1
|
Cho H, Benjaber M, Alexis Gkogkidis C, Buchheit M, Ruiz-Rodriguez JF, Grannan BL, Weaver KE, Ko AL, Cramer SC, Ojemann JG, Denison T, Herron JA. Development and Evaluation of a Real-Time Phase-Triggered Stimulation Algorithm for the CorTec Brain Interchange. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3625-3635. [PMID: 39264785 PMCID: PMC11485249 DOI: 10.1109/tnsre.2024.3459801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
With the development and characterization of biomarkers that may reflect neural network state as well as a patient's clinical deficits, there is growing interest in more complex stimulation designs. While current implantable neuromodulation systems offer pathways to expand the design and application of adaptive stimulation paradigms, technological drawbacks of these systems limit adaptive neuromodulation exploration. In this paper, we discuss the implementation of a phase-triggered stimulation paradigm using a research platform composed of an investigational system known as the CorTec Brain Interchange (CorTec GmbH, Freiburg, Germany), and an open-source software tool known as OMNI-BIC. We then evaluate the stimulation paradigm's performance in both benchtop and in vivo human demonstrations. Our findings indicate that the Brain Interchange and OMNI-BIC platform is capable of reliable administration of phase-triggered stimulation and has the potential to help expand investigation within the adaptive neuromodulation design space.
Collapse
|
2
|
Fogleman BM, Goldman M, Holland AB, Dyess G, Patel A. Charting Tomorrow's Healthcare: A Traditional Literature Review for an Artificial Intelligence-Driven Future. Cureus 2024; 16:e58032. [PMID: 38738104 PMCID: PMC11088287 DOI: 10.7759/cureus.58032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Electronic health record (EHR) systems have developed over time in parallel with general advancements in mainstream technology. As artificially intelligent (AI) systems rapidly impact multiple societal sectors, it has become apparent that medicine is not immune from the influences of this powerful technology. Particularly appealing is how AI may aid in improving healthcare efficiency with note-writing automation. This literature review explores the current state of EHR technologies in healthcare, specifically focusing on possibilities for addressing EHR challenges through the automation of dictation and note-writing processes with AI integration. This review offers a broad understanding of existing capabilities and potential advancements, emphasizing innovations such as voice-to-text dictation, wearable devices, and AI-assisted procedure note dictation. The primary objective is to provide researchers with valuable insights, enabling them to generate new technologies and advancements within the healthcare landscape. By exploring the benefits, challenges, and future of AI integration, this review encourages the development of innovative solutions, with the goal of enhancing patient care and healthcare delivery efficiency.
Collapse
Affiliation(s)
- Brody M Fogleman
- Internal Medicine, Edward Via College of Osteopathic Medicine - Carolinas, Spartanburg, USA
| | - Matthew Goldman
- Neurological Surgery, Houston Methodist Hospital, Houston, USA
| | - Alexander B Holland
- General Surgery, Edward Via College of Osteopathic Medicine - Carolinas, Spartanburg, USA
| | - Garrett Dyess
- Medicine, University of South Alabama College of Medicine, Mobile, USA
| | - Aashay Patel
- Neurological Surgery, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|
3
|
Wilkins KB, Melbourne JA, Akella P, Bronte-Stewart HM. Unraveling the complexities of programming neural adaptive deep brain stimulation in Parkinson's disease. Front Hum Neurosci 2023; 17:1310393. [PMID: 38094147 PMCID: PMC10716917 DOI: 10.3389/fnhum.2023.1310393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
Over the past three decades, deep brain stimulation (DBS) for Parkinson's disease (PD) has been applied in a continuous open loop fashion, unresponsive to changes in a given patient's state or symptoms over the course of a day. Advances in recent neurostimulator technology enable the possibility for closed loop adaptive DBS (aDBS) for PD as a treatment option in the near future in which stimulation adjusts in a demand-based manner. Although aDBS offers great clinical potential for treatment of motor symptoms, it also brings with it the need for better understanding how to implement it in order to maximize its benefits. In this perspective, we outline considerations for programing several key parameters for aDBS based on our experience across several aDBS-capable research neurostimulators. At its core, aDBS hinges on successful identification of relevant biomarkers that can be measured reliably in real-time working in cohesion with a control policy that governs stimulation adaption. However, auxiliary parameters such as the window in which stimulation is allowed to adapt, as well as the rate it changes, can be just as impactful on performance and vary depending on the control policy and patient. A standardize protocol for programming aDBS will be crucial to ensuring its effective application in clinical practice.
Collapse
Affiliation(s)
- Kevin B. Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jillian A. Melbourne
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Pranav Akella
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Helen M. Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Fleming JE, Senneff S, Lowery MM. Multivariable closed-loop control of deep brain stimulation for Parkinson's disease. J Neural Eng 2023; 20:056029. [PMID: 37733003 DOI: 10.1088/1741-2552/acfbfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Objective. Closed-loop deep brain stimulation (DBS) methods for Parkinson's disease (PD) to-date modulate either stimulation amplitude or frequency to control a single biomarker. While good performance has been demonstrated for symptoms that are correlated with the chosen biomarker, suboptimal regulation can occur for uncorrelated symptoms or when the relationship between biomarker and symptom varies. Control of stimulation-induced side-effects is typically not considered.Approach.A multivariable control architecture is presented to selectively target suppression of either tremor or subthalamic nucleus beta band oscillations. DBS pulse amplitude and duration are modulated to maintain amplitude below a threshold and avoid stimulation of distal large diameter axons associated with stimulation-induced side effects. A supervisor selects between a bank of controllers which modulate DBS pulse amplitude to control rest tremor or beta activity depending on the level of muscle electromyographic (EMG) activity detected. A secondary controller limits pulse amplitude and modulates pulse duration to target smaller diameter axons lying close to the electrode. The control architecture was investigated in a computational model of the PD motor network which simulated the cortico-basal ganglia network, motoneuron pool, EMG and muscle force signals.Main results.Good control of both rest tremor and beta activity was observed with reduced power delivered when compared with conventional open loop stimulation, The supervisor avoided over- or under-stimulation which occurred when using a single controller tuned to one biomarker. When DBS amplitude was constrained, the secondary controller maintained the efficacy of stimulation by increasing pulse duration to compensate for reduced amplitude. Dual parameter control delivered effective control of the target biomarkers, with additional savings in the power delivered.Significance.Non-linear multivariable control can enable targeted suppression of motor symptoms for PD patients. Moreover, dual parameter control facilitates automatic regulation of the stimulation therapeutic dosage to prevent overstimulation, whilst providing additional power savings.
Collapse
Affiliation(s)
- John E Fleming
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom
| | - Sageanne Senneff
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Madeleine M Lowery
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Deli A, Zamora M, Fleming JE, Divanbeighi Zand A, Benjaber M, Green AL, Denison T. Bioelectronic Zeitgebers: targeted neuromodulation to re-establish circadian rhythms. CONFERENCE PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS 2023; 2023:2301-2308. [PMID: 38343562 PMCID: PMC7615625 DOI: 10.1109/smc53992.2023.10394632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Existing neurostimulation systems implanted for the treatment of neurodegenerative disorders generally deliver invariable therapy parameters, regardless of phase of the sleep/wake cycle. However, there is considerable evidence that brain activity in these conditions varies according to this cycle, with discrete patterns of dysfunction linked to loss of circadian rhythmicity, worse clinical outcomes and impaired patient quality of life. We present a targeted concept of circadian neuromodulation using a novel device platform. This system utilises stimulation of circuits important in sleep and wake regulation, delivering bioelectronic cues (Zeitgebers) aimed at entraining rhythms to more physiological patterns in a personalised and fully configurable manner. Preliminary evidence from its first use in a clinical trial setting, with brainstem arousal circuits as a surgical target, further supports its promising impact on sleep/wake pathology. Data included in this paper highlight its versatility and effectiveness on two different patient phenotypes. In addition to exploring acute and long-term electrophysiological and behavioural effects, we also discuss current caveats and future feature improvements of our proposed system, as well as its potential applicability in modifying disease progression in future therapies.
Collapse
Affiliation(s)
- Alceste Deli
- Functional Neurosurgery Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Mayela Zamora
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
| | - John E. Fleming
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Amir Divanbeighi Zand
- Functional Neurosurgery Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Moaad Benjaber
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Alexander L. Green
- Functional Neurosurgery Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Timothy Denison
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| |
Collapse
|
6
|
Fleming JE, Benjaber M, Toth R, Zamora M, Landin K, Kavoosi A, Ottoway J, Gillbe T, Piper RJ, Noone T, Campbell H, Gillbe I, Kaliakatsos M, Tisdall M, Valentín A, Denison T. An embedded intracranial seizure monitor for objective outcome measurements and rhythm identification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083730 PMCID: PMC7615373 DOI: 10.1109/embc40787.2023.10340850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Providing clinicians with objective outcomes of neuromodulation therapy is a key unmet need, especially in emerging areas such as epilepsy and mood disorders. These diseases have episodic behavior and circadian/multidien rhythm characteristics that are difficult to capture in short clinical follow-ups. This work presents preliminary validation evidence for an implantable neuromodulation system with integrated physiological event monitoring, with an initial focus on seizure tracking for epilepsy. The system was developed to address currently unmet requirements for patients undergoing neuromodulation therapy for neurological disorders, specifically the ability to sense physiological data during stimulation and track events with seconds-level granularity. The system incorporates an interactive software tool to enable optimal configuration of the signal processing chain on an embedded implantable device (the Picostim-DyNeuMo Mk-2) including data ingestion from the device loop recorder, event labeling, generation of filter and classification parameters, as well as summary statistics. When the monitor parameters are optimized, the user can wirelessly update the system for chronic event tracking. The simulated performance of the device was assessed using an in silico model with human data to predict the real-time device performance at tracking recorded seizure activity. The in silico performance was then compared against its performance in an in vitro model to capture the full environmental constraints such as sensing during stimulation at the tissue electrode interface. In vitro modeling demonstrated comparable results to the in silico model, providing verification of the software tool and model. This study provides validation evidence of the suitability of the proposed system for tracking longitudinal seizure activity. Given its flexibility, the event monitor can be adapted to track other disorders with episodic and rhythmic symptoms represented by bioelectrical behavior.Clinical relevance-An implantable neuromodulation system is presented that enables chronic tracking of physiological events in disease. This physiological monitor provides the basis for longitudinal assessments of therapy outcomes for patients, such as those with epilepsy where objective identification of patient seizure activity and rhythms might help guide therapy optimization. The system is configurable for other disease states such as Parkinson's disease and mood disorders.
Collapse
Affiliation(s)
- John E. Fleming
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
| | - Robert Toth
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
| | - Mayela Zamora
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
| | - Kei Landin
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
| | - Ali Kavoosi
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Rory J. Piper
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK
| | | | | | | | - Marios Kaliakatsos
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Martin Tisdall
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Antonio Valentín
- Department of Basic and Clinical Neuroscience, King’s College London, London SE5 9RT, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
7
|
Deli A, Toth R, Zamora M, Divanbeighi Zand AP, Green AL, Denison T. The Design of Brainstem Interfaces: Characterisation of Physiological Artefacts and Implications for Closed-loop Algorithms. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2023; 2023:10123850. [PMID: 37249946 PMCID: PMC7614576 DOI: 10.1109/ner52421.2023.10123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surgical neuromodulation through implantable devices allows for stimulation delivery to subcortical regions, crucial for symptom control in many debilitating neurological conditions. Novel closed-loop algorithms deliver therapy tailor-made to endogenous physiological activity, however rely on precise sensing of signals such as subcortical oscillations. The frequency of such intrinsic activity can vary depending on subcortical target nucleus, while factors such as regional anatomy may also contribute to variability in sensing signals. While artefact parameters have been explored in more 'standard' and commonly used targets (such as the basal ganglia, which are implanted in movement disorders), characterisation in novel candidate nuclei is still under investigation. One such important area is the brainstem, which contains nuclei crucial for arousal and autonomic regulation. The brainstem provides additional implantation targets for treatment indications in disorders of consciousness and sleep, yet poses distinct anatomical challenges compared to central subcortical targets. Here we investigate the region-specific artefacts encountered during activity and rest while streaming data from brainstem implants with a cranially-mounted device in two patients. Such artefacts result from this complex anatomical environment and its interactions with physiological parameters such as head movement and cardiac functions. The implications of the micromotion-induced artefacts, and potential mitigation, are then considered for future closed-loop stimulation methods.
Collapse
Affiliation(s)
- Alceste Deli
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Robert Toth
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Mayela Zamora
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Alexander L. Green
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
8
|
Baker JL, Toth R, Deli A, Zamora M, Fleming JE, Benjaber M, Goerzen D, Ryou JW, Purpura KP, Schiff ND, Denison T. Regulation of arousal and performance of a healthy non-human primate using closed-loop central thalamic deep brain stimulation. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2023; 2023:10123754. [PMID: 37228786 PMCID: PMC7614571 DOI: 10.1109/ner52421.2023.10123754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Application of closed-loop approaches in systems neuroscience and brain-computer interfaces holds great promise for revolutionizing our understanding of the brain and for developing novel neuromodulation strategies to restore lost function. The anterior forebrain mesocircuit (AFM) of the mammalian brain is hypothesized to underlie arousal regulation of the cortex and striatum, and support cognitive functions during wakefulness. Dysfunction of arousal regulation is hypothesized to contribute to cognitive dysfunctions in various neurological disorders, and most prominently in patients following traumatic brain injury (TBI). Several clinical studies have explored the use of daily central thalamic deep brain stimulation (CT-DBS) within the AFM to restore consciousness and executive attention in TBI patients. In this study, we explored the use of closed-loop CT-DBS in order to episodically regulate arousal of the AFM of a healthy non-human primate (NHP) with the goal of restoring behavioral performance. We used pupillometry and near real-time analysis of ECoG signals to episodically initiate closed-loop CT-DBS and here we report on our ability to enhance arousal and restore the animal's performance. The initial computer based approach was then experimentally validated using a customized clinical-grade DBS device, the DyNeuMo-X, a bi-directional research platform used for rapidly testing closed-loop DBS. The successful implementation of the DyNeuMo-X in a healthy NHP supports ongoing clinical trials employing the internal DyNeuMo system (NCT05437393, NCT05197816) and our goal of developing and accelerating the deployment of novel neuromodulation approaches to treat cognitive dysfunction in patients with structural brain injuries and other etiologies.
Collapse
Affiliation(s)
- Jonathan L. Baker
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Robert Toth
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH, UK
| | - Alceste Deli
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Mayela Zamora
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - John E. Fleming
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Moaad Benjaber
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Dana Goerzen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jae-Wook Ryou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Keith P. Purpura
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicholas D. Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
9
|
Martinez S, Veirano F, Constandinou TG, Silveira F. Trends in volumetric-energy efficiency of implantable neurostimulators: a review from a circuits and systems perspective. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; PP:2-20. [PMID: 37015536 DOI: 10.1109/tbcas.2022.3228895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This paper presents a comprehensive review of state-of-the-art, commercially available neurostimulators. We analyse key design parameters and performance metrics of 45 implantable medical devices across six neural target categories: deep brain, vagus nerve, spinal cord, phrenic nerve, sacral nerve and hypoglossal nerve. We then benchmark these alongside modern cardiac pacemaker devices that represent a more established market. This work studies trends in device size, electrode number, battery technology (i.e., primary and secondary use and chemistry), power consumption and longevity. This information is analysed to show the course of design decisions adopted by industry and identifying opportunity for further innovation. We identify fundamental limits in power consumption, longevity and size as well as the interdependencies and trade-offs. We propose a figure of merit to quantify volumetric efficiency within specific therapeutic targets, battery technologies/capacities, charging capabilities and electrode count. Finally, we compare commercially available implantable medical devices with recently developed systems in the research community. We envisage this analysis to aid circuit and system designers in system optimisation and identifying innovation opportunities, particularly those related to low power circuit design techniques.
Collapse
|
10
|
McNamara CG, Rothwell M, Sharott A. Stable, interactive modulation of neuronal oscillations produced through brain-machine equilibrium. Cell Rep 2022; 41:111616. [PMID: 36351413 PMCID: PMC7614081 DOI: 10.1016/j.celrep.2022.111616] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Closed-loop interaction has the potential to regulate ongoing brain activity by continuously binding an external stimulation to specific dynamics of a neural circuit. Achieving interactive modulation requires a stable brain-machine feedback loop. Here, we demonstrate that it is possible to maintain oscillatory brain activity in a desired state by delivering stimulation accurately aligned with the timing of each cycle. We develop a fast algorithm that responds on a cycle-by-cycle basis to stimulate basal ganglia nuclei at predetermined phases of successive cortical beta cycles in parkinsonian rats. Using this approach, an equilibrium emerges between the modified brain signal and feedback-dependent stimulation pattern, leading to sustained amplification or suppression of the oscillation depending on the phase targeted. Beta amplification slows movement speed by biasing the animal's mode of locomotion. Together, these findings show that highly responsive, phase-dependent stimulation can achieve a stable brain-machine interaction that leads to robust modulation of ongoing behavior.
Collapse
Affiliation(s)
- Colin G McNamara
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Max Rothwell
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
11
|
Kavoosi A, Toth R, Benjaber M, Zamora M, Valentin A, Sharott A, Denison T. Computationally efficient neural network classifiers for next generation closed loop neuromodulation therapy - a case study in epilepsy. 2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) 2022; 2022:288-291. [PMID: 36085909 PMCID: PMC7613668 DOI: 10.1109/embc48229.2022.9871793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This work explores the potential utility of neural network classifiers for real-time classification of field-potential based biomarkers in next-generation responsive neuromodulation systems. Compared to classical filter-based classifiers, neural networks offer an ease of patient-specific parameter tuning, promising to reduce the burden of programming on clinicians. The paper explores a compact, feed-forward neural network architecture of only dozens of units for seizure-state classification in refractory epilepsy. The proposed classifier offers comparable accuracy to filterclassifiers on clinician-labeled data, while reducing detection latency. As a trade-off to classical methods, the paper focuses on keeping the complexity of the architecture minimal, to accommodate the on-board computational constraints of implantable pulse generator systems. Clinical relevance—A neural network-based classifier is presented for responsive neurostimulation, with comparable accuracy to classical methods at reduced latency.
Collapse
Affiliation(s)
- Ali Kavoosi
- University of Oxford,Brain Network Dynamics Unit,Department of Pharmacology,Oxford,United Kingdom,OX1 3TH
| | - Robert Toth
- Institute of Biomedical Engineering, University of Oxford,Old Road Campus Research Building,Department of Engineering Sciences,Oxford,United Kingdom,OX3 7DQ
| | - Moaad Benjaber
- University of Oxford,Brain Network Dynamics Unit,Department of Pharmacology,Oxford,United Kingdom,OX1 3TH
| | - Mayela Zamora
- University of Oxford,Brain Network Dynamics Unit,Department of Pharmacology,Oxford,United Kingdom,OX1 3TH
| | - Antonio Valentin
- King's College London,Department of Basic and Clinical Neuroscience,London,United Kingdom,SE5 9RT
| | - Andrew Sharott
- Institute of Biomedical Engineering, University of Oxford,Old Road Campus Research Building,Department of Engineering Sciences,Oxford,United Kingdom,OX3 7DQ
| | - Timothy Denison
- University of Oxford,Brain Network Dynamics Unit,Department of Pharmacology,Oxford,United Kingdom,OX1 3TH
| |
Collapse
|
12
|
Ansó J, Benjaber M, Parks B, Parker S, Oehrn CR, Petrucci M, Gilron R, Little S, Wilt R, Bronte-Stewart H, Gunduz A, Borton D, Starr PA, Denison T. Concurrent stimulation and sensing in bi-directional brain interfaces: a multi-site translational experience. J Neural Eng 2022; 19:10.1088/1741-2552/ac59a3. [PMID: 35234664 PMCID: PMC9095704 DOI: 10.1088/1741-2552/ac59a3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 11/12/2022]
Abstract
Objective. To provide a design analysis and guidance framework for the implementation of concurrent stimulation and sensing during adaptive deep brain stimulation (aDBS) with particular emphasis on artifact mitigations.Approach. We defined a general architecture of feedback-enabled devices, identified key components in the signal chain which might result in unwanted artifacts and proposed methods that might ultimately enable improved aDBS therapies. We gathered data from research subjects chronically-implanted with an investigational aDBS system, Summit RC + S, to characterize and explore artifact mitigations arising from concurrent stimulation and sensing. We then used a prototype investigational implantable device, DyNeuMo, and a bench-setup that accounts for tissue-electrode properties, to confirm our observations and verify mitigations. The strategies to reduce transient stimulation artifacts and improve performance during aDBS were confirmed in a chronic implant using updated configuration settings.Main results.We derived and validated a 'checklist' of configuration settings to improve system performance and areas for future device improvement. Key considerations for the configuration include (a) active instead of passive recharge, (b) sense-channel blanking in the amplifier, (c) high-pass filter settings, (d) tissue-electrode impedance mismatch management, (e) time-frequency trade-offs in the classifier, (f) algorithm blanking and transition rate limits. Without proper channel configuration, the aDBS algorithm was susceptible to limit-cycles of oscillating stimulation independent of physiological state. By applying the checklist, we could optimize each block's performance characteristics within the overall system. With system-level optimization, a 'fast' aDBS prototype algorithm was demonstrated to be feasible without reentrant loops, and with noise performance suitable for subcortical brain circuits.Significance. We present a framework to study sources and propose mitigations of artifacts in devices that provide chronic aDBS. This work highlights the trade-offs in performance as novel sensing devices translate to the clinic. Finding the appropriate balance of constraints is imperative for successful translation of aDBS therapies.Clinical trial:Institutional Review Board and Investigational Device Exemption numbers: NCT02649166/IRB201501021 (University of Florida), NCT04043403/IRB52548 (Stanford University), NCT03582891/IRB1824454 (University of California San Francisco). IDE #180 097.
Collapse
Affiliation(s)
- Juan Ansó
- Department of Neurological Surgery, University of California, San Francisco, CA, United States of America
- Shared first author
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Shared first author
| | - Brandon Parks
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States of America
- Shared first author
| | - Samuel Parker
- School of Engineering and Carney Institute, Brown University, Providence, RI, United States of America
| | - Carina Renate Oehrn
- Department of Neurological Surgery, University of California, San Francisco, CA, United States of America
| | - Matthew Petrucci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ro’ee Gilron
- Department of Neurological Surgery, University of California, San Francisco, CA, United States of America
| | - Simon Little
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Robert Wilt
- Department of Neurological Surgery, University of California, San Francisco, CA, United States of America
| | - Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Aysegul Gunduz
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - David Borton
- School of Engineering and Carney Institute, Brown University, Providence, RI, United States of America
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, CA, United States of America
- Shared senior author
| | - Timothy Denison
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Shared senior author
| |
Collapse
|
13
|
Nie Y, Guo X, Li X, Geng X, Li Y, Quan Z, Zhu G, Yin Z, Zhang J, Wang S. Real-time removal of stimulation artifacts in closed-loop deep brain stimulation. J Neural Eng 2021; 18. [PMID: 34818629 DOI: 10.1088/1741-2552/ac3cc5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023]
Abstract
Objective.Closed-loop deep brain stimulation (DBS) with neural feedback has shown great potential in improving the therapeutic effect and reducing side effects. However, the amplitude of stimulation artifacts is much larger than the local field potentials, which remains a bottleneck in developing a closed-loop stimulation strategy with varied parameters.Approach.We proposed an irregular sampling method for the real-time removal of stimulation artifacts. The artifact peaks were detected by applying a threshold to the raw recordings, and the samples within the contaminated period of the stimulation pulses were excluded and replaced with the interpolation of the samples prior to and after the stimulation artifact duration. This method was evaluated with both simulation signals andin vivoclosed-loop DBS applications in Parkinsonian animal models.Main results. The irregular sampling method was able to remove the stimulation artifacts effectively with the simulation signals. The relative errors between the power spectral density of the recovered and true signals within a wide frequency band (2-150 Hz) were 2.14%, 3.93%, 7.22%, 7.97% and 6.25% for stimulation at 20 Hz, 60 Hz, 130 Hz, 180 Hz, and stimulation with variable low and high frequencies, respectively. This stimulation artifact removal method was verified in real-time closed-loop DBS applicationsin vivo, and the artifacts were effectively removed during stimulation with frequency continuously changing from 130 Hz to 1 Hz and stimulation adaptive to beta oscillations.Significance.The proposed method provides an approach for real-time removal in closed-loop DBS applications, which is effective in stimulation with low frequency, high frequency, and variable frequency. This method can facilitate the development of more advanced closed-loop DBS strategies.
Collapse
Affiliation(s)
- Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xuanjun Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xiao Li
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Tinkhauser G, Moraud EM. Controlling Clinical States Governed by Different Temporal Dynamics With Closed-Loop Deep Brain Stimulation: A Principled Framework. Front Neurosci 2021; 15:734186. [PMID: 34858126 PMCID: PMC8632004 DOI: 10.3389/fnins.2021.734186] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Closed-loop strategies for deep brain stimulation (DBS) are paving the way for improving the efficacy of existing neuromodulation therapies across neurological disorders. Unlike continuous DBS, closed-loop DBS approaches (cl-DBS) optimize the delivery of stimulation in the temporal domain. However, clinical and neurophysiological manifestations exhibit highly diverse temporal properties and evolve over multiple time-constants. Moreover, throughout the day, patients are engaged in different activities such as walking, talking, or sleeping that may require specific therapeutic adjustments. This broad range of temporal properties, along with inter-dependencies affecting parallel manifestations, need to be integrated in the development of therapies to achieve a sustained, optimized control of multiple symptoms over time. This requires an extended view on future cl-DBS design. Here we propose a conceptual framework to guide the development of multi-objective therapies embedding parallel control loops. Its modular organization allows to optimize the personalization of cl-DBS therapies to heterogeneous patient profiles. We provide an overview of clinical states and symptoms, as well as putative electrophysiological biomarkers that may be integrated within this structure. This integrative framework may guide future developments and become an integral part of next-generation precision medicine instruments.
Collapse
Affiliation(s)
- Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), Ecole Polytechnique Fédérale de Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
15
|
Gilron R, Little S, Wilt R, Perrone R, Anso J, Starr PA. Sleep-Aware Adaptive Deep Brain Stimulation Control: Chronic Use at Home With Dual Independent Linear Discriminate Detectors. Front Neurosci 2021; 15:732499. [PMID: 34733132 PMCID: PMC8558614 DOI: 10.3389/fnins.2021.732499] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023] Open
Abstract
Adaptive deep brain stimulation (aDBS) is a promising new technology with increasing use in experimental trials to treat a diverse array of indications such as movement disorders (Parkinson’s disease, essential tremor), psychiatric disorders (depression, OCD), chronic pain and epilepsy. In many aDBS trials, a neural biomarker of interest is compared with a predefined threshold and stimulation amplitude is adjusted accordingly. Across indications and implant locations, potential biomarkers are greatly influenced by sleep. Successful chronic embedded adaptive detectors must incorporate a strategy to account for sleep, to avoid unwanted or unexpected algorithm behavior. Here, we show a dual algorithm design with two independent detectors, one used to track sleep state (wake/sleep) and the other used to track parkinsonian motor state (medication-induced fluctuations). Across six hemispheres (four patients) and 47 days, our detector successfully transitioned to sleep mode while patients were sleeping, and resumed motor state tracking when patients were awake. Designing “sleep aware” aDBS algorithms may prove crucial for deployment of clinically effective fully embedded aDBS algorithms.
Collapse
Affiliation(s)
- Ro'ee Gilron
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Simon Little
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Robert Wilt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Randy Perrone
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Juan Anso
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Philip A Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Zamora M, Meller S, Kajin F, Sermon JJ, Toth R, Benjaber M, Dijk DJ, Bogacz R, Worrell GA, Valentin A, Duchet B, Volk HA, Denison T. Case Report: Embedding "Digital Chronotherapy" Into Medical Devices-A Canine Validation for Controlling Status Epilepticus Through Multi-Scale Rhythmic Brain Stimulation. Front Neurosci 2021; 15:734265. [PMID: 34630021 PMCID: PMC8498587 DOI: 10.3389/fnins.2021.734265] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023] Open
Abstract
Circadian and other physiological rhythms play a key role in both normal homeostasis and disease processes. Such is the case of circadian and infradian seizure patterns observed in epilepsy. However, these rhythms are not fully exploited in the design of active implantable medical devices. In this paper we explore a new implantable stimulator that implements chronotherapy as a feedforward input to supplement both open-loop and closed-loop methods. This integrated algorithm allows for stimulation to be adjusted to the ultradian, circadian and infradian patterns observed in patients through slowly-varying temporal adjustments of stimulation and algorithm sub-components, while also enabling adaption of stimulation based on immediate physiological needs such as a breakthrough seizure or change of posture. Embedded physiological sensors in the stimulator can be used to refine the baseline stimulation circadian pattern as a "digital zeitgeber," i.e., a source of stimulus that entrains or synchronizes the subject's natural rhythms. This algorithmic approach is tested on a canine with severe drug-resistant idiopathic generalized epilepsy exhibiting a characteristic diurnal pattern correlated with sleep-wake cycles. Prior to implantation, the canine's cluster seizures evolved to status epilepticus (SE) and required emergency pharmacological intervention. The cranially-mounted system was fully-implanted bilaterally into the centromedian nucleus of the thalamus. Using combinations of time-based modulation, thalamocortical rhythm-specific tuning of frequency parameters as well as fast-adaptive modes based on activity, the canine experienced no further SE events post-implant as of the time of writing (7 months). Importantly, no significant cluster seizures have been observed either, allowing the reduction of rescue medication. The use of digitally-enabled chronotherapy as a feedforward signal to augment adaptive neurostimulators could prove a useful algorithmic method in conditions where sensitivity to temporal patterns are characteristics of the disease state, providing a novel mechanism for tailoring a more patient-specific therapy approach.
Collapse
Affiliation(s)
- Mayela Zamora
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Filip Kajin
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - James J. Sermon
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert Toth
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Moaad Benjaber
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London and The University of Surrey, Guildford, United Kingdom
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Antonio Valentin
- Department of Clinical Neurophysiology, King's College Hospital NHS Trust, London, United Kingdom
| | - Benoit Duchet
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Timothy Denison
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Pal Attia T, Crepeau D, Kremen V, Nasseri M, Guragain H, Steele SW, Sladky V, Nejedly P, Mivalt F, Herron JA, Stead M, Denison T, Worrell GA, Brinkmann BH. Epilepsy Personal Assistant Device-A Mobile Platform for Brain State, Dense Behavioral and Physiology Tracking and Controlling Adaptive Stimulation. Front Neurol 2021; 12:704170. [PMID: 34393981 PMCID: PMC8358117 DOI: 10.3389/fneur.2021.704170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, and it affects almost 1% of the population worldwide. Many people living with epilepsy continue to have seizures despite anti-epileptic medication therapy, surgical treatments, and neuromodulation therapy. The unpredictability of seizures is one of the most disabling aspects of epilepsy. Furthermore, epilepsy is associated with sleep, cognitive, and psychiatric comorbidities, which significantly impact the quality of life. Seizure predictions could potentially be used to adjust neuromodulation therapy to prevent the onset of a seizure and empower patients to avoid sensitive activities during high-risk periods. Long-term objective data is needed to provide a clearer view of brain electrical activity and an objective measure of the efficacy of therapeutic measures for optimal epilepsy care. While neuromodulation devices offer the potential for acquiring long-term data, available devices provide very little information regarding brain activity and therapy effectiveness. Also, seizure diaries kept by patients or caregivers are subjective and have been shown to be unreliable, in particular for patients with memory-impairing seizures. This paper describes the design, architecture, and development of the Mayo Epilepsy Personal Assistant Device (EPAD). The EPAD has bi-directional connectivity to the implanted investigational Medtronic Summit RC+STM device to implement intracranial EEG and physiological monitoring, processing, and control of the overall system and wearable devices streaming physiological time-series signals. In order to mitigate risk and comply with regulatory requirements, we developed a Quality Management System (QMS) to define the development process of the EPAD system, including Risk Analysis, Verification, Validation, and protocol mitigations. Extensive verification and validation testing were performed on thirteen canines and benchtop systems. The system is now under a first-in-human trial as part of the US FDA Investigational Device Exemption given in 2018 to study modulated responsive and predictive stimulation using the Mayo EPAD system and investigational Medtronic Summit RC+STM in ten patients with non-resectable dominant or bilateral mesial temporal lobe epilepsy. The EPAD system coupled with an implanted device capable of EEG telemetry represents a next-generation solution to optimizing neuromodulation therapy.
Collapse
Affiliation(s)
- Tal Pal Attia
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Daniel Crepeau
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Vaclav Kremen
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czechia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Mona Nasseri
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- School of Engineering, University of North Florida, Jacksonville, FL, United States
| | - Hari Guragain
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Steven W. Steele
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Vladimir Sladky
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czechia
| | - Petr Nejedly
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Filip Mivalt
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey A. Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Matt Stead
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Timothy Denison
- Engineering Sciences and Clinical Neurosciences, Oxford University, Oxford, United Kingdom
| | - Gregory A. Worrell
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Benjamin H. Brinkmann
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
18
|
Landin K, Benjaber M, Jamshed F, Stagg C, Denison T. Technology Integration Methods for Bi-directional Brain-computer Interfaces and XR-based Interventions. CONFERENCE PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS 2020; 2020:3695-3701. [PMID: 33707935 PMCID: PMC7116886 DOI: 10.1109/smc42975.2020.9282993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Brain stimulation therapies have been established as effective treatments for Parkinson's disease, essential tremor, and epilepsy, as well as having high diagnostic and therapeutic potential in a wide range of neurological and psychiatric conditions. Novel interventions such as extended reality (XR), video games and exergames that can improve physiological and cognitive functioning are also emerging as targets for therapeutic and rehabilitative treatments. Previous studies have proposed specific applications involving non-invasive brain stimulation (NIBS) and virtual environments, but to date these have been uni-directional and restricted to specific applications or proprietary hardware. Here, we describe technology integration methods that enable invasive and non-invasive brain stimulation devices to interface with a cross-platform game engine and development platform for creating bi-directional brain-computer interfaces (BCI) and XR-based interventions. Furthermore, we present a highly-modifiable software framework and methods for integrating deep brain stimulation (DBS) in 2D, 3D, virtual and mixed reality applications, as well as extensible applications for BCI integration in wireless systems. The source code and integrated brain stimulation applications are available online at https://github.com/oxfordbioelectronics/brain-stim-game.
Collapse
Affiliation(s)
- Kei Landin
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Fawad Jamshed
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Charlotte Stagg
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|