2
|
Yang L, Gao Z, Cao X, Wang C, Wang H, Dai J, Liu Y, Qin Y, Dai M, Zhang B, Zhao K, Zhao Z. Visualizing pursed lips breathing of patients with chronic obstructive pulmonary disease through evaluation of global and regional ventilation using electrical impedance tomography. Physiol Meas 2024; 45:045005. [PMID: 38479002 DOI: 10.1088/1361-6579/ad33a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Objective. This study aims to explore the possibility of using electrical impedance tomography (EIT) to assess pursed lips breathing (PLB) performance of patients with chronic obstructive pulmonary disease (COPD).Methods. 32 patients with COPD were assigned equally to either the conventional group or the EIT guided group. All patients were taught to perform PLB by a physiotherapist without EIT in the conventional group or with EIT in the EIT guided group for 10 min. The ventilation of all patients in the final test were continuously monitored using EIT and the PLB performances were rated by another physiotherapist before and after reviewing EIT. The global and regional ventilation between two groups as well as between quite breathing (QB) and PLB were compared and rating scores with and without EIT were also compared.Results.For global ventilation, the inspiratory depth and the ratio of expiratory-to-inspiratory time during PLB was significantly larger than those during QB for both group (P< 0.001). The inspiratory depth and the ratio of expiratory-to-inspiratory time during PLB in the EIT guided group were higher compared to those in the conventional group (P< 0.001), as well as expiratory flow expiratory uniformity and respiratory stability were better (P< 0.001). For regional ventilation, center of ventilation significantly decreased during PLB (P< 0.05). The expiratory time constant during PLB in the EIT guided group was greater than that in the conventional group (P< 0.001). Additionally, Bland-Altman plots analysis suggested a high concordance between subjective rating and rating with the help of EIT, but the score rated after EIT observation significantly lower than that rated subjectively in both groups (score drop of -2.68 ± 1.1 in the conventional group and -1.19 ± 0.72 in the EIT guided group,P< 0.01).Conclusion.EIT could capture the details of PLB maneuver, which might be a potential tool to quantitatively evaluate PLB performance and thus assist physiotherapists to teach PLB maneuver to patients.
Collapse
Affiliation(s)
- Lin Yang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Zhijun Gao
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Xinsheng Cao
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Chunchen Wang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Hang Wang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Jing Dai
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Yang Liu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Yilong Qin
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Meng Dai
- Department of Biomedical Engineering, Air Force Medical University, Xi'an, People's Republic of China
| | - Binghua Zhang
- Department of Pulmonary and Critical Care Medicine, 986th Hospital of Air Force, Air Force Medical University, Xi'an, People's Republic of China
| | - Ke Zhao
- Department of Pulmonary and Critical Care Medicine, 986th Hospital of Air Force, Air Force Medical University, Xi'an, People's Republic of China
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China
| |
Collapse
|
3
|
Su L, Liu S, Long Y, Chen C, Chen K, Chen M, Chen Y, Cheng Y, Cui Y, Ding Q, Ding R, Duan M, Gao T, Gu X, He H, He J, Hu B, Hu C, Huang R, Huang X, Jiang H, Jiang J, Lan Y, Li J, Li L, Li L, Li W, Li Y, Lin J, Luo X, Lyu F, Mao Z, Miao H, Shang X, Shang X, Shang Y, Shen Y, Shi Y, Sun Q, Sun W, Tang Z, Wang B, Wang H, Wang H, Wang L, Wang L, Wang S, Wang Z, Wang Z, Wei D, Wu J, Wu Q, Xing X, Yang J, Yang X, Yu J, Yu W, Yu Y, Yuan H, Zhai Q, Zhang H, Zhang L, Zhang M, Zhang Z, Zhao C, Zheng R, Zhong L, Zhou F, Zhu W. Chinese experts' consensus on the application of intensive care big data. Front Med (Lausanne) 2024; 10:1174429. [PMID: 38264049 PMCID: PMC10804886 DOI: 10.3389/fmed.2023.1174429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/09/2023] [Indexed: 01/25/2024] Open
Abstract
The development of intensive care medicine is inseparable from the diversified monitoring data. Intensive care medicine has been closely integrated with data since its birth. Critical care research requires an integrative approach that embraces the complexity of critical illness and the computational technology and algorithms that can make it possible. Considering the need of standardization of application of big data in intensive care, Intensive Care Medicine Branch of China Health Information and Health Care Big Data Society, Standard Committee has convened expert group, secretary group and the external audit expert group to formulate Chinese Experts' Consensus on the Application of Intensive Care Big Data (2022). This consensus makes 29 recommendations on the following five parts: Concept of intensive care big data, Important scientific issues, Standards and principles of database, Methodology in solving big data problems, Clinical application and safety consideration of intensive care big data. The consensus group believes this consensus is the starting step of application big data in the field of intensive care. More explorations and big data based retrospective research should be carried out in order to enhance safety and reliability of big data based models of critical care field.
Collapse
Affiliation(s)
- Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengjun Liu
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chaodong Chen
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Kai Chen
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Ming Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yaolong Chen
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yisong Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yating Cui
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Ding
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tao Gao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaohua Gu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongli He
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jiawei He
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaobo Huang
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Huizhen Jiang
- Department of Information Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Jiang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Yunping Lan
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jun Li
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Linfeng Li
- Medical Data Research Institute, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenxiong Li
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yongzai Li
- Information Network Center, QiLu Hospital, ShanDong University, Jinan, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xufei Luo
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lyu
- Department of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhi Mao
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaopu Shang
- Department of Information Management, Beijing Jiaotong University, Beijing, China
| | - Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Shen
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Yinghuan Shi
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Qihang Sun
- British Chinese Society of Health Informatics, Beijing, China
| | - Weijun Sun
- Faculty of Automation, Guangdong University of Technology, Guangzhou, China
| | - Zhiyun Tang
- Department of Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Emergency and Intensive Care Unit Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Haijun Wang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Luhao Wang
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Sicong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhanwen Wang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Zhong Wang
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dong Wei
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Jianfeng Wu
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xuezhong Xing
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jin Yang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Xianghong Yang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yuan Yu
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Yuan
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Qian Zhai
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Hao Zhang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lina Zhang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Meng Zhang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunguang Zhao
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lei Zhong
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiguo Zhu
- Department of General Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Pessoa D, Rocha BM, Strodthoff C, Gomes M, Rodrigues G, Petmezas G, Cheimariotis GA, Kilintzis V, Kaimakamis E, Maglaveras N, Marques A, Frerichs I, Carvalho PD, Paiva RP. BRACETS: Bimodal repository of auscultation coupled with electrical impedance thoracic signals. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107720. [PMID: 37544061 DOI: 10.1016/j.cmpb.2023.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Respiratory diseases are among the most significant causes of morbidity and mortality worldwide, causing substantial strain on society and health systems. Over the last few decades, there has been increasing interest in the automatic analysis of respiratory sounds and electrical impedance tomography (EIT). Nevertheless, no publicly available databases with both respiratory sound and EIT data are available. METHODS In this work, we have assembled the first open-access bimodal database focusing on the differential diagnosis of respiratory diseases (BRACETS: Bimodal Repository of Auscultation Coupled with Electrical Impedance Thoracic Signals). It includes simultaneous recordings of single and multi-channel respiratory sounds and EIT. Furthermore, we have proposed several machine learning-based baseline systems for automatically classifying respiratory diseases in six distinct evaluation tasks using respiratory sound and EIT (A1, A2, A3, B1, B2, B3). These tasks included classifying respiratory diseases at sample and subject levels. The performance of the classification models was evaluated using a 5-fold cross-validation scheme (with subject isolation between folds). RESULTS The resulting database consists of 1097 respiratory sounds and 795 EIT recordings acquired from 78 adult subjects in two countries (Portugal and Greece). In the task of automatically classifying respiratory diseases, the baseline classification models have achieved the following average balanced accuracy: Task A1 - 77.9±13.1%; Task A2 - 51.6±9.7%; Task A3 - 38.6±13.1%; Task B1 - 90.0±22.4%; Task B2 - 61.4±11.8%; Task B3 - 50.8±10.6%. CONCLUSION The creation of this database and its public release will aid the research community in developing automated methodologies to assess and monitor respiratory function, and it might serve as a benchmark in the field of digital medicine for managing respiratory diseases. Moreover, it could pave the way for creating multi-modal robust approaches for that same purpose.
Collapse
Affiliation(s)
- Diogo Pessoa
- University of Coimbra Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal.
| | - Bruno Machado Rocha
- University of Coimbra Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal
| | - Claas Strodthoff
- Department of Anesthesiology, and Intensive Care Medicine, University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Schleswig-Holstein, Germany
| | - Maria Gomes
- Lab3R - Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guilherme Rodrigues
- Lab3R - Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Georgios Petmezas
- 2nd Department of Obstetrics and Gynaecology, The Medical School, 54124 Thessaloniki, Greece
| | | | - Vassilis Kilintzis
- 2nd Department of Obstetrics and Gynaecology, The Medical School, 54124 Thessaloniki, Greece
| | - Evangelos Kaimakamis
- 1st Intensive Care Unit, "G. Papanikolaou" General Hospital of Thessaloniki, 57010 Pilea Hortiatis, Greece
| | - Nicos Maglaveras
- 2nd Department of Obstetrics and Gynaecology, The Medical School, 54124 Thessaloniki, Greece
| | - Alda Marques
- Lab3R - Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), University of Aveiro, 3810-193 Aveiro, Portugal; Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inéz Frerichs
- Department of Anesthesiology, and Intensive Care Medicine, University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Schleswig-Holstein, Germany
| | - Paulo de Carvalho
- University of Coimbra Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal
| | - Rui Pedro Paiva
- University of Coimbra Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal
| |
Collapse
|