1
|
Lafreniere S, Padasdao B, Konh B. Towards Design and Development of an MRI Conditional Robot to Enable Curvilinear Transperineal Prostate Biopsy. Int J Med Robot 2024; 20:e70015. [PMID: 39641325 DOI: 10.1002/rcs.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND In-bore MRI prostate biopsy offers improved visualisation and detection of significant prostate cancer; however, it is not widely practiced in cancer diagnosis due to its associated costs. METHODS This work introduces the first prototype towards a 7-degrees-of-freedom (DOF) MRI-conditional piezoelectrically actuated robotic system for transperineal prostate biopsy. The robot enables needle insertions in the desired trajectories. Kinematic and static models of the active needle as well as automated control of the robot are presented. RESULTS It is shown that the controller can force the needle to realize the reference sine and triangular bending angles with an accuracy of 1.78 and 1.88°, respectively, in air. The trajectory tracking capability of the system in free space is shown with an RMS error of 0.86 mm and a standard deviation of 0.36 mm. CONCLUSIONS The robot's capability to steer the needle towards target inside a phantom and extract a sample was evaluated.
Collapse
Affiliation(s)
- Samuel Lafreniere
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Blayton Padasdao
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Bardia Konh
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
2
|
Xu Y, Song D, Zhang K, Shi C. Development of a Variable-Pitch Flexible-Screw-Driven Continuum Robot (FSDCR) with Motion Decoupling Capability. Soft Robot 2024. [PMID: 39602226 DOI: 10.1089/soro.2024.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Tendon-driven continuum robots suffer from crosstalk of driving forces between sections, typically resulting in motion coupling between sections, which affects their motion accuracy and complicates the control strategies. To address these issues, this article proposes a mechanically designed variable-pitch flexible-screw-driven continuum robot (FSDCR) that enables motion decoupling between sections. The continuum section of the FSDCR comprises a series of orthogonally arranged vertebrae and is driven by customized variable-pitch flexible screws. The variable-pitch flexible screws apply driving forces and constraints to several threaded vertebrae in the continuum section, improving positioning accuracy and loading capacity. The flexible screws effectively balance the driving force and torque within one section through antagonistic torsional actuation, thereby achieving motion decoupling between sections. Characterization experiments have been conducted to compare the motion accuracy and load capacity of the variable-pitch FSDCR with those of the constant-pitch FSDCR. The results demonstrate that the variable-pitch FSDCR exhibits improved positioning accuracy, minimizing an average error of 0.79 mm (0.60% relative to its total length), which is 82.09% lower than that of the constant-pitch FSDCR. The load capacity of the variable-pitch FSDCR is enhanced by up to 129.09% compared with the constant-pitch FSDCR. Experiments on the motion decoupling performance of the FSDCR show that the maximum motion coupling error is 0.32 mm (0.24% relative to the section length). Additionally, the motion coupling error is minimally influenced by the rotational speed of the screw. Finally, a three-section FSDCR is constructed, and its load capacity and motion flexibility are demonstrated.
Collapse
Affiliation(s)
- Yuhao Xu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Dezhi Song
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Ketao Zhang
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Chaoyang Shi
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Zhou C, Xu Z, Lin Z, Qin X, Xia J, Ai X, Lou C, Huang Z, Huang S, Liu H, Zou Y, Chen W, Yang GZ, Gao A. Submillimeter fiber robots capable of decoupled macro-micro motion for endoluminal manipulation. SCIENCE ADVANCES 2024; 10:eadr6428. [PMID: 39576861 PMCID: PMC11584019 DOI: 10.1126/sciadv.adr6428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Endoluminal and endocavitary intervention via natural orifices of the body is an emerging trend in medicine, further underpinning the future of early intervention and precision surgery. This motivates the development of small continuum robots to navigate freely in confined and tortuous environment. The trade-off between a large range of motion and high precision with concomitant actuation cross-talk poses a major challenge. Here, we present a submillimeter-scale fiber robot (~1 mm) capable of decoupled macro and micro manipulations for intervention and operation. The thin optical fibers, working both as mechanical tendons and light waveguides, can be pulled/pushed to actuate the macro tendon-driven continuum robot and transmit light to actuate the liquid crystal elastomer-based micro built-in light-driven parallel robot. The combination of the decoupled macro and micro motions can accomplish accurate cross-scale motion from several millimeters down to tens of micrometers. In vivo animal studies are performed to demonstrate its positioning accuracy of precise micro operations in endoluminal or endocavitary intervention.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Xu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zecai Lin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaotong Qin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyuan Xia
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojie Ai
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuqian Lou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Huang
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoping Huang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huanghua Liu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Zou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weidong Chen
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zhang X, Du F, Zhang G, Wu K, Zheng G, Li Y, Song R. Design and Modelling of Continuum Robot for Endoscopic Submucosal Dissection Surgery With Lifting Force Estimation. Int J Med Robot 2024; 20:e2670. [PMID: 39258726 DOI: 10.1002/rcs.2670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Endoscopic submucosal dissection (ESD) is an effective treatment for early-stage gastrointestinal cancers. However, traditional surgical instruments lack accuracy and force-sensing. METHODS A new type of continuum robot for ESD is designed. An accurate static model of the proposed continuum robot is established, considering cases where the robot bends into C-shapes and S-shapes. A force estimation method based on an accurate static model is proposed. Then, the accuracy of the static model and force estimation is verified through experiments. Finally, an ex-organ experiment is carried out. RESULTS The average position error of the proposed static model is 0.72 mm, accounting for 2.57% of the total robot length. The average error of force estimation is 19.53 mN. By gripping and cutting ex-porcine gastric mucosa, the robot's functionality is validated. CONCLUSION This paper contributes to precise control and safe interaction of continuum robots.
Collapse
Affiliation(s)
- Xingyao Zhang
- The School of Mechanical Engineering, Shandong University, Jinan, China
- The Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan, China
- The Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Shandong University, Jinan, China
| | - Fuxin Du
- The School of Mechanical Engineering, Shandong University, Jinan, China
- The Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan, China
- The Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Shandong University, Jinan, China
| | - Gang Zhang
- The School of Mechanical Engineering, Shandong University, Jinan, China
- The Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan, China
- The Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Shandong University, Jinan, China
| | - Ke Wu
- Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, University of Lille, Lille, France
| | - Gang Zheng
- Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, University of Lille, Lille, France
| | - Yibin Li
- The Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Shandong University, Jinan, China
- The School of Control Science and Engineering, Shandong University, Jinan, China
| | - Rui Song
- The Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Shandong University, Jinan, China
- The School of Control Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
5
|
Riaziat ND, Erin O, Krieger A, Brown JD. Investigating Haptic Feedback in Vision-Deficient Millirobot Telemanipulation. IEEE Robot Autom Lett 2024; 9:6178-6185. [PMID: 38948904 PMCID: PMC11210683 DOI: 10.1109/lra.2024.3397529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The evolution of magnetically actuated millirobots gives rise to unique teleoperation challenges due to their non-traditional kinematic and dynamic architectures, as well as their frequent use of suboptimal imaging modalities. Recent investigations into haptic interfaces for millirobots have shown promise but lack the clinically motivated task scenarios necessary to justify future development. In this work, we investigate the utility of haptic feedback on bilateral teleoperation of a magnetically actuated millirobot in visually deficient conditions. We conducted an N=23 user study in an aneurysm coiling inspired procedure, which required participants to navigate the robot through a maze in near total darkness to manipulate beads to a target under simulated fluoroscopy. We hypothesized that users will be better able to complete the telemanipulation task with haptic feedback while reducing excess forces on their surroundings compared to the no feedback conditions. Our results showed an over 40% improvement in participants' bead scoring, a nearly 10% reduction in mean force, and 13% reduction in maximum force with haptic feedback, as well as significant improvements in other metrics. Results highlight that benefits of haptic feedback are retained when haptic feedback is removed. These findings suggest that haptic feedback has the potential to significantly improve millirobot telemanipulation and control in traditionally vision deficient tasks.
Collapse
Affiliation(s)
- Naveed D Riaziat
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, USA
| | - Onder Erin
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, USA. He is now with Johnson and Johnson, 5490 Great America Parkway, Santa Clara, California, USA
| | - Axel Krieger
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, USA
| | - Jeremy D Brown
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Zhang Z, Shen J, Ha J, Chen Y. Toward Extending Concentric Tube Robot Kinematics for Large Clearance and Impulse Curvature. IEEE Robot Autom Lett 2024; 9:2407-2414. [PMID: 38912312 PMCID: PMC11189652 DOI: 10.1109/lra.2024.3351000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Concentric Tube Robots (CTRs) have been proposed to operate within the unstructured environment for minimally invasive surgeries. In this letter, we consider the operation scenario where the tubes travel inside the channels with a large clearance or large curvature, such as aortas or industrial pipes. Accurate kinematic modeling of CTRs is required for the development of motion planning and control within these operation scenarios. To this end, we extended the conventional CTR kinematics model to a more general case with large tube-to-tube clearance and large centerline curvature. Numerical simulations and experimental validations are conducted to compare our model with respect to the conventional CTR kinematic model. In the physical experiments, our proposed model achieved a tip position error of 1.53 mm in the 2D planer case and 3.86 mm in 3D case, outperforming the state-of-the-art model by 71% and 61%, respectively.
Collapse
Affiliation(s)
- Zhouyu Zhang
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta 30332 USA
| | - Jia Shen
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta 30332 USA
| | - Junhyoung Ha
- Center for Healthcare Robotics, Artificial Intelligence and Robotics Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yue Chen
- Institute for Robotics and Intelligent Machines and the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta 30332 USA
| |
Collapse
|
7
|
Xu Y, Song D, Zhang Z, Wang S, Shi C. A Novel Extensible Continuum Robot with Growing Motion Capability Inspired by Plant Growth for Path-Following in Transoral Laryngeal Surgery. Soft Robot 2024; 11:171-182. [PMID: 37792330 DOI: 10.1089/soro.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
This article presents a novel extensible continuum robot (ECR) with growing motion capability for improved flexible access in transoral laryngeal procedures. The robot uses an extensible continuum joint with a staggered V-shaped notched structure as the backbone, driven by the pushing and pulling of superelastic Nitinol rods. The notched structure is optimized to achieve a wide range of extension/contraction and bending motion for the continuum joint. The successive and uniform deflection of the notches provides the continuum joint with excellent constant curvature bending characteristics. The bidirectional rod-driven approach expands the robot's extension capabilities with both pushing and pulling operations, and the superelasticity of the driving rods preserves the robot's bending performance. The ECR significantly increases motion dexterity and reachability through its variable length, which facilitates collision-free access to deep lesions by following the anatomy. To further exploit the advantages of the ECR in path-following for flexible access, a growing motion approach inspired by the plant growth process has been proposed to minimize the path deviation error. Characterization experiments are conducted to verify the performances of the proposed ECR. The extension ratio achieves up to 225.92%, and the average distal positioning error and hysteresis error values are 2.87% and 0.51% within the ±120° bending range. Compared with the typical continuum robot with a fixed length, the path-following deviation of this robot is reduced by more than 58.30%, effectively reducing the risk of collision during access. Phantom experiments validate the feasibility of the proposed concept in flexible access procedures.
Collapse
Affiliation(s)
- Yuhao Xu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Dezhi Song
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Zhiqiang Zhang
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Shuxin Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Chaoyang Shi
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Wang Y, Hu X, Cui L, Xiao X, Yang K, Zhu Y, Jin H. Bioinspired handheld time-share driven robot with expandable DoFs. Nat Commun 2024; 15:768. [PMID: 38278829 PMCID: PMC10817928 DOI: 10.1038/s41467-024-44993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Handheld robots offer accessible solutions with a short learning curve to enhance operator capabilities. However, their controllable degree-of-freedoms are limited due to scarce space for actuators. Inspired by muscle movements stimulated by nerves, we report a handheld time-share driven robot. It comprises several motion modules, all powered by a single motor. Shape memory alloy (SMA) wires, acting as "nerves", connect to motion modules, enabling the selection of the activated module. The robot contains a 202-gram motor base and a 0.8 cm diameter manipulator comprised of sequentially linked bending modules (BM). The manipulator can be tailored in length and integrated with various instruments in situ, facilitating non-invasive access and high-dexterous operation at remote surgical sites. The applicability was demonstrated in clinical scenarios, where a surgeon held the robot to conduct transluminal experiments on a human stomach model and an ex vivo porcine stomach. The time-share driven mechanism offers a pragmatic approach to build a multi-degree-of-freedom robot for broader applications.
Collapse
Affiliation(s)
- Yunjiang Wang
- Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanical Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xinben Hu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, 310005, Hangzhou, China
| | - Luhang Cui
- Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanical Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xuan Xiao
- Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanical Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Keji Yang
- Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanical Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, 310005, Hangzhou, China.
| | - Haoran Jin
- Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanical Engineering, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
9
|
El-Hussieny H, Hameed IA, Nada AA. Deep CNN-Based Static Modeling of Soft Robots Utilizing Absolute Nodal Coordinate Formulation. Biomimetics (Basel) 2023; 8:611. [PMID: 38132550 PMCID: PMC10742251 DOI: 10.3390/biomimetics8080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Soft continuum robots, inspired by the adaptability and agility of natural soft-bodied organisms like octopuses and elephant trunks, present a frontier in robotics research. However, exploiting their full potential necessitates precise modeling and control for specific motion and manipulation tasks. This study introduces an innovative approach using Deep Convolutional Neural Networks (CNN) for the inverse quasi-static modeling of these robots within the Absolute Nodal Coordinate Formulation (ANCF) framework. The ANCF effectively represents the complex non-linear behavior of soft continuum robots, while the CNN-based models are optimized for computational efficiency and precision. This combination is crucial for addressing the complex inverse statics problems associated with ANCF-modeled robots. Extensive numerical experiments were conducted to assess the performance of these Deep CNN-based models, demonstrating their suitability for real-time simulation and control in statics modeling. Additionally, this study includes a detailed cross-validation experiment to identify the most effective model architecture, taking into account factors such as the number of layers, activation functions, and unit configurations. The results highlight the significant benefits of integrating Deep CNN with ANCF models, paving the way for advanced statics modeling in soft continuum robotics.
Collapse
Affiliation(s)
- Haitham El-Hussieny
- Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
| | - Ibrahim A. Hameed
- Department of ICT and Natural Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Ayman A. Nada
- Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
| |
Collapse
|
10
|
DeBuys C, Ghesu FC, Jayender J, Langari R, Kim YH. Separable Tendon-Driven Robotic Manipulator with a Long, Flexible, Passive Proximal Section. JOURNAL OF MECHANISMS AND ROBOTICS 2023; 15:061019. [PMID: 38328596 PMCID: PMC10845131 DOI: 10.1115/1.4062354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This work tackles practical issues which arise when using a tendon-driven robotic manipulator (TDRM) with a long, flexible, passive proximal section in medical applications. Tendon-driven devices are preferred in medicine for their improved outcomes via minimally invasive procedures, but TDRMs come with unique challenges such as sterilization and reuse, simultaneous control of tendons, hysteresis in the tendon-sheath mechanism, and unmodeled effects of the proximal section shape. A separable TDRM which overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable. An open-loop redundant controller which resolves the redundancy in the kinematics is developed. Simple linear hysteresis compensation and re-tension compensation based on the physical properties of the device are proposed. The controller and compensation methods are evaluated on a testbed for a straight proximal section, a curved proximal section at various static angles, and a proximal section which dynamically changes angles; and overall, distal tip error was reduced.
Collapse
Affiliation(s)
- Christian DeBuys
- Texas A&M University, Mechanical Engineering, College Station, TX, USA
| | - Florin C Ghesu
- Siemens Healthineersm, Digital Technology & Innovation, Princeton, NJ, USA
| | - Jagadeesan Jayender
- Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Reza Langari
- Texas A&M University, Mechanical Engineering, College Station, TX, USA
| | - Young-Ho Kim
- Siemens Healthineers, Digital Technology & Innovation, Princeton, NJ, USA
| |
Collapse
|
11
|
Sharma S, Mohanraj TG, Amadio JP, Khadem M, Alambeigi F. A Concentric Tube Steerable Drilling Robot for Minimally Invasive Spinal Fixation of Osteoporotic Vertebrae. IEEE Trans Biomed Eng 2023; 70:3017-3027. [PMID: 37130252 PMCID: PMC10623809 DOI: 10.1109/tbme.2023.3272306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Spinal fixation with rigid pedicle screws have shown to be an effective treatment for many patients. However, this surgical option has been proved to be insufficient and will eventually fail for patients experiencing osteoporosis. This failure is mainly attributed to the lack of dexterity in the existing rigid drilling instruments and the complex anatomy of vertebrae, forcing surgeons to implant rigid pedicle screws within the osteoporotic regions of anatomy. To address this problem, in this article, we present the design, fabrication, and evaluation of a unique flexible yet structurally strong concentric tube steerable drilling robot (CT-SDR). The CT-SDR is capable of drilling smooth and accurate curved trajectories through hard tissues without experiencing buckling and failure; thus enabling the use of novel flexible pedicle screws for the next generation of spinal fixation procedures. Particularly, by decoupling the control of bending and insertion degrees of freedom (DoF) of the CT-SDR, we present a robotic system that (i) is intuitive to steer as it does not require an on-the-fly control algorithm for the bending DoF, and (ii) is able to address the contradictory requirements of structural stiffness and dexterity of a flexible robot interacting with the hard tissue. The robust and repeatable performance of the proposed CT-SDR have been experimentally evaluated by conducting various drilling procedures on simulated bone materials and animal bone samples. Experimental results indicate drilling times as low as 35 seconds for curved trajectories with 41 mm length and remarkable steering accuracy with a maximum 2% deviation error.
Collapse
|
12
|
Pittiglio G, Mencattelli M, Donder A, Chitalia Y, Dupont PE. Hybrid Tendon and Ball Chain Continuum Robots for Enhanced Dexterity in Medical Interventions. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2023; 2023:8461-8466. [PMID: 38352692 PMCID: PMC10862390 DOI: 10.1109/iros55552.2023.10341686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A hybrid continuum robot design is introduced that combines a proximal tendon-actuated section with a distal telescoping section comprised of permanent-magnet spheres actuated using an external magnet. While, individually, each section can approach a point in its workspace from one or at most several orientations, the two-section combination possesses a dexterous workspace. The paper describes kinematic modeling of the hybrid design and provides a description of the dexterous workspace. We present experimental validation which shows that a simplified kinematic model produces tip position mean and maximum errors of 3% and 7% of total robot length, respectively.
Collapse
Affiliation(s)
- Giovanni Pittiglio
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Margherita Mencattelli
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abdulhamit Donder
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yash Chitalia
- Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Price K, Peine J, Mencattelli M, Chitalia Y, Pu D, Looi T, Stone S, Drake J, Dupont PE. Using robotics to move a neurosurgeon's hands to the tip of their endoscope. Sci Robot 2023; 8:eadg6042. [PMID: 37729423 PMCID: PMC10801784 DOI: 10.1126/scirobotics.adg6042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
A major advantage of surgical robots is that they can reduce the invasiveness of a procedure by enabling the clinician to manipulate tools as they would in open surgery but through small incisions in the body. Neurosurgery has yet to benefit from this advantage. Although clinical robots are available for the least invasive neurosurgical procedures, such as guiding electrode insertion, the most invasive brain surgeries, such as tumor resection, are still performed as open manual procedures. To investigate whether robotics could reduce the invasiveness of major brain surgeries while still providing the manipulation capabilities of open surgery, we created a two-armed joystick-controlled endoscopic robot. To evaluate the efficacy of this robot, we developed a set of neurosurgical skill tasks patterned after the steps of brain tumor resection. We also created a patient-derived brain model for pineal tumors, which are located in the center of the brain and are normally removed by open surgery. In comparison, testing with existing manual endoscopic instrumentation, we found that the robot provided access to a much larger working volume at the trocar tip and enabled bimanual tasks without compression of brain tissue adjacent to the trocar. Furthermore, many tasks could be completed faster with the robot. These results suggest that robotics has the potential to substantially reduce the invasiveness of brain surgery by enabling certain procedures currently performed as open surgery to be converted to endoscopic interventions.
Collapse
Affiliation(s)
- Karl Price
- Department of Cardiovascular Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Peine
- Department of Cardiovascular Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Margherita Mencattelli
- Department of Cardiovascular Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yash Chitalia
- Department of Cardiovascular Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Pu
- Department of Cardiovascular Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Looi
- Department of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, M5G1X8, Canada
| | - Scellig Stone
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James Drake
- Department of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, M5G1X8, Canada
| | - Pierre E. Dupont
- Department of Cardiovascular Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Pore A, Li Z, Dall'Alba D, Hernansanz A, De Momi E, Menciassi A, Casals Gelpí A, Dankelman J, Fiorini P, Poorten EV. Autonomous Navigation for Robot-Assisted Intraluminal and Endovascular Procedures: A Systematic Review. IEEE T ROBOT 2023; 39:2529-2548. [DOI: 10.1109/tro.2023.3269384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Ameya Pore
- Department of Computer Science, University of Verona, Verona, Italy
| | - Zhen Li
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Diego Dall'Alba
- Department of Computer Science, University of Verona, Verona, Italy
| | - Albert Hernansanz
- Center of Research in Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Alicia Casals Gelpí
- Center of Research in Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Paolo Fiorini
- Department of Computer Science, University of Verona, Verona, Italy
| | | |
Collapse
|
15
|
Wei H, Zhang G, Wang S, Zhang P, Su J, Du F. Coupling Analysis of Compound Continuum Robots for Surgery: Another Line of Thought. SENSORS (BASEL, SWITZERLAND) 2023; 23:6407. [PMID: 37514701 PMCID: PMC10384598 DOI: 10.3390/s23146407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The compound continuum robot employs both concentric tube components and cable-driven continuum components to achieve its complex motions. Nevertheless, the interaction between these components causes coupling, which inevitably leads to reduced accuracy. Consequently, researchers have been striving to mitigate and compensate for this coupling-induced error in order to enhance the overall performance of the robot. This paper leverages the coupling between the components of the compound continuum robot to accomplish specific surgical procedures. Specifically, the internal concentric tube component is utilized to induce motion in the cable-driven external component, which generates coupled motion under the constraints of the cable. This approach enables the realization of high-precision surgical operations. Specifically, a kinematic model for the proposed robot is established, and an inverse kinematic algorithm is developed. In this inverse kinematic algorithm, the solution of a highly nonlinear system of equations is simplified into the solution of a single nonlinear equation. To demonstrate the effectiveness of the proposed approach, simulations are conducted to evaluate the efficiency of the algorithm. The simulations conducted in this study indicate that the proposed inverse kinematic (IK) algorithm improves computational speed by a significant margin. Specifically, it achieves a speedup of 2.8 × 103 over the Levenberg-Marquardt (LM) method. In addition, experimental results demonstrate that the coupled-motion system achieves high levels of accuracy. Specifically, the repetitive positioning accuracy is measured to be 0.9 mm, and the tracking accuracy is 1.5 mm. This paper is significant for dealing with the coupling of the compound continuum robot.
Collapse
Affiliation(s)
- Hangxing Wei
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
| | - Gang Zhang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
| | - Shengsong Wang
- Shandong Center for Food and Drug Evaluation & Inspection, Jinan 250014, China
| | - Peng Zhang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
| | - Jing Su
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
| | - Fuxin Du
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
| |
Collapse
|
16
|
Pittiglio G, Mencattelli M, Donder A, Chitalia Y, Dupont PE. Workspace Characterization for Hybrid Tendon and Ball Chain Continuum Robots. THE HAMLYN SYMPOSIUM ON MEDICAL ROBOTICS : PROCEEDINGS 2023; 2023:27-28. [PMID: 38410251 PMCID: PMC10895540 DOI: 10.31256/hsmr2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Continuum robots have attracted considerable attention for applications in minimally invasive diagnostics and therapeutics over the past decade [1]. The primary reason is their ability to navigate narrow and tortuous anatomical passageways, while guaranteeing safe inter- action with the anatomy. In designing such robots, an important goal is create a robot with a workspace appropriate for the clinical task. A significant limitation of many continuum designs re- lates to the minimum radius of curvature that a particular design can achieve. While multiple bending sections can be concatenated to provide more degrees of freedom, the orientations by which a point in the workspace can be approached are often limited. To overcome this limitation, this paper investigates a hybrid design that combines the advantages of tendon- actuated [2] and magnetic ball chain robots [3] as shown in Fig. 1. In this hybrid design, a proximal tendon- actuated section positions the robot with respect to the goal tip location while a distal ball chain section orients the robot tip with respect to the goal location. This abstract describes how the hybrid kinematics can be modeled and illustrates how the hybrid design possesses a dextrous workspace of finite extent.
Collapse
Affiliation(s)
- G Pittiglio
- Boston Children's Hospital, Harvard Medical School
| | | | - A Donder
- Boston Children's Hospital, Harvard Medical School
| | - Y Chitalia
- Department of Mechanical Engineering, University of Louisville
| | - P E Dupont
- Boston Children's Hospital, Harvard Medical School
| |
Collapse
|
17
|
Pittiglio G, Mencattelli M, Dupont PE. Magnetic Ball Chain Robots for Endoluminal Interventions. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2023; 2023:4717-4723. [PMID: 38444998 PMCID: PMC10910383 DOI: 10.1109/icra48891.2023.10160695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This paper introduces a novel class of hyperredundant robots comprised of chains of permanently magnetized spheres enclosed in a cylindrical polymer skin. With their shape controlled using an externally-applied magnetic field, the spherical joints of these robots enable them to bend to very small radii of curvature. These robots can be used as steerable tips for endoluminal instruments. A kinematic model is derived based on minimizing magnetic and elastic potential energy. Simulation is used to demonstrate the enhanced steerability of these robots in comparison to magnetic soft continuum robots designed using either distributed or lumped magnetic material. Experiments are included to validate the model and to demonstrate the steering capability of ball chain robots in bifurcating channels.
Collapse
Affiliation(s)
- Giovanni Pittiglio
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Margherita Mencattelli
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Roshanfar M, Taki S, Sayadi A, Cecere R, Dargahi J, Hooshiar A. Hyperelastic Modeling and Validation of Hybrid-Actuated Soft Robot with Pressure-Stiffening. MICROMACHINES 2023; 14:mi14050900. [PMID: 37241524 DOI: 10.3390/mi14050900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Soft robots have gained popularity, especially in intraluminal applications, because their soft bodies make them safer for surgical interventions than flexures with rigid backbones. This study investigates a pressure-regulating stiffness tendon-driven soft robot and provides a continuum mechanics model for it towards using that in adaptive stiffness applications. To this end, first, a central single-chamber pneumatic and tri-tendon-driven soft robot was designed and fabricated. Afterward, the classic Cosserat's rod model was adopted and augmented with the hyperelastic material model. The model was then formulated as a boundary-value problem and was solved using the shooting method. To identify the pressure-stiffening effect, a parameter-identification problem was formulated to identify the relationship between the flexural rigidity of the soft robot and internal pressure. The flexural rigidity of the robot at various pressures was optimized to match theoretical deformation and experiments. The theoretical findings of arbitrary pressures were then compared with the experiment for validation. The internal chamber pressure was in the range of 0 to 40 kPa and the tendon tensions were in the range of 0 to 3 N. The theoretical and experimental findings were in fair agreement for tip displacement with a maximum error of 6.40% of the flexure's length.
Collapse
Affiliation(s)
- Majid Roshanfar
- Mechanical Engineering Department, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Salar Taki
- Mechanical Engineering Department, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Amir Sayadi
- Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Renzo Cecere
- Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Javad Dargahi
- Mechanical Engineering Department, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Amir Hooshiar
- Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
19
|
Russo M, Gautreau E, Bonnet X, Laribi MA. Continuum Robots: From Conventional to Customized Performance Indicators. Biomimetics (Basel) 2023; 8:biomimetics8020147. [PMID: 37092399 PMCID: PMC10123637 DOI: 10.3390/biomimetics8020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Continuum robots have often been compared with rigid-link designs through conventional performance metrics (e.g., precision and Jacobian-based indicators). However, these metrics were developed to suit rigid-link robots and are tuned to capture specific facets of performance, in which continuum robots do not excel. Furthermore, conventional metrics either fail to capture the key advantages of continuum designs, such as their capability to operate in complex environments thanks to their slender shape and flexibility, or see them as detrimental (e.g., compliance). Previous work has rarely addressed this issue, and never in a systematic way. Therefore, this paper discusses the facets of a continuum robot performance that cannot be characterized by existing indicator and aims at defining a tailored framework of geometrical specifications and kinetostatic indicators. The proposed framework combines the geometric requirements dictated by the target environment and a methodology to obtain bioinspired reference metrics from a biological equivalent of the continuum robot (e.g., a snake, a tentacle, or a trunk). A numerical example is then reported for a swimming snake robot use case.
Collapse
Affiliation(s)
- Matteo Russo
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
- Faculty of Engineering, University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK
| | - Elie Gautreau
- Department GMSC, Pprime Institute, CNRS-University of Poitiers-ENSMA, UPR 3346 Poitiers, France
| | - Xavier Bonnet
- CEBC Center of Biological Studies of Chizé, CNRS & University of la Rochelle, Villiers-en-Bois, UMR 7372 Deux-Sèvres, France
| | - Med Amine Laribi
- Department GMSC, Pprime Institute, CNRS-University of Poitiers-ENSMA, UPR 3346 Poitiers, France
| |
Collapse
|
20
|
Liu T, Zhang G, Zhang P, Cheng T, Luo Z, Wang S, Du F. Modeling of and Experimenting with Concentric Tube Robots: Considering Clearance, Friction and Torsion. SENSORS (BASEL, SWITZERLAND) 2023; 23:3709. [PMID: 37050768 PMCID: PMC10099042 DOI: 10.3390/s23073709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Concentric tube robots (CTRs) are a promising prospect for minimally invasive surgery due to their inherent compliance and ability to navigate in constrained environments. Existing mechanics-based kinematic models typically neglect friction, clearance, and torsion between each pair of contacting tubes, leading to large positioning errors in medical applications. In this paper, an improved kinematic modeling method is developed. The effect of clearance on tip position during concentric tube assembly is compensated by the database method. The new kinematic model is mechanic-based, and the impact of friction moment and torsion on tubes is considered. Integrating the infinitesimal torsion of the concentric tube robots eliminates the errors caused by the interaction force between the tubes. A prototype is built, and several experiments with kinematic models are designed. The results indicate that the error of tube rotations is less than 2 mm. The maximum error of the feeding experiment does not exceed 0.4 mm. The error of the new modeling method is lower than that of the previous kinematic model. This paper has substantial implications for the high-precision and real-time control of concentric tube robots.
Collapse
Affiliation(s)
- Tianxiang Liu
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| | - Gang Zhang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| | - Peng Zhang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| | - Tianyu Cheng
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| | - Zijie Luo
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| | - Shengsong Wang
- Shandong Center for Food and Drug Evaluation & Inspection, Jinan 250014, China
| | - Fuxin Du
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China
- Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
| |
Collapse
|
21
|
Pittiglio G, Mencattelli M, Dupont PE. Closed-form Kinematic Model and Workspace Characterization for Magnetic Ball Chain Robots. ... INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS. INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS 2023; 2023:10.1109/ISMR57123.2023.10130219. [PMID: 38415070 PMCID: PMC10895542 DOI: 10.1109/ismr57123.2023.10130219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Magnetic ball chains are well suited to serve as the steerable tips of endoluminal robots. While it has been demonstrated that these robots produce a larger reachable workspace than magnetic soft continuum robots designed using either distributed or lumped magnetic material, here we investigate the orientational capabilities of these robots. To increase the range of orientations that can be produced at each point in the workspace, we introduce a comparatively-stiff outer sheath from which the steerable ball chain is extended. We present an energy-based kinematic model and also derive an approximate expression for the range of achievable orientations at each point in the workspace. Experiments are used to validate these results.
Collapse
Affiliation(s)
- Giovanni Pittiglio
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Margherita Mencattelli
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Cao Y, Shi Y, Hong W, Dai P, Sun X, Yu H, Xie L. Continuum robots for endoscopic sinus surgery: Recent advances, challenges, and prospects. Int J Med Robot 2023; 19:e2471. [PMID: 36251333 DOI: 10.1002/rcs.2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Endoscopic sinus surgery (ESS) has been recognized as an effective treatment modality for paranasal sinus diseases. Over the past decade, continuum robots (CRs) for ESS have been studied, but there are still some challenges. This paper presents a review on the scientific studies of CRs for ESS. METHODS Based on the analysis of the anatomical structure of the paranasal sinus, the requirements of CRs for ESS are discussed. Recent studies on rigid robots, handheld flexible robots, and CRs for ESS are presented. Surgical path planning, navigation, and control are also included. RESULTS Concentric tube CRs and cable-driven CRs have great potential for applications in ESS. The CRs incorporated with multiple replaceable arms with different functions are preferable in ESS. CONCLUSION Further study on navigation and control is required to improve the performance of CRs for ESS.
Collapse
Affiliation(s)
- Yongfeng Cao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxuan Shi
- Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China.,Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor, Chinese Academy of Medical Sciences, Beijing, China
| | - Wuzhou Hong
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Peidong Dai
- Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xicai Sun
- Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China.,Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China.,Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor, Chinese Academy of Medical Sciences, Beijing, China
| | - Le Xie
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Chitalia Y, Donder A, Dupont PE. Modeling Tendon-actuated Concentric Tube Robots. ... INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS. INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS 2023; 2023:10.1109/ISMR57123.2023.10130176. [PMID: 38356963 PMCID: PMC10862388 DOI: 10.1109/ismr57123.2023.10130176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Mechanics-based models have been developed to describe the shape of tendon-actuated continuum robots. Models have also been developed to describe the shape of concentric tube robots, i.e., nested combinations of precurved superelastic tubes. While an important class of continuum robots used in endoscopic and intracardiac medical applications combines these two designs, existing models do not cover this combination. Tendon-actuated models are limited to a single tube while concentric tube models do not include tendon-produced forces and moments. This paper derives a mechanics-based model for this hybrid design and assesses it using numerical and physical experiments involving a pair of tendon-actuated tubes. It is demonstrated that, similar to concentric tube robots, relative twisting between the tendon-actuated tubes is an important factor in determining overall robot shape.
Collapse
Affiliation(s)
- Yash Chitalia
- Healthcare Robotics and Telesurgery (HeaRT) Laboratory, University of Louisville, Louisville, Kentucky, USA
| | - Abdulhamit Donder
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Xie Y, Hou X, Wang S. Design of a Novel Haptic Joystick for the Teleoperation of Continuum-Mechanism-Based Medical Robots. ROBOTICS 2023. [DOI: 10.3390/robotics12020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Continuum robots are increasingly used in medical applications and the master–slave-based architectures are still the most important mode of operation in human–machine interaction. However, the existing master control devices are not fully suitable for either the mechanical mechanism or the control method. This study proposes a brand-new, four-degree-of-freedom haptic joystick whose main control stick could rotate around a fixed point. The rotational inertia is reduced by mounting all powertrain components on the base plane. Based on the design, kinematic and static models are proposed for position perception and force output analysis, while at the same time gravity compensation is also performed to calibrate the system. Using a continuum-mechanism-based trans-esophageal ultrasound robot as the test platform, a master–slave teleoperation scheme with position–velocity mapping and variable impedance control is proposed to integrate the speed regulation on the master side and the force perception on the slave side. The experimental results show that the main accuracy of the design is within 1.6°. The workspace of the control sticks is −60° to 110° in pitch angle, −40° to 40° in yaw angle, −180° to 180° in roll angle, and −90° to 90° in translation angle. The standard deviation of force output is within 8% of the full range, and the mean absolute error is 1.36°/s for speed control and 0.055 N for force feedback. Based on this evidence, it is believed that the proposed haptic joystick is a good addition to the existing work in the field with well-developed and effective features to enable the teleoperation of continuum robots for medical applications.
Collapse
|
25
|
Padasdao B, Lafreniere S, Rabiei M, Batsaikhan Z, Konh B. Teleoperated and Automated Control of a Robotic Tool for Targeted Prostate Biopsy. JOURNAL OF MEDICAL ROBOTICS RESEARCH 2023; 8:2340002. [PMID: 37736333 PMCID: PMC10513146 DOI: 10.1142/s2424905x23400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This work presents a robotic tool with bidirectional manipulation and control capabilities for targeted prostate biopsy interventions. Targeted prostate biopsy is an effective image-guided technique that results in detection of significant cancer with fewer cores and lower number of unnecessary biopsies compared to systematic biopsy. The robotic tool comprises of a compliant flexure section fabricated on a nitinol tube that enables bidirectional bending via actuation of two internal tendons, and a biopsy mechanism for extraction of tissue samples. The kinematic and static models of the compliant flexure section, as well as teleoperated and automated control of the robotic tool are presented and validated with experiments. It was shown that the controller can force the tip of the robotic tool to follow sinusoidal set-point positions with reasonable accuracy in air and inside a phantom tissue. Finally, the capability of the robotic tool to bend, reach targeted positions inside a phantom tissue, and extract a biopsy sample is evaluated.
Collapse
Affiliation(s)
- Blayton Padasdao
- Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole St., Holmes Hall 302, Honolulu, HI 96822
| | - Samuel Lafreniere
- Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole St., Holmes Hall 302, Honolulu, HI 96822
| | - Mahsa Rabiei
- Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole St., Holmes Hall 302, Honolulu, HI 96822
| | - Zolboo Batsaikhan
- Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole St., Holmes Hall 302, Honolulu, HI 96822
| | - Bardia Konh
- Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole St., Holmes Hall 302, Honolulu, HI 96822
| |
Collapse
|
26
|
Richter M, Kaya M, Sikorski J, Abelmann L, Kalpathy Venkiteswaran V, Misra S. Magnetic Soft Helical Manipulators with Local Dipole Interactions for Flexibility and Forces. Soft Robot 2023. [PMID: 36662545 DOI: 10.1089/soro.2022.0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Magnetic continuum manipulators (MCMs) are a class of continuum robots that can be actuated without direct contact by an external magnetic field. MCMs operating in confined workspaces, such as those targeting medical applications, require flexible magnetic structures that contain combinations of magnetic components and polymers to navigate long and tortuous paths. In cylindrical MCM designs, a significant trade-off exists between magnetic moment and bending flexibility as the ratio between length and diameter decreases. In this study, we propose a new MCM design framework that enables increasing diameter without compromising on flexibility and magnetic moment. Magnetic soft composite helices constitute bending regions of the MCM and are separated by permanent ring magnets. Local dipole interactions between the permanent magnets can reduce bending stiffness, depending on their size and spacing. For the particular segment geometry presented herein, the local dipole interactions result in a 31% increase in angular deflection of composite helices inside an external magnetic field, compared to helices without local interactions. In addition, we demonstrate fabrication, maneuverability, and example applications of a multisegment MCM in a phantom of the abdominal aorta, such as passing contrast dye and guidewires.
Collapse
Affiliation(s)
- Michiel Richter
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen, and University Medical Centre Groningen, The Netherlands
| | - Jakub Sikorski
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Leon Abelmann
- KIST Europe Forschugsgesellschaft mbH, Saarbrücken, Germany.,MESA+ Research Institute, University of Twente, Enschede, The Netherlands
| | | | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen, and University Medical Centre Groningen, The Netherlands
| |
Collapse
|
27
|
Stretchable and Compliant Sensing of Strain, Pressure and Vibration of Soft Deformable Structures. ROBOTICS 2022. [DOI: 10.3390/robotics11060146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Soft robotic and medical devices will greatly benefit from stretchable and compliant pressure sensors that can detect deformation and contact forces for control and task safety. In addition to traditional 2D buckling via planar substrates, 3D buckling via curved substrates has emerged as an alternative approach to generate tunable and highly convoluted hierarchical wrinkle morphologies. Such wrinkles may provide advantages in pressure sensing, such as increased sensitivity, ultra-stretchability, and detecting changing curvatures. In this work, we fabricated stretchable sensors using wrinkled MXene electrodes obtained from 3D buckling. We then characterized the sensors’ performance in detecting strain, pressure, and vibrations. The fabricated wrinkled MXene electrode exhibited high stretchability of up to 250% and has a strain sensitivity of 0.1 between 0 and 80%. The fabricated bilayer MXene pressure sensor exhibited a pressure sensitivity of 0.935 kPa−1 and 0.188 kPa−1 at the lower (<0.25 kPa) and higher-pressure regimes (0.25 kPa–2.0 kPa), respectively. The recovery and response timing of the wrinkled MXene pressure sensor was found to be 250 ms and 400 ms, respectively. The sensor was also capable of detecting changing curvatures upon mounting onto an inflating balloon.
Collapse
|
28
|
Aloi V, Dang KT, Barth EJ, Rucker C. Estimating Forces Along Continuum Robots. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3188905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vincent Aloi
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA
| | - Khoa T. Dang
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA
| | - Eric J. Barth
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Caleb Rucker
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
29
|
Design and Modeling of a Bio-Inspired Compound Continuum Robot for Minimally Invasive Surgery. MACHINES 2022. [DOI: 10.3390/machines10060468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The continuum robot is a new type of bionic robot which is widely used in the medical field. However, the current structure of the continuum robot limits its application in the field of minimally invasive surgery. In this paper, a bio-inspired compound continuum robot (CCR) combining the concentric tube continuum robot (CTR) and the notched continuum robot is proposed to design a high-dexterity minimally invasive surgical instrument. Then, a kinematic model, considering the stability of the CTR part, was established. The unstable operation of the CCR is avoided. The simulation of the workspace shows that the introduction of the notched continuum robot expands the workspace of CTR. The dexterity indexes of the robots are proposed. The simulation shows that the dexterity of the CCR is 1.472 times that of the CTR. At last, the length distribution of the CCR is optimized based on the dexterity index by using a fruit fly optimization algorithm. The simulations show that the optimized CCR is more dexterous than before. The dexterity of the CCR is increased by 1.069 times. This paper is critical for the development of high-dexterity minimally invasive surgical instruments such as those for the brain, blood vessels, heart and lungs.
Collapse
|
30
|
Abstract
Although substantial advancements have been achieved in robot-assisted surgery, the blueprint to existing snake robotics predominantly focuses on the preliminary structural design, control, and human–robot interfaces, with features which have not been particularly explored in the literature. This paper aims to conduct a review of planning and operation concepts of hyper-redundant serpentine robots for surgical use, as well as any future challenges and solutions for better manipulation. Current researchers in the field of the manufacture and navigation of snake robots have faced issues, such as a low dexterity of the end-effectors around delicate organs, state estimation and the lack of depth perception on two-dimensional screens. A wide range of robots have been analysed, such as the i²Snake robot, inspiring the use of force and position feedback, visual servoing and augmented reality (AR). We present the types of actuation methods, robot kinematics, dynamics, sensing, and prospects of AR integration in snake robots, whilst addressing their shortcomings to facilitate the surgeon’s task. For a smoother gait control, validation and optimization algorithms such as deep learning databases are examined to mitigate redundancy in module linkage backlash and accidental self-collision. In essence, we aim to provide an outlook on robot configurations during motion by enhancing their material compositions within anatomical biocompatibility standards.
Collapse
|