1
|
Xi Y, Zhou P, Yu H, Zhang T, Zhang L, Qiao Z, Liu F. Adaptive-weighted high order TV algorithm for sparse-view CT reconstruction. Med Phys 2023; 50:5568-5584. [PMID: 36934310 DOI: 10.1002/mp.16371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND With the development of low-dose computed tomography (CT), incomplete data reconstruction has been widely concerned. The total variation (TV) minimization algorithm can accurately reconstruct images from sparse or noisy data. PURPOSE However, the traditional TV algorithm ignores the direction of structures in images, leading to the loss of edge information and block artifacts when the object is not piecewise constant. Since the anisotropic information can facilitate preserving the edge and detail information in images, we aim to improve the TV algorithm in terms of reconstruction accuracy via this approach. METHODS In this paper, we propose an adaptive-weighted high order total variation (awHOTV) algorithm. We construct the second order TV-norm using the second order gradient, adapt the anisotropic edge property between neighboring image pixels, adjust the local image-intensity gradient to keep edge information, and design the corresponding Chambolle-Pock (CP) solving algorithm. Implementing the proposed algorithm, comprehensive studies are conducted in the ideal projection data experiment where the Structural similarity (SSIM), Root Mean Square Error (RMSE), Contrast to noise ratio (CNR), and modulation transform function (MTF) curves are utilized to evaluate the quality of reconstructed images in statism, structure, spatial resolution, and contrast, respectively. In the noisy data experiment, we further use the noise power spectrum (NPS) curve to evaluate the reconstructed images and compare it with other three algorithms. RESULTS We use the 2D slice in the XCAT phantom, 2D slice in TCIA Challenge data and FORBILD phantom as simulation phantoms and use real bird data for real verification. The results show that, compared with the traditional TV and FBP algorithms, the awHOTV has better performance in terms of RMSE, SSIM, and Pearson correlation coefficient (PCC) under the projected data with different sparsity. In addition, the awHOTV algorithm is robust against the noise of different intensities. CONCLUSIONS The proposed awHOTV method can reconstruct the images with high accuracy under sparse or noisy data. The awHOTV solves the strip artifacts caused by sparse data in the FBP method. Compared with the TV method, the awHOTV can effectively suppress block artifacts and has good detail protection ability.
Collapse
Affiliation(s)
- Yarui Xi
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
- The Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing, China
| | - Pengwu Zhou
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
- The Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing, China
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China
| | - Haijun Yu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
- The Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing, China
| | - Tao Zhang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
- The Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing, China
| | - Lingli Zhang
- Chongqing Key Laboratory of Complex Data Analysis & Artificial Intelligence, Chongqing University of Arts and Sciences, Chongqing, China
- Chongqing Key Laboratory of Group & Graph Theories and Applications, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhiwei Qiao
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China
| | - Fenglin Liu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Kim H, Lee H, Lee S, Choi YW, Choi YJ, Kim KH, Seo W, Shin CW, Cho S. A feasibility study on deep-neural-network-based dose-neutral dual-energy digital breast tomosynthesis. Med Phys 2023; 50:791-807. [PMID: 36273397 DOI: 10.1002/mp.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/01/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Diagnostic performance based on x-ray breast imaging is subject to breast density. Although digital breast tomosynthesis (DBT) is reported to outperform conventional mammography in denser breasts, mass detection and malignancy characterization are often considered challenging yet. PURPOSE As an improved diagnostic solution to the dense breast cases, we propose a dual-energy DBT imaging technique that enables breast compositional imaging at comparable scanning time and patient dose compared to the conventional single-energy DBT. METHODS The proposed dual-energy DBT acquires projection data by alternating two different energy spectra. Then, we synthesize unmeasured projection data using a deep neural network that exploits the measured projection data and adjacent projection data obtained under the other x-ray energy spectrum. For material decomposition, we estimate partial path lengths of an x-ray through water, lipid, and protein from the measured and the synthesized projection data with the object thickness information. After material decomposition in the projection domain, we reconstruct material-selective DBT images. The deep neural network is trained with the numerical breast phantoms. A pork meat phantom is scanned with a prototype dual-energy DBT system to demonstrate the feasibility of the proposed imaging method. RESULTS The developed deep neural network successfully synthesized missing projections. Material-selective images reconstructed from the synthesized data present comparable compositional contrast of the cancerous masses compared with those from the fully measured data. CONCLUSIONS The proposed dual-energy DBT scheme is expected to substantially contribute to enhancing mass malignancy detection accuracy particularly in dense breasts.
Collapse
Affiliation(s)
- Hyeongseok Kim
- KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seoyoung Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Young-Wook Choi
- Korea Electrotechnology Research Institute (KERI), Ansan, South Korea
| | - Young Jin Choi
- Korea Electrotechnology Research Institute (KERI), Ansan, South Korea
| | - Kee Hyun Kim
- Korea Electrotechnology Research Institute (KERI), Ansan, South Korea
| | | | | | - Seungryong Cho
- KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,KAIST Institute for IT Convergence, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
3
|
Evangelista D, Morotti E, Loli Piccolomini E. RISING: A new framework for model-based few-view CT image reconstruction with deep learning. Comput Med Imaging Graph 2023; 103:102156. [PMID: 36528018 DOI: 10.1016/j.compmedimag.2022.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/10/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Medical image reconstruction from low-dose tomographic data is an active research field, recently revolutionized by the advent of deep learning. In fact, deep learning typically yields superior results than classical optimization approaches, but unstable results have been reported both numerically and theoretically in the literature. This paper proposes RISING, a new framework for sparse-view tomographic image reconstruction combining an early-stopped Rapid Iterative Solver with a subsequent Iteration Network-based Gaining step. In our two-step approach, the first phase executes very few iterations of a regularized model-based algorithm, whereas the second step completes the missing iterations by means of a convolutional neural network. The proposed method is ground-truth free; it exploits the computational speed and flexibility of a data-driven approach, but it also imposes sparsity constraints to the solution as in the model-based setting. Experiments performed both on a digitally created and on a real abdomen data set confirm the numerical and visual accuracy of the reconstructed RISING images in short computational times. These features make the framework promising to be used on real systems for clinical exams.
Collapse
Affiliation(s)
| | - Elena Morotti
- Department of Political and Social Sciences, University of Bologna, Italy.
| | | |
Collapse
|
4
|
Tang H, Li T, Lin YB, Li Y, Bao XD. A fast tomosynthesis method for printed circuit boards based on a multiple multi-resolution reconstruction algorithm. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:965-979. [PMID: 37424489 DOI: 10.3233/xst-230047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Digital tomosynthesis (DTS) technology has attracted much attention in the field of nondestructive testing of printed circuit boards (PCB) due to its high resolution and suitability to thin slab objects. However, the traditional DTS iterative algorithm is computationally demanding, and its real-time processing of high-resolution and large volume reconstruction is infeasible. To address this issue, we in this study propose a multiple multi-resolution algorithm, including two multi-resolution strategies: volume domain multi-resolution and projection domain multi-resolution. The first multi-resolution scheme employs a LeNet-based classification network to divide the roughly reconstructed low-resolution volume into two sub-volumes namely, (1) the region of interest (ROI) with welding layers that necessitates high-resolution reconstruction, and (2) the remaining volume with unimportant information which can be reconstructed in low-resolution. When X-rays in adjacent projection angles pass through many identical voxels, information redundancy is prevalent between the adjacent image projections. Therefore, the second multi-resolution scheme divides the projections into non-overlapping subsets, using only one subset for each iteration. The proposed algorithm is evaluated using both the simulated and real image data. The results demonstrate that the proposed algorithm is approximately 6.5 times faster than the full-resolution DTS iterative reconstruction algorithm without compromising image reconstruction quality.
Collapse
Affiliation(s)
- Hui Tang
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Tian Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Yu Bing Lin
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Yu Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Xu Dong Bao
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Lin YH, Lu YC. Low-Light Enhancement Using a Plug-and-Play Retinex Model With Shrinkage Mapping for Illumination Estimation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:4897-4908. [PMID: 35839183 DOI: 10.1109/tip.2022.3189805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-light photography conditions degrade image quality. This study proposes a novel Retinex-based low-light enhancement method to correctly decompose an input image into reflectance and illumination. Subsequently, we can improve the viewing experience by adjusting the illumination using intensity and contrast enhancement. Because image decomposition is a highly ill-posed problem, constraints must be properly imposed on the optimization framework. To meet the criteria of ideal Retinex decomposition, we design a nonconvex Lp norm and apply shrinkage mapping to the illumination layer. In addition, edge-preserving filters are introduced using the plug-and-play technique to improve illumination. Pixel-wise weights based on variance and image gradients are adopted to suppress noise and preserve details in the reflectance layer. We choose the alternating direction method of multipliers (ADMM) to solve the problem efficiently. Experimental results on several challenging low-light datasets show that our proposed method can more effectively enhance image brightness as compared with state-of-the-art methods. In addition to subjective observations, the proposed method also achieved competitive performance in objective image quality assessments.
Collapse
|
6
|
Ma B, Zalmai N, Loeliger HA. Smoothed-NUV Priors for Imaging. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:4663-4678. [PMID: 35786555 DOI: 10.1109/tip.2022.3186749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Variations of L1 -regularization including, in particular, total variation regularization, have hugely improved computational imaging. However, sharper edges and fewer staircase artifacts can be achieved with convex-concave regularizers. We present a new class of such regularizers using normal priors with unknown variance (NUV), which include smoothed versions of the logarithm function and smoothed versions of Lp norms with p ≤ 1 . All NUV priors allow variational representations that lead to efficient algorithms for image reconstruction by iterative reweighted descent. A preferred such algorithm is iterative reweighted coordinate descent, which has no parameters (in particular, no step size to control) and is empirically robust and efficient. The proposed priors and algorithms are demonstrated with applications to tomography. We also note that the proposed priors come with built-in edge detection, which is demonstrated by an application to image segmentation.
Collapse
|
7
|
Donato S, Brombal L, Arana Peña LM, Arfelli F, Contillo A, Delogu P, Di Lillo F, Di Trapani V, Fanti V, Longo R, Oliva P, Rigon L, Stori L, Tromba G, Golosio B. Optimization of a customized simultaneous algebraic reconstruction technique algorithm for phase-contrast breast computed tomography. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac65d4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
Abstract
Abstract
Objective. To introduce the optimization of a customized GPU-based simultaneous algebraic reconstruction technique (cSART) in the field of phase-contrast breast computed tomography (bCT). The presented algorithm features a 3D bilateral regularization filter that can be tuned to yield optimal performance for clinical image visualization and tissues segmentation. Approach. Acquisitions of a dedicated test object and a breast specimen were performed at Elettra, the Italian synchrotron radiation (SR) facility (Trieste, Italy) using a large area CdTe single-photon counting detector. Tomographic images were obtained at 5 mGy of mean glandular dose, with a 32 keV monochromatic x-ray beam in the free-space propagation mode. Three independent algorithms parameters were optimized by using contrast-to-noise ratio (CNR), spatial resolution, and noise texture metrics. The results obtained with the cSART algorithm were compared with conventional SART and filtered back projection (FBP) reconstructions. Image segmentation was performed both with gray scale-based and supervised machine-learning approaches. Main results. Compared to conventional FBP reconstructions, results indicate that the proposed algorithm can yield images with a higher CNR (by 35% or more), retaining a high spatial resolution while preserving their textural properties. Alternatively, at the cost of an increased image ‘patchiness’, the cSART can be tuned to achieve a high-quality tissue segmentation, suggesting the possibility of performing an accurate glandularity estimation potentially of use in the realization of realistic 3D breast models starting from low radiation dose images. Significance. The study indicates that dedicated iterative reconstruction techniques could provide significant advantages in phase-contrast bCT imaging. The proposed algorithm offers great flexibility in terms of image reconstruction optimization, either toward diagnostic evaluation or image segmentation.
Collapse
|
8
|
Morotti E, Evangelista D, Loli Piccolomini E. A Green Prospective for Learned Post-Processing in Sparse-View Tomographic Reconstruction. J Imaging 2021; 7:139. [PMID: 34460775 PMCID: PMC8404937 DOI: 10.3390/jimaging7080139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022] Open
Abstract
Deep Learning is developing interesting tools that are of great interest for inverse imaging applications. In this work, we consider a medical imaging reconstruction task from subsampled measurements, which is an active research field where Convolutional Neural Networks have already revealed their great potential. However, the commonly used architectures are very deep and, hence, prone to overfitting and unfeasible for clinical usages. Inspired by the ideas of the green AI literature, we propose a shallow neural network to perform efficient Learned Post-Processing on images roughly reconstructed by the filtered backprojection algorithm. The results show that the proposed inexpensive network computes images of comparable (or even higher) quality in about one-fourth of time and is more robust than the widely used and very deep ResUNet for tomographic reconstructions from sparse-view protocols.
Collapse
Affiliation(s)
- Elena Morotti
- Department of Political and Social Sciences, University of Bologna, 40126 Bologna, Italy;
| | | | - Elena Loli Piccolomini
- Department of Computer Science and Engineering, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Loli Piccolomini E, Morotti E. A Model-Based Optimization Framework for Iterative Digital Breast Tomosynthesis Image Reconstruction. J Imaging 2021; 7:36. [PMID: 34460635 PMCID: PMC8321284 DOI: 10.3390/jimaging7020036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
Digital Breast Tomosynthesis is an X-ray imaging technique that allows a volumetric reconstruction of the breast, from a small number of low-dose two-dimensional projections. Although it is already used in the clinical setting, enhancing the quality of the recovered images is still a subject of research. The aim of this paper was to propose and compare, in a general optimization framework, three slightly different models and corresponding accurate iterative algorithms for Digital Breast Tomosynthesis image reconstruction, characterized by a convergent behavior. The suggested model-based implementations are specifically aligned to Digital Breast Tomosynthesis clinical requirements and take advantage of a Total Variation regularizer. We also tune a fully-automatic strategy to set a proper regularization parameter. We assess our proposals on real data, acquired from a breast accreditation phantom and a clinical case. The results confirm the effectiveness of the presented framework in reconstructing breast volumes, with particular focus on the masses and microcalcifications, in few iterations and in enhancing the image quality in a prolonged execution.
Collapse
|
10
|
Qiao Z, Lu Y. A TV-minimization image-reconstruction algorithm without system matrix. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:851-865. [PMID: 34308898 DOI: 10.3233/xst-210929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PURPOSE Total Variation (TV) minimization algorithm is a classical compressed sensing (CS) based iterative image reconstruction algorithm that can accurately reconstruct images from sparse-view projections in computed tomography (CT). However, the system matrix used in the algorithm is often too large to be stored in computer memory. The purpose of this study is to investigate a new TV algorithm based on image rotation and without system matrix to avoid the memory requirement of system matrix. METHODS Without loss of generality, a rotation-based adaptive steepest descent-projection onto convex sets (R-ASD-POCS) algorithm is proposed and tested to solve the TV model in parallel beam CT. Specifically, simulation experiments are performed via the Shepp-Logan, FORBILD and real CT image phantoms are used to verify the inverse-crime capability of the algorithm and evaluate the sparse reconstruction capability and the noise suppression performance of the algorithm. RESULTS Experimental results show that the algorithm can achieve inverse-crime, accurate sparse reconstruction and thus accurately reconstruct images from noisy projections. Compared with the classical ASD-POCS algorithm, the new algorithm may yield the similar image reconstruction accuracy without use of the huge system matrix, which saves the computational memory space significantly. Additionally, the results also show that R-ASD-POCS algorithm is faster than ASD-POCS. CONCLUSIONS The proposed new algorithm can effectively solve the problem of using huge memory in large scale and iterative image reconstruction. Integrating with ASD-POCS frame, this no-system-matrix based scheme may be readily extended and applied to any iterative image reconstructions.
Collapse
Affiliation(s)
- Zhiwei Qiao
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China
| | - Yang Lu
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
11
|
Wang S, Wu W, Feng J, Liu F, Yu H. Low-dose spectral CT reconstruction based on image-gradient L 0-norm and adaptive spectral PICCS. Phys Med Biol 2020; 65:245005. [PMID: 32693399 DOI: 10.1088/1361-6560/aba7cf] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The photon-counting detector based spectral computed tomography (CT) is promising for lesion detection, tissue characterization, and material decomposition. However, the lower signal-to-noise ratio within multi-energy projection dataset can result in poorly reconstructed image quality. Recently, as prior information, a high-quality spectral mean image was introduced into the prior image constrained compressed sensing (PICCS) framework to suppress noise, leading to spectral PICCS (SPICCS). In the original SPICCS model, the image gradient L1-norm is employed, and it can cause blurred edge structures in the reconstructed images. Encouraged by the advantages in edge preservation and finer structure recovering, the image gradient L0-norm was incorporated into the PICCS model. Furthermore, due to the difference of energy spectrum in different channels, a weighting factor is introduced and adaptively adjusted for different channel-wise images, leading to an L0-norm based adaptive SPICCS (L0-ASPICCS) algorithm for low-dose spectral CT reconstruction. The split-Bregman method is employed to minimize the objective function. Extensive numerical simulations and physical phantom experiments are performed to evaluate the proposed method. By comparing with the state-of-the-art algorithms, such as the simultaneous algebraic reconstruction technique, total variation minimization, and SPICCS, the advantages of our proposed method are demonstrated in terms of both qualitative and quantitative evaluation results.
Collapse
Affiliation(s)
- Shaoyu Wang
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China. Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America. Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Ordered subsets Non-Local means constrained reconstruction for sparse view cone beam CT system. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:1117-1128. [PMID: 31691168 DOI: 10.1007/s13246-019-00811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Sparse-view sampling scans reduce the patient's radiation dose by reducing the total exposure duration. CT reconstructions under such scan mode are often accompanied by severe artifacts due to the high ill-posedness of the problem. In this paper, we use a Non-Local means kernel as a regularization constraint to reconstruct image volumes from sparse-angle sampled cone-beam CT scans. To overcome the huge computational cost of the 3D reconstruction, we propose a sequential update scheme relying on ordered subsets in the image domain. It is shown through experiments on simulated and real data and comparisons with other methods that the proposed approach is robust enough to deal with the number of views reduced up to 1/10. When coupled with a CUDA parallel computing technique, the computation speed of the iterative reconstruction is greatly improved.
Collapse
|
13
|
Zhao Y, Ji D, Chen Y, Jian J, Zhao X, Zhao Q, Lv W, Xin X, Yang T, Hu C. A new in-line X-ray phase-contrast computed tomography reconstruction algorithm based on adaptive-weighted anisotropic TpV regularization for insufficient data. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1330-1342. [PMID: 31274462 DOI: 10.1107/s1600577519005095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
In-line X-ray phase-contrast computed tomography (IL-PCCT) is a valuable tool for revealing the internal detailed structures in weakly absorbing objects (e.g. biological soft tissues), and has a great potential to become clinically applicable. However, the long scanning time for IL-PCCT will result in a high radiation dose to biological samples, and thus impede the wider use of IL-PCCT in clinical and biomedical imaging. To alleviate this problem, a new iterative CT reconstruction algorithm is presented that aims to decrease the radiation dose by reducing the projection views, while maintaining the high quality of reconstructed images. The proposed algorithm combines the adaptive-weighted anisotropic total p-variation (AwaTpV, 0 < p < 1) regularization technique with projection onto convex sets (POCS) strategy. Noteworthy, the AwaTpV regularization term not only contains the horizontal and vertical image gradients but also adds the diagonal image gradients in order to enforce the directional continuity in the gradient domain. To evaluate the effectiveness and ability of the proposed algorithm, experiments with a numerical phantom and synchrotron IL-PCCT were performed, respectively. The results demonstrated that the proposed algorithm had the ability to significantly reduce the artefacts caused by insufficient data and effectively preserved the edge details under noise-free and noisy conditions, and thus could be used as an effective approach to decrease the radiation dose for IL-PCCT.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Dongjiang Ji
- The School of Science, Tianjin University of Technology and Education, Tianjin 300222, People's Republic of China
| | - Yingpin Chen
- School of Physics and Information Engineering, Minnan Normal University, 363000 Fujian, People's Republic of China
| | - Jianbo Jian
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300070, People's Republic of China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, People's Republic of China
| | - Qi Zhao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Wenjuan Lv
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xiaohong Xin
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Tingting Yang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Chunhong Hu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| |
Collapse
|
14
|
Yu H, Wu W, Chen P, Gong C, Jiang J, Wang S, Liu F, Yu H. Image gradient L 0-norm based PICCS for swinging multi-source CT reconstruction. OPTICS EXPRESS 2019; 27:5264-5279. [PMID: 30876127 PMCID: PMC6410921 DOI: 10.1364/oe.27.005264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Dynamic computed tomography (CT) is usually employed to image motion objects, such as beating heart, coronary artery and cerebral perfusion, etc. Recently, to further improve the temporal resolution for aperiodic industrial process imaging, the swinging multi-source CT (SMCT) systems and the corresponding swinging multi-source prior image constrained compressed sensing (SM-PICCS) method were developed. Since the SM-PICCS uses the L1-norm of image gradient, the edge structures in the reconstructed images are blurred and motion artifacts are still present. Inspired by the advantages in terms of image edge preservation and fine structure recovering, the L0-norm of image gradient is incorporated into the prior image constrained compressed sensing, leading to an L0-PICCS Algorithm 1Table 1The parameters of L0-PICCS (δ1,δ2,λ1*,λ2*) for numerical simulation.Sourceswδ1(10-2)δ2(10-2)λ1*(10-2)λ2*(10-8)Noise-free510522.001.525522.001.55035002.00471014.33332.00500025522.00500050222.005000Noise51062002.505002554502.501.55054502.901.571027.385.91.5810000258.285.91.5850050522.001.5. The experimental results confirm that the L0-PICCS outperforms the SM-PICCS in both visual inspection and quantitative analysis.
Collapse
Affiliation(s)
- Haijun Yu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
- College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
- These authors contributed equally to the work
| | - Weiwen Wu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
- These authors contributed equally to the work
| | - Peijun Chen
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Changcheng Gong
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Junru Jiang
- College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
| | - Shaoyu Wang
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Fenglin Liu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
15
|
Infrared Image Super-Resolution Reconstruction Based on Quaternion Fractional Order Total Variation with Lp Quasinorm. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Owing to the limitations of the imaging principle as well as the properties of imaging systems, infrared images often have some drawbacks, including low resolution, a lack of detail, and indistinct edges. Therefore, it is essential to improve infrared image quality. Considering the information of neighbors, a description of sparse edges, and by avoiding staircase artifacts, a new super-resolution reconstruction (SRR) method is proposed for infrared images, which is based on fractional order total variation (FTV) with quaternion total variation and the L p quasinorm. Our proposed method improves the sparsity exploitation of FTV, and efficiently preserves image structures. Furthermore, we adopt the plug-and-play alternating direction method of multipliers (ADMM) and the fast Fourier transform (FFT) theory for the proposed method to improve the efficiency and robustness of our algorithm; in addition, an accelerated step is adopted. Our experimental results show that the proposed method leads to excellent performances in terms of an objective evaluation and the subjective visual effect.
Collapse
|
16
|
Zhang L, Zhao H, Ma W, Jiang J, Zhang L, Li J, Gao F, Zhou Z. Resolution and noise performance of sparse view X-ray CT reconstruction via Lp-norm regularization. Phys Med 2018; 52:72-80. [DOI: 10.1016/j.ejmp.2018.04.396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 10/28/2022] Open
|
17
|
X-ray CT image reconstruction from few-views via total generalized p-variation minimization. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:5618-21. [PMID: 26737566 DOI: 10.1109/embc.2015.7319666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Total variation (TV)-based CT image reconstruction, employing the image gradient sparsity, has shown to be experimentally capable of reducing the X-ray sampling rate and removing the unwanted artifacts, yet may cause unfavorable over-smoothing and staircase effects by the piecewise constant assumption. In this paper, we present a total generalized p-variation (TGpV) regularization model to adaptively preserve the edge information while avoiding the staircase effect. The new model is solved by splitting variables with an efficient alternating minimization scheme. With the utilization of generalized p-shrinkage mappings and partial Fourier transform, all the subproblems have closed solutions. The proposed method shows excellent properties of edge preserving as well as the smoothness features by the consideration of high order derivatives. Experimental results indicate that the proposed method could avoid the mentioned effects and reconstruct more accurately than both the TV and TGV minimization algorithms when applied to a few-view problem.
Collapse
|
18
|
Cai A, Li L, Zheng Z, Zhang H, Wang L, Hu G, Yan B. Block matching sparsity regularization-based image reconstruction for incomplete projection data in computed tomography. Phys Med Biol 2018; 63:035045. [PMID: 29188791 DOI: 10.1088/1361-6560/aa9e63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In medical imaging many conventional regularization methods, such as total variation or total generalized variation, impose strong prior assumptions which can only account for very limited classes of images. A more reasonable sparse representation frame for images is still badly needed. Visually understandable images contain meaningful patterns, and combinations or collections of these patterns can be utilized to form some sparse and redundant representations which promise to facilitate image reconstructions. In this work, we propose and study block matching sparsity regularization (BMSR) and devise an optimization program using BMSR for computed tomography (CT) image reconstruction for an incomplete projection set. The program is built as a constrained optimization, minimizing the L1-norm of the coefficients of the image in the transformed domain subject to data observation and positivity of the image itself. To solve the program efficiently, a practical method based on the proximal point algorithm is developed and analyzed. In order to accelerate the convergence rate, a practical strategy for tuning the BMSR parameter is proposed and applied. The experimental results for various settings, including real CT scanning, have verified the proposed reconstruction method showing promising capabilities over conventional regularization.
Collapse
Affiliation(s)
- Ailong Cai
- National Digital Switching System Engineering and Technological Research Centre, Zhengzhou 450002, Henan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Lu W, Li L, Cai A, Zhang H, Wang L, Yan B. A weighted difference of L1 and L2 on the gradient minimization based on alternating direction method for circular computed tomography. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:813-829. [PMID: 28527236 DOI: 10.3233/xst-16244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Iterative reconstruction algorithms for computed tomography (CT) through total variation (TV) regularization can provide accurate and stable reconstruction results. TV minimization is the L1-norm of gradient-magnitude images and can be regarded as a convex relaxation method to replace the L0 norm. In this study, a fast and efficient algorithm, which is named a weighted difference of L1 and L2 (L1 - αL2) on the gradient minimization, was proposed and investigated. The new algorithm provides a better description of sparsity for the optimization-based algorithms than TV minimization algorithms. The alternating direction method is an efficient method to solve the proposed model, which is utilized in this study. Both simulations and real CT projections were tested to verify the performances of the proposed algorithm. In the simulation experiments, the reconstructions from the proposed method provided better image quality than TV minimization algorithms with only 7 views in 180 degrees, which is also computationally faster. Meanwhile, the new algorithm enabled to achieve the final solution with less iteration numbers.
Collapse
Affiliation(s)
- Wanli Lu
- National Digital Switching System Engineering and Technological Research Centre, Zhengzhou, China
| | - Lei Li
- National Digital Switching System Engineering and Technological Research Centre, Zhengzhou, China
| | - Ailong Cai
- National Digital Switching System Engineering and Technological Research Centre, Zhengzhou, China
| | - Hanming Zhang
- National Digital Switching System Engineering and Technological Research Centre, Zhengzhou, China
| | - Linyuan Wang
- National Digital Switching System Engineering and Technological Research Centre, Zhengzhou, China
| | - Bin Yan
- National Digital Switching System Engineering and Technological Research Centre, Zhengzhou, China
| |
Collapse
|
20
|
Cai A, Wang L, Li L, Yan B, Zheng Z, Zhang H, Zhang W, Lu W, Hu G. Optimization-based image reconstruction in computed tomography by alternating direction method with ordered subsets. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:429-464. [PMID: 28157114 DOI: 10.3233/xst-16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nowadays, diversities of task-specific applications for computed tomography (CT) have already proposed multiple challenges for algorithm design of image reconstructions. Consequently, efficient algorithm design tool is necessary to be established. A fast and efficient algorithm design framework for CT image reconstruction, which is based on alternating direction method (ADM) with ordered subsets (OS), is proposed, termed as OS-ADM. The general ideas of ADM and OS have been abstractly introduced and then they are combined for solving convex optimizations in CT image reconstruction. Standard procedures are concluded for algorithm design which contain 1) model mapping, 2) sub-problem dividing and 3) solving, 4) OS level setting and 5) algorithm evaluation. Typical reconstruction problems are modeled as convex optimizations, including (non-negative) least-square, constrained L1 minimization, constrained total variation (TV) minimization and TV minimizations with different data fidelity terms. Efficient working algorithms for these problems are derived with detailed derivations by the proposed framework. In addition, both simulations and real CT projections are tested to verify the performances of two TV-based algorithms. Experimental investigations indicate that these algorithms are of the state-of-the-art performances. The algorithm instances show that the proposed OS-ADM framework is promising for practical applications.
Collapse
|
21
|
Xia D, Langan DA, Solomon SB, Zhang Z, Chen B, Lai H, Sidky EY, Pan X. Optimization-based image reconstruction with artifact reduction in C-arm CBCT. Phys Med Biol 2016; 61:7300-7333. [PMID: 27694700 PMCID: PMC5109550 DOI: 10.1088/0031-9155/61/20/7300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigate an optimization-based reconstruction, with an emphasis on image-artifact reduction, from data collected in C-arm cone-beam computed tomography (CBCT) employed in image-guided interventional procedures. In the study, an image to be reconstructed is formulated as a solution to a convex optimization program in which a weighted data divergence is minimized subject to a constraint on the image total variation (TV); a data-derivative fidelity is introduced in the program specifically for effectively suppressing dominant, low-frequency data artifact caused by, e.g. data truncation; and the Chambolle-Pock (CP) algorithm is tailored to reconstruct an image through solving the program. Like any other reconstructions, the optimization-based reconstruction considered depends upon numerous parameters. We elucidate the parameters, illustrate their determination, and demonstrate their impact on the reconstruction. The optimization-based reconstruction, when applied to data collected from swine and patient subjects, yields images with visibly reduced artifacts in contrast to the reference reconstruction, and it also appears to exhibit a high degree of robustness against distinctively different anatomies of imaged subjects and scanning conditions of clinical significance. Knowledge and insights gained in the study may be exploited for aiding in the design of practical reconstructions of truly clinical-application utility.
Collapse
Affiliation(s)
- Dan Xia
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Duan G, Hu W, Wang J. Research on the natural image super-resolution reconstruction algorithm based on compressive perception theory and deep learning model. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.12.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Foygel Barber R, Sidky EY, Gilat Schmidt T, Pan X. An algorithm for constrained one-step inversion of spectral CT data. Phys Med Biol 2016; 61:3784-818. [PMID: 27082489 DOI: 10.1088/0031-9155/61/10/3784] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We develop a primal-dual algorithm that allows for one-step inversion of spectral CT transmission photon counts data to a basis map decomposition. The algorithm allows for image constraints to be enforced on the basis maps during the inversion. The derivation of the algorithm makes use of a local upper bounding quadratic approximation to generate descent steps for non-convex spectral CT data discrepancy terms, combined with a new convex-concave optimization algorithm. Convergence of the algorithm is demonstrated on simulated spectral CT data. Simulations with noise and anthropomorphic phantoms show examples of how to employ the constrained one-step algorithm for spectral CT data.
Collapse
Affiliation(s)
- Rina Foygel Barber
- Department of Statistics, The University of Chicago, 5734 S. University Ave., Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
24
|
Zhang H, Wang L, Yan B, Li L, Cai A, Hu G. Constrained Total Generalized p-Variation Minimization for Few-View X-Ray Computed Tomography Image Reconstruction. PLoS One 2016; 11:e0149899. [PMID: 26901410 PMCID: PMC4764011 DOI: 10.1371/journal.pone.0149899] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/05/2016] [Indexed: 11/19/2022] Open
Abstract
Total generalized variation (TGV)-based computed tomography (CT) image reconstruction, which utilizes high-order image derivatives, is superior to total variation-based methods in terms of the preservation of edge information and the suppression of unfavorable staircase effects. However, conventional TGV regularization employs l1-based form, which is not the most direct method for maximizing sparsity prior. In this study, we propose a total generalized p-variation (TGpV) regularization model to improve the sparsity exploitation of TGV and offer efficient solutions to few-view CT image reconstruction problems. To solve the nonconvex optimization problem of the TGpV minimization model, we then present an efficient iterative algorithm based on the alternating minimization of augmented Lagrangian function. All of the resulting subproblems decoupled by variable splitting admit explicit solutions by applying alternating minimization method and generalized p-shrinkage mapping. In addition, approximate solutions that can be easily performed and quickly calculated through fast Fourier transform are derived using the proximal point method to reduce the cost of inner subproblems. The accuracy and efficiency of the simulated and real data are qualitatively and quantitatively evaluated to validate the efficiency and feasibility of the proposed method. Overall, the proposed method exhibits reasonable performance and outperforms the original TGV-based method when applied to few-view problems.
Collapse
Affiliation(s)
- Hanming Zhang
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou, 450002, China
| | - Linyuan Wang
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou, 450002, China
| | - Bin Yan
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou, 450002, China
| | - Lei Li
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou, 450002, China
| | - Ailong Cai
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou, 450002, China
| | - Guoen Hu
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou, 450002, China
| |
Collapse
|
25
|
Barber RF, Sidky EY. MOCCA: Mirrored Convex/Concave Optimization for Nonconvex Composite Functions. JOURNAL OF MACHINE LEARNING RESEARCH : JMLR 2016; 17:1-51. [PMID: 29391859 PMCID: PMC5789814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many optimization problems arising in high-dimensional statistics decompose naturally into a sum of several terms, where the individual terms are relatively simple but the composite objective function can only be optimized with iterative algorithms. In this paper, we are interested in optimization problems of the form F(Kx) + G(x), where K is a fixed linear transformation, while F and G are functions that may be nonconvex and/or nondifferentiable. In particular, if either of the terms are nonconvex, existing alternating minimization techniques may fail to converge; other types of existing approaches may instead be unable to handle nondifferentiability. We propose the MOCCA (mirrored convex/concave) algorithm, a primal/dual optimization approach that takes a local convex approximation to each term at every iteration. Inspired by optimization problems arising in computed tomography (CT) imaging, this algorithm can handle a range of nonconvex composite optimization problems, and offers theoretical guarantees for convergence when the overall problem is approximately convex (that is, any concavity in one term is balanced out by convexity in the other term). Empirical results show fast convergence for several structured signal recovery problems.
Collapse
Affiliation(s)
- Rina Foygel Barber
- Department of Statistics, University of Chicago, 5747 South Ellis Avenue, Chicago, IL 60637, USA
| | - Emil Y Sidky
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Cai A, Wang L, Yan B, Li L, Zhang H, Hu G. Efficient TpV minimization for circular, cone-beam computed tomography reconstruction via non-convex optimization. Comput Med Imaging Graph 2015; 45:1-10. [DOI: 10.1016/j.compmedimag.2015.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 11/28/2022]
|
27
|
Qiao Z, Redler G, Epel B, Qian Y, Halpern H. 3D pulse EPR imaging from sparse-view projections via constrained, total variation minimization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 258:49-57. [PMID: 26225440 PMCID: PMC4827344 DOI: 10.1016/j.jmr.2015.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 05/13/2023]
Abstract
Tumors and tumor portions with low oxygen concentrations (pO2) have been shown to be resistant to radiation therapy. As such, radiation therapy efficacy may be enhanced if delivered radiation dose is tailored based on the spatial distribution of pO2 within the tumor. A technique for accurate imaging of tumor oxygenation is critically important to guide radiation treatment that accounts for the effects of local pO2. Electron paramagnetic resonance imaging (EPRI) has been considered one of the leading methods for quantitatively imaging pO2 within tumors in vivo. However, current EPRI techniques require relatively long imaging times. Reducing the number of projection scan considerably reduce the imaging time. Conventional image reconstruction algorithms, such as filtered back projection (FBP), may produce severe artifacts in images reconstructed from sparse-view projections. This can lower the utility of these reconstructed images. In this work, an optimization based image reconstruction algorithm using constrained, total variation (TV) minimization, subject to data consistency, is developed and evaluated. The algorithm was evaluated using simulated phantom, physical phantom and pre-clinical EPRI data. The TV algorithm is compared with FBP using subjective and objective metrics. The results demonstrate the merits of the proposed reconstruction algorithm.
Collapse
Affiliation(s)
- Zhiwei Qiao
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Gage Redler
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Yuhua Qian
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Howard Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Sánchez AA. Estimation of noise properties for TV-regularized image reconstruction in computed tomography. Phys Med Biol 2015; 60:7007-33. [PMID: 26308968 DOI: 10.1088/0031-9155/60/18/7007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.
Collapse
Affiliation(s)
- Adrian A Sánchez
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Jørgensen JS, Sidky EY. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0387. [PMID: 25939620 PMCID: PMC4424483 DOI: 10.1098/rsta.2014.0387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 05/31/2023]
Abstract
We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization.
Collapse
Affiliation(s)
- J S Jørgensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Kongens Lyngby 2800, Denmark
| | - E Y Sidky
- Department of Radiology MC-2026, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Abstract
The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.
Collapse
Affiliation(s)
- Christian G. Graff
- Division of Imaging, Diagnostics and Software Reliability, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring MD 20993, USA
- Corresponding author:
| | - Emil Y. Sidky
- Department of Radiology MC-2026, The University of Chicago, 5841 S. Maryland Ave., Chicago IL 60637, USA
| |
Collapse
|
31
|
Rigie DS, La Rivière PJ. Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization. Phys Med Biol 2015; 60:1741-62. [PMID: 25658985 DOI: 10.1088/0031-9155/60/5/1741] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We explore the use of the recently proposed 'total nuclear variation' (TVN) as a regularizer for reconstructing multi-channel, spectral CT images. This convex penalty is a natural extension of the total variation (TV) to vector-valued images and has the advantage of encouraging common edge locations and a shared gradient direction among image channels. We show how it can be incorporated into a general, data-constrained reconstruction framework and derive update equations based on the first-order, primal-dual algorithm of Chambolle and Pock. Early simulation studies based on the numerical XCAT phantom indicate that the inter-channel coupling introduced by the TVN leads to better preservation of image features at high levels of regularization, compared to independent, channel-by-channel TV reconstructions.
Collapse
Affiliation(s)
- David S Rigie
- Department of Radiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
32
|
Sidky EY, Kraemer DN, Roth EG, Ullberg C, Reiser IS, Pan X. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography. J Med Imaging (Bellingham) 2014; 1:031007. [PMID: 25685824 DOI: 10.1117/1.jmi.1.3.031007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.
Collapse
Affiliation(s)
- Emil Y Sidky
- University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - David N Kraemer
- University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Erin G Roth
- University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | | | - Ingrid S Reiser
- University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Xiaochuan Pan
- University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|