1
|
Shishvan OR, Abdelwahab A, da Rosa NB, Saulnier GJ, Mueller JL, Newell J, Isaacson D. ACT5 Electrical Impedance Tomography System. IEEE Trans Biomed Eng 2024; 71:227-236. [PMID: 37459258 PMCID: PMC10798853 DOI: 10.1109/tbme.2023.3295771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVE This article introduces the Adaptive Current Tomograph 5 (ACT5) Electrical Impedance Tomography (EIT) system. ACT5 is a 32 electrode applied-current multiple-source EIT system that can display real-time images of conductivity and susceptivity at 27 frames per second. The adaptive current sources in ACT5 can apply fully programmable current patterns with frequencies varying from 5 kHz to 500 kHz. The system also displays real-time ECG readings during the EIT imaging process. METHODS The hardware and software design and specifications are presented, including the current source design, FPGA hardware, safety features, calibration, and shunt impedance measurement. RESULTS Images of conductivity and susceptivity are presented from ACT5 data collected on tank phantoms and a human subject illustrating the system's ability to provide real-time images of pulsatile perfusion and ECG traces. SIGNIFICANCE The portability, high signal-to-noise ratio, and flexibility of applied currents over a wide range of frequencies enable this instrument to be used to obtain useful human subject data with relative clinical ease.
Collapse
|
2
|
Culpepper J, Lee H, Santorelli A, Porter E. Applied machine learning for stroke differentiation by electrical impedance tomography with realistic numerical models. Biomed Phys Eng Express 2023; 10:015012. [PMID: 37939489 DOI: 10.1088/2057-1976/ad0adf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Electrical impedance tomography (EIT) may have potential to overcome existing limitations in stroke differentiation, enabling low-cost, rapid, and mobile data collection. Combining bioimpedance measurement technologies such as EIT with machine learning classifiers to support decision-making can avoid commonly faced reconstruction challenges due to the nonlinear and ill-posed nature of EIT imaging. Therefore, in this work, we advance this field through a study integrating realistic head models with clinically relevant test scenarios, and a robust architecture consisting of nested cross-validation and principal component analysis. Specifically, realistic head models are designed which incorporate the highly conductive layers of cerebrospinal fluid in the subarachnoid space and ventricles. In total, 135 unique models are created to represent a large patient population, with normal, haemorrhagic, and ischemic brains. Simulated EIT voltage data generated from these models are used to assess the classification performance of support vector machines. Parameters explored include driving frequency, signal-to-noise ratio, kernel function, and composition of binary classes. Classifier accuracy at 60 dB signal-to-noise ratio, reported as mean and standard deviation, are (79.92% ± 10.82%) for lesion differentiation, (74.78% ± 3.79%) for lesion detection, (77.49% ± 15.90%) for bleed detection, and (60.31% ± 3.98%) for ischemia detection (after ruling out bleed). The results for each method were obtained with statistics from 3 independent runs with 17,280 observations, polynomial kernel functions, and feature reduction of 76% by PCA (from 208 to 50 features). While results of this study show promise for stroke differentiation using EIT data, our findings indicate that the achievable accuracy is highly dependent on the classification scenario and application-specific classifiers may be necessary to achieve acceptable accuracy.
Collapse
Affiliation(s)
| | - Hannah Lee
- University of Texas at Austin, United States of America
| | | | - Emily Porter
- University of Texas at Austin, United States of America
| |
Collapse
|
3
|
Li Y, Wang N, Fan LF, Zhao PF, Li JH, Huang L, Wang ZY. Robust electrical impedance tomography for biological application: A mini review. Heliyon 2023; 9:e15195. [PMID: 37089335 PMCID: PMC10113865 DOI: 10.1016/j.heliyon.2023.e15195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Electrical impedance tomography (EIT) has been used by researchers across several areas because of its low-cost and no-radiation properties. Researchers use complex conductivity in bioimpedance experiments to evaluate changes in various indicators within the image target. The diverse volumes and edges of biological tissues and the large impedance range impose dedicated demands on hardware design. The EIT hardware with a high signal-to-noise ratio (SNR), fast scanning and suitable for the impedance range of the image target is a fundamental foundation that EIT research needs to be equipped with. Understanding the characteristics of this technique and state-of-the-art design will accelerate the development of the robust system and provide a guidance for the superior performance of next-generation EIT. This review explores the hardware strategies for EIT proposed in the literature.
Collapse
|
4
|
Real-Time Measurements of Relative Tidal Volume and Stroke Volume Using Electrical Impedance Tomography with Spatial Filters: A Feasibility Study in a Swine Model Under Normal and Reduced Ventilation. Ann Biomed Eng 2023; 51:394-409. [PMID: 35960417 DOI: 10.1007/s10439-022-03040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/28/2022] [Indexed: 01/25/2023]
Abstract
Continuous monitoring of both hemodynamic and respiratory parameters would be beneficial to patients, e.g., those in intensive care unit. The objective of this exploratory animal study was to test the feasibility of simultaneous measurements of relative tidal volume (rTV) and relative stroke volume (rSV) using an electrical impedance tomography (EIT) device equipped with a new real-time source separation algorithm implemented as two spatial filters. Five pigs were anesthetized and mechanically ventilated. The supplied tidal volume from a mechanical ventilator was reduced to 70, 50 and 30% from the 100% normal volume to simulate hypoventilation. The respiratory volume signal and cardiac volume signal were generated by applying the spatial filters to the acquired EIT data, from which values of rTV and rSV were extracted. The measured rTV values were compared with the TV values from the mechanical ventilator using the four-quadrant concordance analysis method. For changes in TV, the concordance rate in each animal ranged from 81.8% to 100%, while it was 92.5% when the data from all five animals were pooled together. When the measured rTV values for each animal were scaled to the absolute TVEIT values in mL using the TVVent data from the mechanical ventilator, the smallest 95% limits of agreement (LoA) were - 6.04 and 7.44 mL for the 70% ventilation level, and the largest 95% LoA were - 18.1 and 19.4 mL for the 50% ventilation level. The percentage error between TVEIT and TVVent was 10.3%. Although similar statistical analyses on rSV data could not be performed due to limited intra-animal variability, changes in rSV values measured by the EIT device were comparable to those measured by an invasive hemodynamic monitor. In this animal study, we were able to demonstrate the feasibility of an EIT device for noninvasive and simultaneous measurements of rTV and rSV in real time. However, the performance of the real-time source separation method needs to be further validated on animals and human subjects, particularly over a wide range of SV values. Future clinical studies are needed to assess the potential usefulness of the new method in dynamic cardiopulmonary monitoring and explore other clinical applications.
Collapse
|
5
|
Qin S, Yao Y, Xu Y, Xu D, Gao Y, Xing S, Li Z. Characteristics and topic trends on electrical impedance tomography hardware publications. Front Physiol 2022; 13:1011941. [PMID: 36311245 PMCID: PMC9608147 DOI: 10.3389/fphys.2022.1011941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Objective: Electrical impedance tomography (EIT) is a technique to measure electrical properties of tissue. With the progress of modern integrated circuits and microchips, EIT instrumentation becomes an active research area to improve all aspects of device performance. Plenty of studies on EIT hardware have been presented in prestigious journals. This study explores publications on EIT hardware to identify the developing hotspots and trends. Method: Publications covering EIT hardware on the Web of Science Core Collection (WoSCC) database from 1989 to 2021 were collected for bibliometric analysis. CiteSpace and VOS viewer were used to study the characteristics of the publications. Main results: A total of 592 publications were analyzed, showing that the number of annual publications steadily increased. China, England, and South Korea were the most prolific countries on EIT hardware publications with productive native institutions and authors. Research topics spread out in "bio-electrical impedance imaging", "hardware optimization", "algorithms" and "clinical applications" (e.g., tissue, lung, brain, and oncology). Hardware research in "pulmonary" and "hemodynamic" applications focused on monitoring and were represented by silhouette recognition and dynamic imaging while research in "tumor and tissue" and "brain" applications focused on diagnosis and were represented by optimization of precision. Electrode development was a research focus through the years. Imaging precision and bioavailability of hardware optimization may be the future trend. Conclusion: Overall, system performance, particularly in the areas of system bandwidth and precision in applications may be the future directions of hardware research.
Collapse
Affiliation(s)
| | | | | | | | | | - Shunpeng Xing
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Zhu B, Zhong Q, Chen Y, Liao S, Li Z, Shi K, Sotelo MA. A Novel Reconstruction Method for Temperature Distribution Measurement Based on Ultrasonic Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2352-2370. [PMID: 35604964 DOI: 10.1109/tuffc.2022.3177469] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The precise temperature distribution measurement is crucial in many industrial fields, where ultrasonic tomography (UT) has broad application prospects and significance. In order to improve the resolution of reconstructed temperature distribution images and maintain high accuracy, a novel two-step reconstruction method is proposed in this article. First, the problem of solving the temperature distribution is converted to an optimization problem and then solved by an improved version of the equilibrium optimizer (IEO), in which a new nonlinear time strategy and novel population update rules are deployed. Then, based on the low-resolution and high-precision images reconstructed by IEO, Gaussian process regression (GPR) is adopted to enhance image resolution and keep the reconstruction errors low. After that, the number of divided grids and the parameters of IEO are also further studied to improve the reconstruction quality. The results of numerical simulations and experiments indicate that high-resolution images with low reconstruction errors can be reconstructed effectively by the proposed IEO-GPR method, and it also shows excellent robust performance. For a complex three-peak temperature distribution, a competitive accuracy with 3.10% and 2.37% error at root-mean-square error and average relative error is achieved, respectively. In practical experiment, the root-mean-square error of IEO-GPR is 0.72%, which is at least 0.89% lower than that of conventional algorithms.
Collapse
|
7
|
Cui Z, Yang P, Li X, Wang H. An alternative excitation method for electrical impedance tomography. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:044710. [PMID: 35489953 DOI: 10.1063/5.0083681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Electrical impedance tomography (EIT) can be utilized to image the conductivity distribution of material under test. The EIT measurements depend on the quality in the current injection and voltage measuring circuits. The current source plays a vital role in the EIT instruments. In most of the research studies, the push-pull current sources were employed for the source and sink signal generation. It usually requires frequent calibration to achieve proper functioning, especially for the sweeping frequency measurements. In this paper, an alternative excitation method has been proposed for simplifying the design of the current source in EIT instruments, which aims to achieve the performance of the push-pull current source by using a single-ended current source. It could offer the following advantages: (1) hardware simplification and (2) reduced requirements on current source calibration. The corrected measurements could be consistent with that using push-pull excitation, as confirmed by the numerical simulations. In addition, the reconstructed images have also been investigated to illustrate the effectiveness of the proposed method.
Collapse
Affiliation(s)
- Ziqiang Cui
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Pengyu Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Xuan Li
- Department of Mathematics, Tianjin University of Finance and Economics Pearl River College, Tianjin 301811, China
| | - Huaxiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Ravagli E, Mastitskaya S, Holder DS, Aristovich KY. Simplifying the hardware requirements for fast neural EIT of peripheral nerves. Physiol Meas 2021; 43. [PMID: 34915462 DOI: 10.1088/1361-6579/ac43c0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The main objective of this study was to assess the feasibility of lowering the hardware requirements for fast neural EIT in order to support the distribution of this technique. Specifically, the feasibility of replacing the commercial modules present in the existing high-end setup with compact and cheap customized circuitry was assessed. APPROACH Nerve EIT imaging was performed on rat sciatic nerves with both our standard ScouseTom setup and a customized version in which commercial benchtop current sources were replaced by custom circuitry. Electrophysiological data and images collected in the same experimental conditions with the two setups were compared. Data from the customized setup was subject to a down-sampling analysis to simulate the use of a recording module with lower specifications. MAIN RESULTS Compound action potentials (573±287µV and 487±279µV, p=0.28) and impedance changes (36±14µV and 31±16µV, p=0.49) did not differ significantly when measured using commercial high-end current sources or our custom circuitry, respectively. Images reconstructed from both setups showed neglibile (<1voxel, i.e. 40µm) difference in peak location and a high degree of correlation (R2=0.97). When down-sampling from 24 to 16 bits ADC resolution and from 100KHz to 50KHz sampling frequency, signal-to-noise ratio showed acceptable decrease (<-20%), and no meaningful image quality loss was detected (peak location difference <1voxel, pixel-by-pixel correlation R2=0.99). SIGNIFICANCE The technology developed for this study greatly reduces the cost and size of a fast neural EIT setup without impacting quality and thus promotes the adoption of this technique by the neuroscience research community.
Collapse
Affiliation(s)
- Enrico Ravagli
- Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Svetlana Mastitskaya
- Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, London, WC1E 6BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - David S Holder
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, London, WC1E 6BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Kirill Y Aristovich
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building - Gower Street - London, London, WC1E 6BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
9
|
Oh TI, Kang MJ, Jeong YJ, Zhang T, Yeo SG, Park DC. Tissue Characterization Using an Electrical Bioimpedance Spectroscopy-Based Multi-Electrode Probe to Screen for Cervical Intraepithelial Neoplasia. Diagnostics (Basel) 2021; 11:diagnostics11122354. [PMID: 34943591 PMCID: PMC8700646 DOI: 10.3390/diagnostics11122354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
The successful management of cervical intraepithelial neoplasia (CIN) with proper screening and treatment methods could prevent cervical cancer progression. We propose a bioimpedance spectroscopic measurement device and a multi-electrode probe as an independent screening tool for CIN. To evaluate the performance of this screening method, we enrolled 123 patients, including 69 patients with suspected CIN and 54 control patients without cervical dysplasia who underwent a hysterectomy for benign disease (non-CIN). Following conization, the electrical properties of the excised cervical tissue were characterized using an electrical bioimpedance spectroscopy-based multi-electrode probe. Twenty-eight multifrequency voltages were collected through the two concentric array electrodes via a sensitivity-optimized measurement protocol based on an electrical energy concentration method. The electrical properties of the CIN and non-CIN groups were compared with the results of the pathology reports. Reconstructed resistivity tended to decrease in the CIN and non-CIN groups as frequency increased. Reconstructed resistivity from 625 Hz to 50 kHz differed significantly between the CIN and non-CIN groups (p < 0.001). Using 100 kHz as the reference, the difference between the CIN and non-CIN groups was significant. Based on the difference in reconstructed resistivity between 100 kHz and the other frequencies, this method had a sensitivity of 94.3%, a specificity of 84%, and an accuracy of 90% in CIN screening. The feasibility of noninvasive CIN screening was confirmed through the difference in the frequency spectra evaluated in the excised tissue using the electrical bioimpedance spectroscopy-based multi-electrode screening probe.
Collapse
Affiliation(s)
- Tong In Oh
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (T.I.O.); (Y.J.J.); (T.Z.)
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Min Ji Kang
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - You Jeong Jeong
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (T.I.O.); (Y.J.J.); (T.Z.)
| | - Tingting Zhang
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (T.I.O.); (Y.J.J.); (T.Z.)
| | - Seung Geun Yeo
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Dong Choon Park
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Obstetrics and Gynecology, Saint Vincent’s Hospital, The Catholic University of Korea, Suwon 16247, Korea
- Correspondence: ; Tel.: +82-31-881-8894
| |
Collapse
|
10
|
Lee K, Jang GY, Kim Y, Woo EJ. Multi-channel Trans-impedance Leadforming for Cardiopulmonary Monitoring: Algorithm Development and Feasibility Assessment using In Vivo Animal Data. IEEE Trans Biomed Eng 2021; 69:1964-1974. [PMID: 34855581 DOI: 10.1109/tbme.2021.3132012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The objectives of this study were to (1) develop a multi-channel trans-impedance leadforming method for beat-to-beat stroke volume (SV) and breath-by-breath tidal volume (TV) measurements and (2) assess its feasibility on an existing in vivo animal dataset. METHODS A deterministic leadforming algorithm was developed to extract a cardiac volume signal (CVS) and a respiratory volume signal (RVS) from 208-channel trans-impedance data acquired every 20 ms by an electrical impedance tomography (EIT) device. SVEIT and TVEIT values were computed as a valley-to-peak value in the CVS and RVS, respectively. The method was applied to the existing dataset from five mechanically-ventilated pigs undergoing ten mini-fluid challenges. An invasive hemodynamic monitor was used in the arterial pressure-based cardiac output (APCO) mode to simultaneously measure SVAPCO values while a mechanical ventilator provided TVVent values. RESULTS The leadforming method could reliably extract the CVS and RVS from the 208-channel trans-impedance data measured with the EIT device, from which SV<sub>EIT</sub> and TV<sub>EIT</sub> were computed. The SV<sub>EIT</sub> and TV<sub>EIT</sub> values were comparable to those from the invasive hemodynamic monitor and mechanical ventilator. Using the data from 5 pigs and a simple calibration method to remove bias, the error in SV<sub>EIT<sub> and TV<sub>EIT<sub> was 9.5% and 5.4%, respectively. CONCLUSION We developed a new leadforming method for the EIT device to robustly extract both SV and TV values in a deterministic fashion. Future animal and clinical studies are needed to validate this leadforming method in various subject populations. SIGNIFICANCE The leadforming method could be an integral component for a new cardiopulmonary monitor in the future to simultaneously measure SV and TV noninvasively, which would be beneficial to patients.
Collapse
|
11
|
Dimas C, Alimisis V, Uzunoglu N, Sotiriadis PP. A Point-Matching Method of Moment with Sparse Bayesian Learning Applied and Evaluated in Dynamic Lung Electrical Impedance Tomography. Bioengineering (Basel) 2021; 8:191. [PMID: 34940344 PMCID: PMC8698777 DOI: 10.3390/bioengineering8120191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Dynamic lung imaging is a major application of Electrical Impedance Tomography (EIT) due to EIT's exceptional temporal resolution, low cost and absence of radiation. EIT however lacks in spatial resolution and the image reconstruction is very sensitive to mismatches between the actual object's and the reconstruction domain's geometries, as well as to the signal noise. The non-linear nature of the reconstruction problem may also be a concern, since the lungs' significant conductivity changes due to inhalation and exhalation. In this paper, a recently introduced method of moment is combined with a sparse Bayesian learning approach to address the non-linearity issue, provide robustness to the reconstruction problem and reduce image artefacts. To evaluate the proposed methodology, we construct three CT-based time-variant 3D thoracic structures including the basic thoracic tissues and considering 5 different breath states from end-expiration to end-inspiration. The Graz consensus reconstruction algorithm for EIT (GREIT), the correlation coefficient (CC), the root mean square error (RMSE) and the full-reference (FR) metrics are applied for the image quality assessment. Qualitative and quantitative comparison with traditional and more advanced reconstruction techniques reveals that the proposed method shows improved performance in the majority of cases and metrics. Finally, the approach is applied to single-breath online in-vivo data to qualitatively verify its applicability.
Collapse
Affiliation(s)
- Christos Dimas
- Department of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Vassilis Alimisis
- Department of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Nikolaos Uzunoglu
- Department of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Paul P. Sotiriadis
- Department of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
12
|
Guo L, Li S, Wang X, Zeng C, Liu C. The study on the inverse problem of applied current thermoacoustic imaging based on generative adversarial network. Sci Rep 2021; 11:22947. [PMID: 34824313 PMCID: PMC8617056 DOI: 10.1038/s41598-021-02291-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022] Open
Abstract
Applied Current Thermoacoustic Imaging (ACTAI) is a new imaging method which combines electromagnetic excitation with ultrasound imaging, and takes ultrasonic signal as medium and biological tissue conductivity as detection target. Taking the high contrast advantage of Electrical Impedance Tomography (EIT) and high resolution advantage of ultrasound imaging, ACTAI has broad application prospects in the field of biomedical imaging. Although ACTAI has high excitation efficiency and strong detectable Signal-to-Noise Ratio, yet while under low frequency electromagnetic excitation, it is still a big challenge to reconstruct a high-resolution image of target conductivity. This paper proposes a new method for reconstructing conductivity based on Generative Adversarial Network, and it consists of three main steps: firstly, use Wiener filtering deconvolution to restore the electrical signal output by the ultrasonic probe to a real acoustic signal. Then obtain the initial acoustic source image with filtered backprojection technology. Finally, match the conductivity image with the initial sound source image, which are used as training samples for generating the adversarial network to establish a deep learning model for conductivity reconstruction. After theoretical analysis and simulation research, it is found that by introducing machine learning, the new method can dig out the inverse problem solving model contained in the data, which further reconstruct a high-resolution conductivity image and has strong anti-interference characteristics. The new method provides a new way to solve the problem of conductivity reconstruction in Applied Current Thermoacoustic Imaging.
Collapse
Affiliation(s)
- Liang Guo
- College of Information and Control Engineering, China University of Petroleum, Qingdao, 266580, Shandong, People's Republic of China.
| | - Su Li
- College of Information and Control Engineering, China University of Petroleum, Qingdao, 266580, Shandong, People's Republic of China
| | - Xiangye Wang
- College of Information and Control Engineering, China University of Petroleum, Qingdao, 266580, Shandong, People's Republic of China
| | - Caihong Zeng
- College of Information and Control Engineering, China University of Petroleum, Qingdao, 266580, Shandong, People's Republic of China
| | - Chunyu Liu
- College of Information and Control Engineering, China University of Petroleum, Qingdao, 266580, Shandong, People's Republic of China
| |
Collapse
|
13
|
Ko RE, Jang GY, Chung CR, Lee JY, Oh TI, Suh GY, Kim Y, Woo EJ. Noninvasive Beat-To-Beat Stroke Volume Measurements to Determine Preload Responsiveness During Mini-Fluid Challenge in a Swine Model: A Preliminary Study. Shock 2021; 56:850-856. [PMID: 33534400 DOI: 10.1097/shk.0000000000001739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Cardiac output (CO) is an important parameter in fluid management decisions for treating hemodynamically unstable patients in intensive care unit. The gold standard for CO measurements is the thermodilution method, which is an invasive procedure with intermittent results. Recently, electrical impedance tomography (EIT) has emerged as a new method for noninvasive measurements of stroke volume (SV). The objectives of this paper are to compare EIT with an invasive pulse contour analysis (PCA) method in measuring SV during mini-fluid challenge in animals and determine preload responsiveness with EIT. Five pigs were anesthetized and mechanically ventilated. After removing 25% to 30% of the total blood from each animal, multiple fluid injections were conducted. The EIT device successfully tracked changes in SV beat-to-beat during varying volume states, i.e., from hypovolemia and preload responsiveness to target volume and volume overload. From a total of 50 100-mL fluid injections on five pigs (10 injections per pig), the preload responsiveness value was as large as 32.3% in the preload responsiveness state while in the volume overload state it was as low as -4.9%. The bias of the measured SV data using EIT and PCA was 0 mL, and the limits of agreement were ±3.6 mL in the range of 17.6 mL to 51.0 mL. The results of the animal experiments suggested that EIT is capable of measuring beat-to-beat SV changes during mini-fluid challenge and determine preload responsiveness. Further animal and clinical studies will be needed to demonstrate the feasibility of the EIT method as a new tool for fluid management.
Collapse
Affiliation(s)
- Ryoung Eun Ko
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Geuk Young Jang
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea
| | - Chi Ryang Chung
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Young Lee
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tong In Oh
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea
| | - Gee Young Suh
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yongmin Kim
- Department of Creative IT Engineering, POSTECH, Pohang, Korea
| | - Eung Je Woo
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea
| |
Collapse
|
14
|
Lin BS, Yu HR, Kuo YT, Liu YW, Chen HY, Lin BS. Wearable Electrical Impedance Tomography Belt With Dry Electrodes. IEEE Trans Biomed Eng 2021; 69:955-962. [PMID: 34495826 DOI: 10.1109/tbme.2021.3110527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrical impedance tomography (EIT) is a noninvasive imaging technology used to reconstruct the conductivity distribution in objects and the human body. In recent years, numerous EIT systems and image reconstruction algorithms have been developed. However, most of these EIT systems require conventional electrodes with conductive gels (wet electrodes) and cannot be adapted to different body types, resulting in limited applicability. In this study, a wearable wireless EIT belt with dry electrodes was designed to enable EIT imaging of the human body without using wet electrodes. The specific design of the belt mechanism and dry electrodes provide the advantages of easy wear and adaptation to different body sizes. Additionally, the GaussNewton method was used to optimize the EIT image. Finally, experiments were performed on the phantom and human body to validate the performance of the proposed EIT belt. The results demonstrate that the proposed system can provide accurate location information of the objects in the EIT image and the system can be successfully applied for noninvasive measurement of the human body.
Collapse
|
15
|
Liu JZ, Li XB, Xiong H. A FPGA-based adaptive differential current source for electrical impedance tomography. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:094707. [PMID: 34598505 DOI: 10.1063/5.0062640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
A high output impedance current source with a wide bandwidth is needed in electrical impedance tomography systems. Limitations appear mainly at higher frequencies and non-simple loads. In order to adjust the output current, the amplitude and phase are made to achieve the expected value automatically. A current source based on the field programmable gate array is designed. In this paper, we proposed a double DAC differential current source structure. By measuring the voltage of the sampling resistor in series with the load and using the proposed dynamic reference point demodulation algorithm, the actual current amplitude and phase on the load can be quickly obtained. Through the adaptive compensation module, the output current is adjusted to the expected value. The experimental results show that the output resistance of the current source can reach 10 MΩ and the output capacitance can be less than 0.8 pF in the frequency range of 10 kHz-1.28 MHz. At the same time, the current amplitude attenuation is less than 0.016%, and the phase error is less than 0.0025° after compensation. Therefore, the proposed current source achieves widebands, biocompatibility, and high precision.
Collapse
Affiliation(s)
- J Z Liu
- The School of Control Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - X B Li
- The School of Control Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - H Xiong
- The School of Control Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
16
|
Dimas C, Uzunoglu N, Sotiriadis PP. An efficient Point-Matching Method-of-Moments for 2D and 3D Electrical Impedance Tomography Using Radial Basis functions. IEEE Trans Biomed Eng 2021; 69:783-794. [PMID: 34398750 DOI: 10.1109/tbme.2021.3105056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractObjective: The inverse problem of computing conductivity distributions in 2D and 3D objects interrogated by low frequency electrical signals, which is called Electrical Impedance Tomography (EIT), is treated using a Method-of-Moment technique. METHODS A Point-Matching-Method-of-Moment technique is used to formulate a global integral equation solver. Radial Basis Functions are adopted to express the conductivity distribution. Single-step quadratic-norm (L2) and iterative total variation (L1) regularization techniques are exploited to solve the inverse problem. RESULTS Simulation and experimental tests on a circular reconstruction domain show satisfactory performance in deriving conductivity distribution, achieving a Correlation Coefficient (CC) up to 0:863 for 70 dB voltage SNR and 0:842 for 40 dB voltage SNR. The proposed methodology with L2-norm regularization provided better results than traditional iterative Gauss-Newtons approach, whereas with L1-norm regularization it showed promising performance. Moreover, 3D reconstructions on a cylindrical cavity demonstrated superior results near the electrodes planes compared to those of the conventional linearized approach. Finally, application to EIT medical data for dynamic lung imaging successfully revealed the breath-cycle conductivity changes. CONCLUSION The results show that the proposed method can be effective for both 2D and 3D EIT and applicable to many applications. SIGNIFICANCE Strong conductivity variations are successfully tackled with a very good Correlation Coefficient. In contrast to conventional EIT solutions based on weak-form and linearization on small conductivity changes, the proposed method requires only one step to converge with L2-norm regularization. The proposed method with L1-norm regularization also achieves good reconstruction quality with a low number of iterations.
Collapse
|
17
|
Qian J, Zhou J, Di B, Liu Y, Zhang G, Yang X. Using electrical impedance tomography for rapid determination of starch and soluble sugar contents in Rosa hybrida. Sci Rep 2021; 11:2871. [PMID: 33536522 PMCID: PMC7859186 DOI: 10.1038/s41598-021-82456-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/18/2021] [Indexed: 11/09/2022] Open
Abstract
Soluble sugars and starches are important metabolites of plant life and physiological markers of plant stress response. There is an urgent need to develop a non-destructive and rapid method for determining plant starch and soluble sugar contents. Electrical impedance tomography (EIT) technology has been used to determine the physiological state and cold resistance of select plant tissues. However, so far there have been no reports on the use of EIT for the rapid estimation of soluble sugar and starch contents. In this study, EIT was used to obtain reconstructed voltage values and estimate starch and soluble sugar contents in the stems of three Rosa hybrida cultivars during February to May, which were grown in the Specimen Park (38° 50′ N, 115° 26′ E) of Hebei Agricultural University, Baoding City, Hebei Province, China. Stems from two of the cultivars were used for establishing regression models for starch and soluble sugar contents as functions of reconstructed voltage values. The third cultivar was used to test the accuracy of the regression models. The quadratic regression model was best for determining soluble sugar content and the logarithmic regression model was best for determining starch content. Thus, this research provided technical support for using EIT to analyze changes in physiological parameters and to rapidly estimate physiological indexes of plants. More studies were now needed to validate the results in this paper.
Collapse
Affiliation(s)
- Ji Qian
- College of Horticulture, Hebei Agricultural University, Lekai South Street 2596, Baoding, 071000, Hebei, China.
| | - Juan Zhou
- College of Electrical and Mechanical Engineering, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Bao Di
- College of Horticulture, Hebei Agricultural University, Lekai South Street 2596, Baoding, 071000, Hebei, China
| | - Yang Liu
- Department of Software Engineering, Hebei Software Institute, Baoding, 071000, Hebei, China
| | - Gang Zhang
- College of Horticulture, Hebei Agricultural University, Lekai South Street 2596, Baoding, 071000, Hebei, China
| | - Xin Yang
- College of Electrical and Mechanical Engineering, Hebei Agricultural University, Baoding, 071000, Hebei, China
| |
Collapse
|
18
|
Self-Abrading Servo Electrode Helmet for Electrical Impedance Tomography. SENSORS 2020; 20:s20247058. [PMID: 33317181 PMCID: PMC7763319 DOI: 10.3390/s20247058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022]
Abstract
Electrical Impedance Tomography (EIT) is a medical imaging technique which has the potential to reduce time to treatment in acute stroke by rapidly differentiating between ischaemic and haemorrhagic stroke. The potential of these methods has been demonstrated in simulation and phantoms, it has not yet successfully translated to clinical studies, due to high sensitivity to errors in scalp electrode mislocation and poor electrode-skin contact. To overcome these limitations, a novel electrode helmet was designed, bearing 32 independently controlled self-abrading electrodes. The contact impedance was reduced through rotation on an abrasive electrode on the scalp using a combined impedance, rotation and position feedback loop. Potentiometers within each unit measure the electrode tip displacement within 0.1 mm from the rigid helmet body. Characterisation experiments on a large-scale test rig demonstrated that approximately 20 kPa applied pressure and 5 rotations was necessary to achieve the target 5 kΩ contact impedance at 20 Hz. This performance was then replicated in a simplified self-contained unit where spring loaded electrodes are rotated by servo motors. Finally, a 32-channel helmet and controller which sequentially minimised contact impedance and simultaneously located each electrode was built which reduced the electrode application and localisation time to less than five minutes. The results demonstrated the potential of this approach to rapidly apply electrodes in an acute setting, removing a significant barrier for imaging acute stroke with EIT.
Collapse
|
19
|
Shishvan OR, Abdelwahab A, Saulnier GJ. Measuring Current Source Output Impedance in EIT Systems while Attached to a Load. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1452-1456. [PMID: 33018264 DOI: 10.1109/embc44109.2020.9175416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel method for measuring the shunt impedance of current sources in Electrical Impedance Tomography (EIT) systems is introduced. In an EIT system, electrical currents with theoretical sum of zero, are applied to the body and any mismatch between the currents results in current going through an extra grounded electrode. Since the N - 1 current patterns applied in an N-electrode EIT system are orthogonal to each other, by introducing an additional linearly- independent current pattern, a system of linear equations can be established from which the unknown shunt impedances can be calculated. The framework of the proposed scheme is introduced and its effectiveness is validated through both simulation and practical implementation. The experimental results show that by measuring the shunt impedances with the proposed method and using those values to adjust the current sources, the current passing through the grounded electrode is significantly reduced.
Collapse
|
20
|
Wu Y, Jiang D, Habibollahi M, Almarri N, Demosthenous A. Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:997-1007. [PMID: 32746362 DOI: 10.1109/tbcas.2020.3012057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or 'time stamp' is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency ( fclk = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption.
Collapse
|
21
|
Padilha Leitzke J, Zangl H. A Review on Electrical Impedance Tomography Spectroscopy. SENSORS 2020; 20:s20185160. [PMID: 32927685 PMCID: PMC7571205 DOI: 10.3390/s20185160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/24/2022]
Abstract
Electrical Impedance Tomography Spectroscopy (EITS) enables the reconstruction of material distributions inside an object based on the frequency-dependent characteristics of different substances. In this paper, we present a review of EITS focusing on physical principles of the technology, sensor geometries, existing measurement systems, reconstruction algorithms, and image representation methods. In addition, a novel imaging method is proposed which could fill some of the gaps found in the literature. As an example of an application, EITS of ice and water mixtures is used.
Collapse
|
22
|
Rosa BMG, Yang GZ. Bladder Volume Monitoring Using Electrical Impedance Tomography With Simultaneous Multi-Tone Tissue Stimulation and DFT-Based Impedance Calculation Inside an FPGA. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:775-786. [PMID: 32746355 DOI: 10.1109/tbcas.2020.3008831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, a novel method for measuring the volume of the urinary bladder non-invasively is presented that relies on the principles dictated by Electrical Impedance Tomography (EIT). The electronic prototype responsible for injecting innocuous electrical currents to the lower abdominal region and measuring the developed voltage levels is fully described, as well as the computational models for resolution of the so-called Forward and Inverse Problems in Imaging. The simultaneous multi-tone injection of current provided by a high performance Field Programmable Gate Array (FPGA), combined with impedance estimation by the Discrete Fourier Transform (DFT) constitutes a novelty in Urodynamics with potential to monitor continuously the intravesical volume of patients in a much faster and comfortable way than traditional transurethral catheterization methods. The resolution of the Inverse Problem is performed by the Gauss-Newton method with Laplacian regularization, allowing to obtain a sectional representation of the volume of urine encompassed by the bladder and surrounding body tissues. Experimentation has been carried out with synthetic phantoms and human subjects with results showing a good correlation between the levels of abdominal admittivity acquired by the EIT system and the volume of ingested water.
Collapse
|
23
|
Noninvasive, simultaneous, and continuous measurements of stroke volume and tidal volume using EIT: feasibility study of animal experiments. Sci Rep 2020; 10:11242. [PMID: 32647206 PMCID: PMC7347894 DOI: 10.1038/s41598-020-68139-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/18/2020] [Indexed: 12/01/2022] Open
Abstract
Currently, there is no noninvasive method available for simultaneous measurements of tidal volume and stroke volume. Electrical impedance tomography (EIT) has been used for regional lung ventilation imaging. Cardiac EIT imaging, however, has not been successful due to the technical difficulty in extracting weak cardiogenic components. Instead of regional imaging, in this paper, we use the EIT technique to simultaneously measure two global variables of tidal volume and stroke volume. Time-varying patterns of boundary voltage data originating from lung ventilation and cardiac blood flow were extracted from measured boundary voltage data using the principal component analysis (PCA) and independent component analysis (ICA). The source consistency theory was adopted to separately synthesize time-series of boundary voltage data associated with lung ventilation and cardiac blood flow. The respiratory volume signal (RVS) and cardiac volume signal (CVS) were extracted from reconstructed time-difference EIT images of lung ventilation and cardiac blood flow, respectively. After calibrating the volume signals using the mechanical ventilator and the invasive transpulmonary thermodilution (TPTD) method, tidal volume and stroke volume were computed as valley-to-peak values of the RVS and CVS, respectively. The difference in the tidal volume data between EIT and mechanical ventilator was within ± 20 ml from six pigs. The difference in the stroke volume data between EIT and TPTD was within ± 4.7 ml from the same animals. The results show the feasibility of the proposed method as a new noninvasive cardiopulmonary monitoring tool for simultaneous continuous measurements of stroke volume and tidal volume that are two most important vital signs.
Collapse
|
24
|
Saulnier GJ, Abdelwahab A, Shishvan OR. DSP-based current source for electrical impedance tomography. Physiol Meas 2020; 41:064002. [PMID: 32603311 DOI: 10.1088/1361-6579/ab8f74] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE EIT systems, particularly those that use a parallel, multiple source architecture, require current sources with very high output impedance. To meet this requirement, sources often use complex analog circuits and require manual or electronically-controlled adjustments. The goal is to implement a current source with simple, adjustment-free analog electronics with high effective output impedance even with significant stray impedance at its output. APPROACH The excitation provided to the voltage-to-current converter is adjusted to accommodate the current lost in the finite output and stray impedances. The adaptive algorithm uses the measured voltage and the previously-measured output and stray impedance to determine the needed current adjustment. MAIN RESULTS The structure of the source is presented along with an implementation, and experimental results that show the effectiveness of the approach for frequencies up to 1 MHz. The measured output impedance with and without the adaptive compensation are presented as well as measurements of resistive and complex loads. SIGNIFICANCE The new current source has low analog complexity, operates over a wide range of frequencies, and can compensate for a significant stray shunt impedance. It can be used to implement improved parallel or serial EIT systems.
Collapse
Affiliation(s)
- Gary J Saulnier
- Electrical and Computer Engineering, University at Albany, State University of New York, Albany, NY, United States of America
| | | | | |
Collapse
|
25
|
McDermott B, O'Halloran M, Avery J, Porter E. Bi-Frequency Symmetry Difference EIT-Feasibility and Limitations of Application to Stroke Diagnosis. IEEE J Biomed Health Inform 2019; 24:2407-2419. [PMID: 31869810 DOI: 10.1109/jbhi.2019.2960862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Bi-Frequency Symmetry Difference (BFSD)-EIT can detect, localize and identify unilateral perturbations in symmetric scenes. Here, we test the viability and robustness of BFSD-EIT in stroke diagnosis. METHODS A realistic 4-layer Finite Element Method (FEM) head model with and without bleed and clot lesions is developed. Performance is assessed with test parameters including: measurement noise, electrode placement errors, contact impedance errors, deviations in assumed tissue conductivity, deviations in assumed anatomy, and a frequency-dependent background. A final test is performed using ischemic patient data. Results are assessed using images and quantitative metrics. RESULTS BFSD-EIT may be feasible for stroke diagnosis if a signal-to-noise ratio (SNR) of ≥60 dB is achievable. Sensitivity to errors in electrode positioning is seen with a tolerance of only ±5 mm, but a tolerance of up to ±30 mm is possible if symmetry is maintained between symmetrically opposite partner electrodes. The technique is robust to errors in contact impedance and assumed tissue conductivity up to at least ±50%. Asymmetric internal anatomy affects performance but may be tolerable for tissues with frequency-dependent conductivity. Errors in assumed external geometry marginally affect performance. A frequency-dependent background does not affect performance with carefully chosen frequency points or use of multiple frequency points across a band. The Global Left-Hand Side (LHS) & Right-Hand Side (RHS) Mean Intensity metric is particularly robust to errors. CONCLUSION BFSD-EIT is a promising technique for stroke diagnosis, provided parameters are within the tolerated ranges. SIGNIFICANCE BFSD-EIT may prove an important step forward in imaging of static scenes such as stroke.
Collapse
|
26
|
Liu B, Wang G, Li Y, Zeng L, Li H, Gao Y, Ma Y, Lian Y, Heng CH. A 13-Channel 1.53-mW 11.28-mm 2 Electrical Impedance Tomography SoC Based on Frequency Division Multiplexing for Lung Physiological Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:938-949. [PMID: 31331896 DOI: 10.1109/tbcas.2019.2927132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An electrical impedance tomography (EIT) system based on frequency division multiplexing (FDM) is proposed for real-time lung physiological imaging. The FDM technique allows the integration of 13 dedicated voltage sensing channels by combining data on-chip and sharing of ADC to alleviate area penalty caused by multi-channel. The EIT system-on-chip (SoC) is of the following features. 1) Early I/Q demodulation to relax the bandwidth requirement of analog front end and minimize the impact of motion artifacts and dc electrode offset. 2) Eliminates the need of adaptive gain control with constant inverted "U-shape" gain configuration to compensate amplitude variations across all channels. 3) FDM to combine 13 pairs of I/Q signals into two data streams for quantization using only two ΔΣ modulators. 4) Batch data recovery by Blackman window corrected fast Fourier transform without any digital filtering involved. 5) Lowest power consumption and smallest area occupation per channel reported to date. The EIT SoC occupies an area of 11.28 mm2 in 130-nm CMOS technology with a total power consumption of 1.53 mW under 1-V power supply. As a result, it generates lung EIT images at up to five frames per second.
Collapse
|
27
|
Integrated EIT system for functional lung ventilation imaging. Biomed Eng Online 2019; 18:83. [PMID: 31345220 PMCID: PMC6659234 DOI: 10.1186/s12938-019-0701-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Electrical impedance tomography (EIT) has been used for functional lung imaging of regional air distributions during mechanical ventilation in intensive care units (ICU). From numerous clinical and animal studies focusing on specific lung functions, a consensus about how to use the EIT technique has been formed lately. We present an integrated EIT system implementing the functions proposed in the consensus. The integrated EIT system could improve the usefulness when monitoring of mechanical ventilation for lung protection so that it could facilitate the clinical acceptance of this new technique. Methods Using a custom-designed 16-channel EIT system with 50 frames/s temporal resolution, the integrated EIT system software was developed to implement five functional images and six EIT measures that can be observed in real-time screen view and analysis screen view mode, respectively. We evaluated the performance of the integrated EIT system with ten mechanically ventilated porcine subjects in normal and disease models. Results Quantitative and simultaneous imaging of tidal volume (TV), end-expiratory lung volume change (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\triangle$$\end{document}▵EELV), compliance, ventilation delay, and overdistension/collapse images were performed. Clinically useful parameters were successfully extracted including anterior/posterior ventilation ratio (A/P ratio), center of ventilation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{CoV}}_{{x}}$$\end{document}CoVx, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{CoV}}_{{y}}$$\end{document}CoVy), global inhomogeneity (GI), coefficient of variation (CV), ventilation delay and percentile of overdistension/collapse. The integrated EIT system was demonstrated to suggest an optimal positive end-expiratory pressure (PEEP) for lung protective ventilation in normal and in the disease model of an acute injury. Optimal PEEP for normal and disease model was 2.3 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$7.9 \, {\mathrm{cmH}}_{2}\mathrm{O}$$\end{document}7.9cmH2O, respectively. Conclusions The proposed integrated approach for functional lung ventilation imaging could facilitate clinical acceptance of the bedside EIT imaging method in ICU. Future clinical studies of applying the proposed methods to human subjects are needed to show the clinical significance of the method for lung protective mechanical ventilation and mechanical ventilator weaning in ICU.
Collapse
|
28
|
McDermott B, Avery J, O'Halloran M, Aristovich K, Porter E. Bi-frequency symmetry difference electrical impedance tomography-a novel technique for perturbation detection in static scenes. Physiol Meas 2019; 40:044005. [PMID: 30786267 DOI: 10.1088/1361-6579/ab08ba] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A novel method for the imaging of static scenes using electrical impedance tomography (EIT) is reported with implementation and validation using numerical and phantom models. The technique is applicable to regions featuring symmetry in the normal case, asymmetry in the presence of a perturbation, and where there is a known, frequency-dependent change in the electrical conductivity of the materials in the region. APPROACH The stroke diagnostic problem is used as a motivating sample application. The head is largely symmetrical across the sagittal plane. A haemorrhagic or ischaemic lesion located away from the sagittal plane will alter this natural symmetry, resulting in a symmetrical imbalance that can be detected using EIT. Specifically, application of EIT stimulation and measurement protocols at two distinct frequencies detects deviations in symmetry if an asymmetrically positioned lesion is present, with subsequent identification and localisation of the perturbation based on known frequency-dependent conductivity changes. Anatomically accurate computational models are used to demonstrate the feasibility of the proposed technique using different types, sizes, and locations of lesions with frequency-dependent (or independent) conductivity. Further, a realistic experimental head phantom is used to validate the technique using frequency-dependent perturbations emulating the key numerical simulations. MAIN RESULTS Lesion presence, type, and location are detectable using this novel technique. Results are presented in the form of images and corresponding robust quantitative metrics. Better detection is achieved for larger lesions, those further from the sagittal plane, and when measurements have a higher signal-to-noise ratio. SIGNIFICANCE Bi-frequency symmetry difference EIT is an exciting new modality of EIT with the ability to detect deviations in the symmetry of a region that occur due to the presence of a lesion. Notably, this modality does not require a time change in the region and thus may be used in static scenarios such as stroke detection.
Collapse
Affiliation(s)
- Barry McDermott
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
29
|
EIT Imaging of Upper Airway to Estimate Its Size and Shape Changes During Obstructive Sleep Apnea. Ann Biomed Eng 2019; 47:990-999. [PMID: 30693441 DOI: 10.1007/s10439-019-02210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Noninvasive continuous imaging of the upper airway during natural sleep was conducted for patients with obstructive sleep apnea (OSA) using the electrical impedance tomography (EIT) technique. A safe amount of alternating current (AC) was injected into the lower head through multiple surface electrodes. Since the air is an electrical insulator, upper airway narrowing during OSA altered internal current pathways and changed the induced voltage distribution. Since the measured voltage data from the surface of the lower head were influenced not only by upper airway narrowing but respiratory motions, head motions, and blood flows, we developed a pre-processing algorithm to extract the voltage component originated from upper airway closing and opening. Using an EIT image reconstruction algorithm, time-series of EIT images of the upper airway were produced with a temporal resolution of 50 frames per second. Applying a postprocessing algorithm to the reconstructed EIT images, we could extract quantitative information about changes in the size and shape during upper airway closing and opening. Results of the clinical studies with seven normal subjects and ten OSA patients show the feasibility of the new method for OSA phenotyping and treatment planning.
Collapse
|
30
|
Lee MH, Jang GY, Kim YE, Yoo PJ, Wi H, Oh TI, Woo EJ. Portable multi-parameter electrical impedance tomography for sleep apnea and hypoventilation monitoring: feasibility study. Physiol Meas 2018; 39:124004. [PMID: 30523963 DOI: 10.1088/1361-6579/aaf271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Quantitative ventilation monitoring and respiratory event detection are needed for the diagnosis of sleep apnea and hypoventilation. We developed a portable device with a chest belt, nasal cannula and finger sensor to continuously acquire multi-channel signals including tidal volume, nasal pressure, respiratory effort, body position, snoring sound, ECG and SpO2. The unique feature of the device is the continuous tidal volume signal obtained from real-time lung ventilation images produced by the electrical impedance tomography (EIT) technique. APPROACH The chest belt includes 16 electrodes for real-time time-difference EIT imaging and ECG data acquisitions. It also includes a microphone, accelerometer, gyroscope, magnetometer and pressure sensor to acquire, respectively, snoring sound, respiratory effort, body position and nasal pressure signals. A separate finger sensor is used to measure SpO2. The minute ventilation signal is derived from the tidal volume signal and respiration rate. MAIN RESULTS The experimental results from a conductivity phantom, four swine subjects and one human volunteer show that the developed multi-parameter EIT device could supplement existing polysomnography (PSG) and home sleep test (HST) devices to improve the accuracy of sleep apnea diagnosis. The portable device could be also used as a new tool for continuous hypoventilation monitoring of non-intubated patients with respiratory depression. SIGNIFICANCE Following the feasibility study in this paper, future validation studies in comparison with in-lab PSG, HST and end-tidal CO2 devices are suggested to find its clinical efficacy as a sleep apnea diagnosis and hypoventilation monitoring tool.
Collapse
Affiliation(s)
- Min Hyoung Lee
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Khalighi M, Mikaeili M. A floating wide-band current source for electrical impedance tomography. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:085107. [PMID: 30184672 DOI: 10.1063/1.5028435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
The quality of reconstructed images in Electrical Impedance Tomography (EIT) depends on two essential factors: first, precision of the EIT hardware in current injection and voltage measurement and second, efficiency of its image reconstruction algorithm. Therefore the current source plays an important and a vital role in EIT instruments. Floating-load current sources constructed using sink and source drivers have better performance and higher output impedance than grounded-load (single-ended) current sources. In addition, a main feature of this kind is that the current source is not connected to the ground potential directly but via a large impedance. In this paper, we first focus on recent studies on designed EIT current sources, and after that, a practical design of a floating-load high output impedance current source-operating over a wide frequency band-will be proposed in detail. Simulation results of the proposed voltage-controlled current source (VCCS), along with some other models, will be shown and compared. At the end, the results of practical tests on the VCCS and a few EIT images, taken using our prototype EIT system coupled with the mentioned VCCS, will be illustrated which proves the quality of the proposed current source.
Collapse
Affiliation(s)
- M Khalighi
- Biomedical Engineering Group, Department of Engineering, Shahed University, Tehran, Iran
| | - M Mikaeili
- Biomedical Engineering Group, Department of Engineering, Shahed University, Tehran, Iran
| |
Collapse
|
32
|
McDermott B, O’Halloran M, Porter E, Santorelli A. Brain haemorrhage detection using a SVM classifier with electrical impedance tomography measurement frames. PLoS One 2018; 13:e0200469. [PMID: 30001401 PMCID: PMC6042738 DOI: 10.1371/journal.pone.0200469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/27/2018] [Indexed: 11/19/2022] Open
Abstract
Brain haemorrhages often require urgent treatment with a consequent need for quick and accurate diagnosis. Therefore, in this study, we investigate Support Vector Machine (SVM) classifiers for detecting brain haemorrhages using Electrical Impedance Tomography (EIT) measurement frames. A 2-layer model of the head, along with a series of haemorrhages, is designed as both numerical models and physical phantoms. EIT measurement frames, taken from an electrode array placed on the head surface, are used to train and test linear SVM classifiers. Various scenarios are implemented on both platforms to examine the impact of variables such as noise level, lesion location, lesion size, variation in electrode positioning, and variation in anatomy, on the classifier performance. The classifier performed well in numerical models (sensitivity and specificity of 90%+) with signal-to-noise ratios of 60 dB+, was independent of lesion location, and could detect lesions reliably down to the tested minimum volume of 5 ml. Slight variations in electrode layout did not affect performance. Performance was affected by variations in anatomy however, emphasising the need for large training sets covering different anatomies. The phantom models proved more challenging, with maximal sensitivity and specificity of 75% when used with the linear SVM. Finally, the performance of two more complex classifiers is briefly examined and compared to the linear SVM classifier. These results demonstrate that a radial basis function (RBF) SVM classifier and a neural network classifier can improve detection accuracy. Classifiers applied to EIT measurement frames is a novel approach for lesion detection and may offer an effective diagnostic tool clinically. A challenge is to translate the strong results from numerical models into real world phantoms and ultimately human patients, as well as the selection and development of optimal classifiers for this application.
Collapse
Affiliation(s)
- Barry McDermott
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| | - Martin O’Halloran
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| | - Emily Porter
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| | - Adam Santorelli
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
33
|
Goren N, Avery J, Dowrick T, Mackle E, Witkowska-Wrobel A, Werring D, Holder D. Multi-frequency electrical impedance tomography and neuroimaging data in stroke patients. Sci Data 2018; 5:180112. [PMID: 29969115 PMCID: PMC6029572 DOI: 10.1038/sdata.2018.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/16/2018] [Indexed: 11/26/2022] Open
Abstract
Electrical Impedance Tomography (EIT) is a non-invasive imaging technique, which has the potential to expedite the differentiation of ischaemic or haemorrhagic stroke, decreasing the time to treatment. Whilst demonstrated in simulation, there are currently no suitable imaging or classification methods which can be successfully applied to human stroke data. Development of these complex methods is hindered by a lack of quality Multi-Frequency EIT (MFEIT) data. To address this, MFEIT data were collected from 23 stroke patients, and 10 healthy volunteers, as part of a clinical trial in collaboration with the Hyper Acute Stroke Unit (HASU) at University College London Hospital (UCLH). Data were collected at 17 frequencies between 5 Hz and 2 kHz, with 31 current injections, yielding 930 measurements at each frequency. This dataset is the most comprehensive of its kind and enables combined analysis of MFEIT, Electroencephalography (EEG) and Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) data in stroke patients, which can form the basis of future research into stroke classification.
Collapse
Affiliation(s)
- Nir Goren
- Medical Physics & Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - James Avery
- Medical Physics & Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Thomas Dowrick
- Medical Physics & Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Eleanor Mackle
- Medical Physics & Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Anna Witkowska-Wrobel
- Medical Physics & Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - David Werring
- Stroke Research Centre, Department of Brain repair and Rehabilitation, University College London Institute of Neurology, London WC1N 3BG, UK
| | - David Holder
- Medical Physics & Biomedical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
34
|
Takhti M, Teng YC, Odame K. A 10 MHz Read-Out Chain for Electrical Impedance Tomography. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:222-230. [PMID: 29377810 DOI: 10.1109/tbcas.2017.2778288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents the design and implementation of a read-out chain for electrical impedance tomography (EIT) imaging. The EIT imaging approach can be incorporated to take spectral images of the tissue under study, offering an affordable, portable device for home health monitoring. A fast read-out channel covering a wide range of frequencies is a must for such applications. The proposed read-out channel comprising a programmable gain instrumentation amplifier, an analog-to-digital converter (ADC), and an ADC driver is designed and fabricated in a 0.18 m CMOS technology. The proposed read-out chain operates over the wide frequency range of 100 Hz to 10 MHz, with an average signal-to-noise ratio of more than 60 dB. The entire read-out channel consumes between 6.9 and 21.8 mW, depending on its frequency of operation.
Collapse
|
35
|
A Multitasking Electrical Impedance Tomography System Using Titanium Alloy Electrode. Int J Biomed Imaging 2017; 2017:3589324. [PMID: 29225613 PMCID: PMC5684615 DOI: 10.1155/2017/3589324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
This paper presents a multitasking electrical impedance tomography (EIT) system designed to improve the flexibility and durability of an existing EIT system. The ability of the present EIT system to detect, locate, and reshape objects was evaluated by four different experiments. The results of the study show that the system can detect and locate an object with a diameter as small as 1.5 mm in a testing tank with a diameter of 134 mm. Moreover, the results demonstrate the ability of the current system to reconstruct an image of several dielectric object shapes. Based on the results of the experiments, the programmable EIT system can adapt the EIT system for different applications without the need to implement a new EIT system, which may help to save time and cost. The setup for all the experiments consisted of a testing tank with an attached 16-electrode array made of titanium alloy grade 2. The titanium alloy electrode was used to enhance EIT system's durability and lifespan.
Collapse
|
36
|
Han B, Xu Y, Dong F. Design of current source for multi-frequency simultaneous electrical impedance tomography. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:094709. [PMID: 28964244 DOI: 10.1063/1.5004185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.
Collapse
Affiliation(s)
- Bing Han
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yanbin Xu
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Feng Dong
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
37
|
Yang Y, Jia J. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:085110. [PMID: 28863695 DOI: 10.1063/1.4999359] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.
Collapse
Affiliation(s)
- Yunjie Yang
- Agile Tomography Group, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Jiabin Jia
- Agile Tomography Group, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| |
Collapse
|
38
|
Jeong YJ, Oh TI, Woo EJ, Kim KJ. Integration of piezo-capacitive and piezo-electric nanoweb based pressure sensors for imaging of static and dynamic pressure distribution. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:21-24. [PMID: 29059801 DOI: 10.1109/embc.2017.8036753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.
Collapse
|
39
|
Jang GY, Kim YB, Wi H, Oh TI, Chung CR, Suh GY, Woo EJ. Imaging of regional air distributions in porcine lungs using high-performance electrical impedance tomography system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:349-351. [PMID: 29059882 DOI: 10.1109/embc.2017.8036834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrical impedance tomography (EIT) allows functional imaging of regional lung ventilation for real-time bedside monitoring of mechanically ventilated patients. Images showing time-changes of regional air distributions in the lungs can provide valuable diagnostic information for lung protective mechanical ventilation. This paper reports in vivo porcine imaging experiments of regional lung ventilation using a 16-channel parallel EIT system. Real-time time-difference chest images of 10 animals were reconstructed during mechanical ventilations with a temporal resolution of 50 frame/s. Analyzing the images together with the airway volume-pressure information from the mechanical ventilator, we could successfully produce regional compliance images at PEEP (positive end expiratory pressure) titration. From in vivo animal experiments, we propose the method as a continuous monitoring means for LPV (lung protective ventilation).
Collapse
|
40
|
Murphy EK, Takhti M, Skinner J, Halter RJ, Odame K. Signal-to-Noise Ratio Analysis of a Phase-Sensitive Voltmeter for Electrical Impedance Tomography. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:360-369. [PMID: 27849549 DOI: 10.1109/tbcas.2016.2601692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, thorough analysis along with mathematical derivations of the matched filter for a voltmeter used in electrical impedance tomography systems are presented. The effect of the random noise in the system prior to the matched filter, generated by other components, are considered. Employing the presented equations allow system/circuit designers to find the maximum tolerable noise prior to the matched filter that leads to the target signal-to-noise ratio (SNR) of the voltmeter, without having to over-design internal components. A practical model was developed that should fall within 2 dB and 5 dB of the median SNR measurements of signal amplitude and phase, respectively. In order to validate our claims, simulation and experimental measurements have been performed with an analog-to-digital converter (ADC) followed by a digital matched filter, while the noise of the whole system was modeled as the input referred at the ADC input. The input signal was contaminated by a known value of additive white Gaussian noise (AWGN) noise, and the noise level was swept from 3% to 75% of the least significant bit (LSB) of the ADC. Differences between experimental and both simulated and analytical SNR values were less than 0.59 and 0.35 dB for RMS values ≥ 20% of an LSB and less than 1.45 and 2.58 dB for RMS values < 20% of an LSB for the amplitude and phase, respectively. Overall, this study provides a practical model for circuit designers in EIT, and a more accurate error analysis that was previously missing in EIT literature.
Collapse
|
41
|
Avery J, Dowrick T, Faulkner M, Goren N, Holder D. A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System. SENSORS (BASEL, SWITZERLAND) 2017; 17:E280. [PMID: 28146122 PMCID: PMC5336119 DOI: 10.3390/s17020280] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/25/2017] [Indexed: 11/16/2022]
Abstract
A highly versatile Electrical Impedance Tomography (EIT) system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication.
Collapse
Affiliation(s)
- James Avery
- Department Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK.
| | - Thomas Dowrick
- Department Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK.
| | - Mayo Faulkner
- Department Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK.
| | - Nir Goren
- Department Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK.
| | - David Holder
- Department Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
42
|
Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy. SENSORS 2016; 16:s16081159. [PMID: 27463721 PMCID: PMC5017325 DOI: 10.3390/s16081159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
This paper presents a multi-channel dual-mode CMOS analogue front-end (AFE) for electrochemical and bioimpedance analysis. Current-mode and voltage-mode readouts, integrated on the same chip, can provide an adaptable platform to correlate single-cell biosensor studies with large-scale tissue or organ analysis for real-time cancer detection, imaging and characterization. The chip, implemented in a 180-nm CMOS technology, combines two current-readout (CR) channels and four voltage-readout (VR) channels suitable for both bipolar and tetrapolar electrical impedance spectroscopy (EIS) analysis. Each VR channel occupies an area of 0.48 mm 2 , is capable of an operational bandwidth of 8 MHz and a linear gain in the range between -6 dB and 42 dB. The gain of the CR channel can be set to 10 kΩ, 50 kΩ or 100 kΩ and is capable of 80-dB dynamic range, with a very linear response for input currents between 10 nA and 100 μ A. Each CR channel occupies an area of 0.21 mm 2 . The chip consumes between 530 μ A and 690 μ A per channel and operates from a 1.8-V supply. The chip was used to measure the impedance of capacitive interdigitated electrodes in saline solution. Measurements show close matching with results obtained using a commercial impedance analyser. The chip will be part of a fully flexible and configurable fully-integrated dual-mode EIS system for impedance sensors and bioimpedance analysis.
Collapse
|
43
|
Bera TK, Nagaraju J, Lubineau G. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems. J Vis (Tokyo) 2016. [DOI: 10.1007/s12650-016-0351-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Jehl M, Avery J, Malone E, Holder D, Betcke T. Correcting electrode modelling errors in EIT on realistic 3D head models. Physiol Meas 2015; 36:2423-42. [PMID: 26502162 DOI: 10.1088/0967-3334/36/12/2423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electrical impedance tomography (EIT) is a promising medical imaging technique which could aid differentiation of haemorrhagic from ischaemic stroke in an ambulance. One challenge in EIT is the ill-posed nature of the image reconstruction, i.e., that small measurement or modelling errors can result in large image artefacts. It is therefore important that reconstruction algorithms are improved with regard to stability to modelling errors. We identify that wrongly modelled electrode positions constitute one of the biggest sources of image artefacts in head EIT. Therefore, the use of the Fréchet derivative on the electrode boundaries in a realistic three-dimensional head model is investigated, in order to reconstruct electrode movements simultaneously to conductivity changes. We show a fast implementation and analyse the performance of electrode position reconstructions in time-difference and absolute imaging for simulated and experimental voltages. Reconstructing the electrode positions and conductivities simultaneously increased the image quality significantly in the presence of electrode movement.
Collapse
Affiliation(s)
- Markus Jehl
- University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
45
|
A FPGA-Based Broadband EIT System for Complex Bioimpedance Measurements—Design and Performance Estimation. ELECTRONICS 2015. [DOI: 10.3390/electronics4030507] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Wi H, McEwan AL, Lam V, Kim HJ, Woo EJ, Oh TI. Real-time conductivity imaging of temperature and tissue property changes during radiofrequency ablation: An ex vivo model using weighted frequency difference. Bioelectromagnetics 2015; 36:277-86. [DOI: 10.1002/bem.21904] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 02/05/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Hun Wi
- Department of Biomedical Engineering; Kyung Hee University; Yongin Korea
- Department of Computational Science and Engineering; Yonsei University; Seoul Korea
| | - Alistair Lee McEwan
- Department of Biomedical Engineering; Kyung Hee University; Yongin Korea
- The School of Electrical and Information Engineering; The University of Sydney; Sydney Australia
| | - Vincent Lam
- Faculty of Medicine; The University of Sydney; Sydney Australia
| | - Hyung Joong Kim
- Department of Biomedical Engineering; Kyung Hee University; Yongin Korea
| | - Eung Je Woo
- Department of Biomedical Engineering; Kyung Hee University; Yongin Korea
| | - Tong In Oh
- Department of Biomedical Engineering; Kyung Hee University; Yongin Korea
| |
Collapse
|
47
|
Lee EJ, Wi H, McEwan AL, Farooq A, Sohal H, Woo EJ, Seo JK, Oh TI. Design of a microscopic electrical impedance tomography system for 3D continuous non-destructive monitoring of tissue culture. Biomed Eng Online 2014; 13:142. [PMID: 25286865 PMCID: PMC4196084 DOI: 10.1186/1475-925x-13-142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-destructive continuous monitoring of regenerative tissue is required throughout the entire period of in vitro tissue culture. Microscopic electrical impedance tomography (micro-EIT) has the potential to monitor the physiological state of tissues by forming three-dimensional images of impedance changes in a non-destructive and label-free manner. We developed a new micro-EIT system and report on simulation and experimental results of its macroscopic model. METHODS We propose a new micro-EIT system design using a cuboid sample container with separate current-driving and voltage sensing electrodes. The top is open for sample manipulations. We used nine gold-coated solid electrodes on each of two opposing sides of the container to produce multiple linearly independent internal current density distributions. The 360 voltage sensing electrodes were placed on the other sides and base to measure induced voltages. Instead of using an inverse solver with the least squares method, we used a projected image reconstruction algorithm based on a logarithm formulation to produce projected images. We intended to improve the quality and spatial resolution of the images by increasing the number of voltage measurements subject to a few injected current patterns. We evaluated the performance of the micro-EIT system with a macroscopic physical phantom. RESULTS The signal-to-noise ratio of the developed micro-EIT system was 66 dB. Crosstalk was in the range of -110.8 to -90.04 dB. Three-dimensional images with consistent quality were reconstructed from physical phantom data over the entire domain. From numerical and experimental results, we estimate that at least 20 × 40 electrodes with 120 μm spacing are required to monitor the complex shape of ingrowth neotissue inside a scaffold with 300 μm pore. CONCLUSION The experimental results showed that the new micro-EIT system with a reduced set of injection current patterns and a large number of voltage sensing electrodes can be potentially used for tissue culture monitoring. Numerical simulations demonstrated that the spatial resolution could be improved to the scale required for tissue culture monitoring. Future challenges include manufacturing a bioreactor-compatible container with a dense array of electrodes and a larger number of measurement channels that are sensitive to the reduced voltage gradients expected at a smaller scale.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tong In Oh
- Department of Biomedical Engineering and Impedance Imaging Research Center, Kyung Hee University, 46-701 Yongin, Korea.
| |
Collapse
|
48
|
Sohal H, Wi H, McEwan AL, Woo EJ, Oh TI. Electrical impedance imaging system using FPGAs for flexibility and interoperability. Biomed Eng Online 2014; 13:126. [PMID: 25174492 PMCID: PMC4158054 DOI: 10.1186/1475-925x-13-126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 08/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modern EIT systems require simultaneously operating multiple functions for flexibility, interoperability, and clinical applicability. To implement versatile functions, expandable design and implementation tools are needed. On the other hand, it is necessary to develop an ASIC-based EIT system to maximize its performance. Since the ASIC design is expensive and unchangeable, we can use FPGAs as a prior step to the digital ASIC design and carefully classify which functions should be included in the ASIC. In this paper, we describe the details of the FPGA design adopted in the KHU Mark2.5 EIT system. METHODS We classified all functions of the KHU Mark2.5 EIT system into two categories. One is the control and processing of current injection and voltage measurement. The other includes the collection and management of the multi-channel data with timing controls for internal and external interconnections. We describe the implementation of these functions in two kinds of FPGAs called the impedance measurement module (IMM) FPGA and the intra-network controller FPGA. RESULTS We present functional and timing simulations of the key functions in the FPGAs. From phantom and animal imaging experiments, we show that multiple functions of the system are successfully implemented in the FPGAs. As examples, we demonstrate fast multi-frequency imaging and ECG-gated imaging. CONCLUSION Given an analog design of a parallel EIT system, it is important to optimize its digital design to minimize systematic artifacts and maximize performance. This paper described technical details of the FPGA-based fully parallel EIT system called the KHU Mark2.5 with numerous functions needed for clinical applications. Two kinds of FPGAs described in this paper can be used as a basis for future EIT digital ASIC designs for better application-specific human interface as well as hardware performance.
Collapse
Affiliation(s)
| | | | | | | | - Tong In Oh
- Department of Biomedical Engineering and Impedance Imaging Research Center, Kyung Hee University, 446-701 Yongin, Korea.
| |
Collapse
|
49
|
Electrical impedance spectroscopy for electro-mechanical characterization of conductive fabrics. SENSORS 2014; 14:9738-54. [PMID: 24892493 PMCID: PMC4118341 DOI: 10.3390/s140609738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/17/2022]
Abstract
When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS). We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor.
Collapse
|
50
|
Kwon H, McEwan AL, Oh TI, Farooq A, Woo EJ, Seo JK. A local region of interest imaging method for electrical impedance tomography with internal electrodes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:964918. [PMID: 23935705 PMCID: PMC3722843 DOI: 10.1155/2013/964918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 06/01/2013] [Accepted: 06/10/2013] [Indexed: 11/18/2022]
Abstract
Electrical Impedance Tomography (EIT) is a very attractive functional imaging method despite the low sensitivity and resolution. The use of internal electrodes with the conventional reconstruction algorithms was not enough to enhance image resolution and accuracy in the region of interest (ROI). We propose a local ROI imaging method with internal electrodes developed from careful analysis of the sensitivity matrix that is designed to reduce the sensitivity of the voxels outside the local region and optimize the sensitivity of the voxel inside the local region. We perform numerical simulations and physical measurements to demonstrate the localized EIT imaging method. In preliminary results with multiple objects we show the benefits of using an internal electrode and the improved resolution due to the local ROI image reconstruction method. The sensitivity is further increased by allowing the surface electrodes to be unevenly spaced with a higher density of surface electrodes near the ROI. Also, we analyse how much the image quality is improved using several performance parameters for comparison. While these have not yet been studied in depth, it convincingly shows an improvement in local sensitivity in images obtained with an internal electrode in comparison to a standard reconstruction method.
Collapse
Affiliation(s)
- Hyeuknam Kwon
- Department of Computational Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Alistair L. McEwan
- The School of Electrical and Information Engineering, The University of Sydney, Sydney NSW 2006, Australia
- Impedance Imaging Research Center and Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Tong In Oh
- Impedance Imaging Research Center and Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Adnan Farooq
- Impedance Imaging Research Center and Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Eung Je Woo
- Impedance Imaging Research Center and Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Jin Keun Seo
- Department of Computational Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|