1
|
Jarrahi B, Kollias S. Impact of Intravesical Cold Sensation on Functional Network Connectivity Estimated Using ICA at Rest & During Interoceptive Task. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1722-1725. [PMID: 33018329 DOI: 10.1109/embc44109.2020.9176391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Afferent nerves that carry interoceptive signals from the viscera to the brain include Aδ and C-fibers. Previously, we examined the effects of detrusor distention (conveyed mainly by Aδ fibers) on the static functional network connectivity (FNC) of the brain using independent component analysis (ICA) of fMRI time series. In the present study, we investigate the impact of intravesical cold sensation (thought to be conveyed by C-fibers) on brain FNC using similar ICA approach. Thirteen healthy women were scanned on a 3.0T MRI scanner during a resting state scan and an intravesical cold sensation task fMRI. High dimensional ICA (n = 75) were used to decompose the fMRI data into several intrinsic connectivity networks (ICNs) including the default-mode (DMN), subcortical (SCN; amygdala, thalamus), salience (SN), central executive (CEN), sensorimotor (SMN), and cerebellar/brainstem (CBN) networks. Results demonstrate significant FNC differences in several ICN pairs primarily between the SCN and cognitive networks such as CEN, as well as between SN and CBN and DMN when intravesical cold water condition was compared to rest (FDR-corrected p-value of 0.05). Significant increases in FNC between CBN and between SMN were also observed during interoceptive condition. The results indicate significant impact of Aδ and C-fiber-originated interoceptive signals on the brain connectivity when compared to the baseline rest.
Collapse
|
2
|
Walter M, Leitner L, Michels L, Liechti MD, Freund P, Kessler TM, Kollias S, Mehnert U. Reliability of supraspinal correlates to lower urinary tract stimulation in healthy participants - A fMRI study. Neuroimage 2019; 191:481-492. [PMID: 30776530 DOI: 10.1016/j.neuroimage.2019.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Previous functional neuroimaging studies provided evidence for a specific supraspinal network involved in lower urinary tract (LUT) control. However, data on the reliability of blood oxygenation level-dependent (BOLD) signal changes during LUT task-related functional magnetic resonance imaging (fMRI) across separate measurements are lacking. Proof of the latter is crucial to evaluate whether fMRI can be used to assess supraspinal responses to LUT treatments. Therefore, we prospectively assessed task-specific supraspinal responses from 20 healthy participants undergoing two fMRI measurements (test-retest) within 5-8 weeks. The fMRI measurements, conducted in a 3T magnetic resonance (MR) scanner, comprised a block design of repetitive bladder filling and drainage using an automated MR-compatible and MR-synchronized infusion-drainage device. Following transurethral catheterization and bladder pre-filling with body warm saline until participants perceived a persistent desire to void (START condition), fMRI was recorded during repetitive blocks (each 15 s) of INFUSION and WITHDRAWAL of 100 mL body warm saline into respectively from the bladder. BOLD signal changes were calculated for INFUSION minus START. In addition to whole brain analysis, we assessed BOLD signal changes within multiple 'a priori' region of interest (ROI), i.e. brain areas known to be involved in the LUT control from previous literature. To evaluate reliability of the fMRI results between visits, we applied different types of analyses: coefficient of variation (CV), intraclass correlation coefficient (ICC), Sørensen-Dice index, Bland-Altman method, and block-wise BOLD signal comparison. All participants completed the study without adverse events. The desire to void was rated significantly higher for INFUSION compared to START or WITHDRAWAL at both measurements without any effect of visit. At whole brain level, significant (p < 0.05, cluster corrected, k ≥ 41 voxels) BOLD signal changes were found for the contrast INFUSION compared to START in several brain areas. Overlap of activation maps from both measurements were observed in the orbitofrontal cortex, insula, ventrolateral prefrontal cortex (VLPFC), and inferior parietal lobe. The two highest ICCs, based on a ROI's mean beta weight, were 0.55 (right insular cortex) and 0.47 (VLPFC). Spatial congruency (Sørensen-Dice index) of all voxels within each ROI between measurements was highest in the insular cortex (left 0.55, right 0.44). In addition, the mean beta weight of the right insula and right VLPFC demonstrated the lowest CV and narrowest Bland and Altman 95% limits of agreement. In conclusion, the right insula and right VLPFC were revealed as the two most reliable task-specific ROIs using our automated, MR-synchronized protocol. Achieving high reliability using a viscero-sensory/interoceptive task such as repetitive bladder filling remains challenging and further endeavour is highly warranted to better understand which factors influence fMRI outcomes and finally to assess LUT treatment effects on the supraspinal level.
Collapse
Affiliation(s)
- Matthias Walter
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Lorenz Leitner
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Lars Michels
- Institute of Neuroradiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Martina D Liechti
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Spyros Kollias
- Institute of Neuroradiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Ulrich Mehnert
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Leitner L, Walter M, Jarrahi B, Wanek J, Diefenbacher J, Michels L, Liechti MD, Kollias SS, Kessler TM, Mehnert U. A novel infusion-drainage device to assess lower urinary tract function in neuro-imaging. BJU Int 2016; 119:305-316. [PMID: 27617867 DOI: 10.1111/bju.13655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the applicability and precision of a novel infusion-drainage device (IDD) for standardized filling paradigms in neuro-urology and functional magnetic resonance imaging (fMRI) studies of lower urinary tract (LUT) function/dysfunction. SUBJECTS/PATIENTS AND METHODS The IDD is based on electrohydrostatic actuation which was previously proven feasible in a prototype setup. The current design includes hydraulic cylinders and a motorized slider to provide force and motion. Methodological aspects have been assessed in a technical application laboratory as well as in healthy subjects (n=33) and patients with LUT dysfunction (n=3) undergoing fMRI during bladder stimulation. After catheterization, the bladder was pre-filled until a persistent desire to void was reported by each subject. The scan paradigm comprised automated, repetitive bladder filling and withdrawal of 100 mL body warm (37 °C) saline, interleaved with rest and sensation rating. Neuroimaging data were analysed using Statistical Parametric Mapping version 12 (SMP12). RESULTS Volume delivery accuracy was between 99.1±1.2% and 99.9±0.2%, for different flow rates and volumes. Magnetic resonance (MR) compatibility was demonstrated by a small decrease in signal-to-noise ratio (SNR), i.e. 1.13% for anatomical and 0.54% for functional scans, and a decrease of 1.76% for time-variant SNR. Automated, repetitive bladder-filling elicited robust (P = 0.05, family-wise error corrected) brain activity in areas previously reported to be involved in supraspinal LUT control. There was a high synchronism between the LUT stimulation and the blood oxygenation level-dependent (BOLD) signal changes in such areas. CONCLUSION We were able to develop an MR-compatible and MR-synchronized IDD to routinely stimulate the LUT during fMRI in a standardized manner. The device provides LUT stimulation at high system accuracy resulting in significant supraspinal BOLD signal changes in interoceptive and LUT control areas in synchronicity to the applied stimuli. The IDD is commercially available, portable and multi-configurable. Such a device may help to improve precision and standardization of LUT tasks in neuro-imaging studies on supraspinal LUT control, and may therefore facilitate multi-site studies and comparability between different LUT investigations in the future.
Collapse
Affiliation(s)
- Lorenz Leitner
- Neuro-Urology, Spinal Cord Injury Centre & Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland.,Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Matthias Walter
- Neuro-Urology, Spinal Cord Injury Centre & Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland
| | - Behnaz Jarrahi
- Department of Neuroradiology, University Hospital Zürich, Zürich, Switzerland.,UCLA Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Johann Wanek
- Neuro-Urology, Spinal Cord Injury Centre & Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland
| | | | - Lars Michels
- Department of Neuroradiology, University Hospital Zürich, Zürich, Switzerland
| | - Martina D Liechti
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | - Spyros S Kollias
- Department of Neuroradiology, University Hospital Zürich, Zürich, Switzerland
| | - Thomas M Kessler
- Neuro-Urology, Spinal Cord Injury Centre & Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland
| | - Ulrich Mehnert
- Neuro-Urology, Spinal Cord Injury Centre & Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland
| |
Collapse
|
5
|
Jarrahi B, Mantini D. Tracking intrinsic connectivity brain network features during successive (Pseudo-) resting states and interoceptive task fMRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:5567-5570. [PMID: 28325028 DOI: 10.1109/embc.2016.7591988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Advanced multivariate analyses of functional magnetic resonance imaging (fMRI) data based on blood oxygen level-dependent (BOLD) contras have revealed that the human brain organizes its activities into multiple intrinsic connectivity networks (ICNs). Several fMRI studies have evaluated the modulations of these networks during different cognitive or emotional tasks using blind source separation techniques particularly the independent component analysis (ICA). In this exploratory study, we applied ICA methodology to examine ICN modulations under different interoceptive conditions. Fifteen right-handed healthy subjects (age range 21-48 years) underwent a series of eyes-open resting-state and interoceptive task fMRI scans. Using a high-order ICA model, the functional imaging data were decomposed into 75 independent components and 36 were identified as non-artifactual ICNs. ICN spatial modulations were evaluated in terms of the network volume and maximum activations. ICN temporal modulations were assessed based on the power density frequency spectra. Following a false discovery rate multiple comparison correction threshold of ρ <; 0.05, we found significant changes in spatial feature of the attention/cognitive, default-mode, visual and salience networks. More liberal statistical criteria (uncorrected ρ <; 0.05) also indicated differences in network volumes between different states especially involving the sensorimotor, subcortical, cerebellar and brainstem networks. Significant power spectra changes were also found in several attention/cognitive and visual networks as well as the sensorimotor, salience, and subcortical networks especially when resting-states where compared with the interoceptive task fMRI. Further investigations of how interoceptive sensations alter the spatial and temporal features of the human brain networks can elucidate the foundational underpinnings of brain-body relation.
Collapse
|
6
|
Jarrahi B, Mantini D. Identifying the effects of visceral interoception on human brain connectome: A multivariate analysis of covariance of fMRI data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:5558-5562. [PMID: 28325027 DOI: 10.1109/embc.2016.7591986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sources of variations in the neural circuitry of the human brain and interrelationship between intrinsic connectivity networks (ICNs) are still a matter of debate and ongoing research. Here, we applied a multivariate analysis of covariance (MANCOVA) based on high-dimensional independent component analysis (ICA) to identify the effects of interoception and related variables on human brain connectome. Fifteen healthy right-handed subjects (all females, age range 21 - 48 years; mean age = 30.3, SD = 8.7 years) underwent a blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) that included continuous intravesical saline infusion and drainage. The design matrix included the intravesical fullness, subject fullness rating, normalized right and left insula thickness, age, and neuropsychological assessments (Mini-Mental State Exam; MMSE, and Hospital Anxiety and Depression Scale; HADS) as covariates of interest. Univariate tests were also performed with a reduced design matrix (p <; 0.05, corrected for multiple comparisons using false discovery rate) to study the nature and extent of the relationship between these covariates and three ICA outcome measures, namely, the spatial map intensity, frequency spectral power, and functional network connectivity. Results showed significant effects of interoception (intravesical fullness) on spatial map intensity of the salience network (anchored by insula and anterior cingulate cortex) and the frontoparietal central executive network, The left and right insula thickness influenced the spatial map intensity of the subcortical network, and the attention/cognitive and default-mode networks, respectively. The intravesical fullness also showed an effect on the spectral power of the subcortical network. Further investigations of the effect of internal (bodily) sensations on the ICN properties can provide an invaluable tool for understanding the role of interoception in health and illness.
Collapse
|