application. In this paper, we propose a shape analysis algorithm, DeepRayburst, that can be applied to many different applications based on a Multi-Feature Rayburst Sampling (MFRS) and a Dual Channel Temporal Convolutional Network (DC-TCN). Specifically, we first generate a Rayburst Sampling (RS) core containing a set of multidirectional rays. Then the MFRS is designed by extending each ray of the RS to multiple parallel rays which extract a set of feature sequences. A Gaussian kernel is then used to fuse these feature sequences and outputs one feature sequence. Furthermore, we design a DC-TCN to make the rays terminate on the surface of tree-like structures according to the fused feature sequence. Finally, by analyzing the distribution patterns of the terminated rays, the algorithm can serve multiple shape analysis applications of tree-like structures. Experiments on three different applications, including soma shape reconstruction, neuronal shape reconstruction, and vessel caliber estimation, confirm that the proposed method outperforms other state-of-the-art shape analysis methods, which demonstrate its flexibility and robustness.
Collapse
|
12
|
Chen Q, Zhao Y, Liu Y, Sun Y, Yang C, Li P, Zhang L, Gao C. MSLPNet: multi-scale location perception network for dental panoramic X-ray image segmentation. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05790-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zhang Y, Liu M, Yu F, Zeng T, Wang Y. An O-shape Neural Network With Attention Modules to Detect Junctions in Biomedical Images Without Segmentation. IEEE J Biomed Health Inform 2021; 26:774-785. [PMID: 34197332 DOI: 10.1109/jbhi.2021.3094187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Junction plays an important role in biomedical research such as retinal biometric identification, retinal image registration, eye-related disease diagnosis and neuron reconstruction. However, junction detection in original biomedical images is extremely challenging. For example, retinal images contain many tiny blood vessels with complicated structures and low contrast, which makes it challenging to detect junctions. In this paper, we propose an O-shape Network architecture with Attention modules (Attention O-Net), which includes Junction Detection Branch (JDB) and Local Enhancement Branch (LEB) to detect junctions in biomedical images without segmentation. In JDB, the heatmap indicating the probabilities of junctions is estimated and followed by choosing the positions with the local highest value as the junctions, whereas it is challenging to detect junctions when the images contain weak filament signals. Therefore, LEB is constructed to enhance the thin branch foreground and make the network pay more attention to the regions with low contrast, which is helpful to alleviate the imbalance of the foreground between thin and thick branches and to detect the junctions of the thin branch. Furthermore, attention modules are utilized to introduce the feature maps from LEB to JDB, which can establish a complementary relationship and further integrate local features and contextual information between the two branches. The proposed method achieves the highest average F1-scores of 0.82, 0.73 and 0.94 in two retinal datasets and one neuron dataset, respectively. The experimental results confirm that Attention O-Net outperforms other state-of-the-art detection methods, and is helpful for retinal biometric identification.
Collapse
|