1
|
Nwokoye II, Triantis IF. A 3 MHz Low-Error Adaptive Howland Current Source for High-Frequency Bioimpedance Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:4357. [PMID: 39001136 PMCID: PMC11243945 DOI: 10.3390/s24134357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Bioimpedance is a diagnostic sensing method used in medical applications, ranging from body composition assessment to detecting skin cancer. Commonly, discrete-component (and at times integrated) circuit variants of the Howland Current Source (HCS) topology are employed for injection of an AC current. Ideally, its amplitude should remain within 1% of its nominal value across a frequency range, and that nominal value should be programmable. However, the method's applicability and accuracy are hindered due to the current amplitude diminishing at frequencies above 100 kHz, with very few designs accomplishing 1 MHz, and only at a single nominal amplitude. This paper presents the design and implementation of an adaptive current source for bioimpedance applications employing automatic gain control (AGC). The "Adaptive Howland Current Source" (AHCS) was experimentally tested, and the results indicate that the design can achieve less than 1% amplitude error for both 1 mA and 100 µA currents for bandwidths up to 3 MHz. Simulations also indicate that the system can be designed to achieve up to 19% noise reduction relative to the most common HCS design. AHCS addresses the need for high bandwidth AC current sources in bioimpedance spectroscopy, offering automatic output current compensation without constant recalibration. The novel structure of AHCS proves crucial in applications requiring higher β-dispersion frequencies exceeding 1 MHz, where greater penetration depths and better cell status assessment can be achieved, e.g., in the detection of skin or breast cancer.
Collapse
Affiliation(s)
| | - Iasonas F. Triantis
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK;
| |
Collapse
|
2
|
Li Y, Wang N, Fan LF, Zhao PF, Li JH, Huang L, Wang ZY. Robust electrical impedance tomography for biological application: A mini review. Heliyon 2023; 9:e15195. [PMID: 37089335 PMCID: PMC10113865 DOI: 10.1016/j.heliyon.2023.e15195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Electrical impedance tomography (EIT) has been used by researchers across several areas because of its low-cost and no-radiation properties. Researchers use complex conductivity in bioimpedance experiments to evaluate changes in various indicators within the image target. The diverse volumes and edges of biological tissues and the large impedance range impose dedicated demands on hardware design. The EIT hardware with a high signal-to-noise ratio (SNR), fast scanning and suitable for the impedance range of the image target is a fundamental foundation that EIT research needs to be equipped with. Understanding the characteristics of this technique and state-of-the-art design will accelerate the development of the robust system and provide a guidance for the superior performance of next-generation EIT. This review explores the hardware strategies for EIT proposed in the literature.
Collapse
|
3
|
Nguyen XT, Ali M, Lee JW. 3.6 mW Active-Electrode ECG/ETI Sensor System Using Wideband Low-Noise Instrumentation Amplifier and High Impedance Balanced Current Driver. SENSORS (BASEL, SWITZERLAND) 2023; 23:2536. [PMID: 36904738 PMCID: PMC10007594 DOI: 10.3390/s23052536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
An active electrode (AE) and back-end (BE) integrated system for enhanced electrocardiogram (ECG)/electrode-tissue impedance (ETI) measurement is proposed. The AE consists of a balanced current driver and a preamplifier. To increase the output impedance, the current driver uses a matched current source and sink, which operates under negative feedback. To increase the linear input range, a new source degeneration method is proposed. The preamplifier is realized using a capacitively-coupled instrumentation amplifier (CCIA) with a ripple-reduction loop (RRL). Compared to the traditional Miller compensation, active frequency feedback compensation (AFFC) achieves bandwidth extension using the reduced size of the compensation capacitor. The BE performs three types of signal sensing: ECG, band power (BP), and impedance (IMP) data. The BP channel is used to detect the Q-, R-, and S-wave (QRS) complex in the ECG signal. The IMP channel measures the resistance and reactance of the electrode-tissue. The integrated circuits for the ECG/ETI system are realized in the 180 nm CMOS process and occupy a 1.26 mm2 area. The measured results show that the current driver supplies a relatively high current (>600 μApp) and achieves a high output impedance (1 MΩ at 500 kHz). The ETI system can detect resistance and capacitance in the ranges of 10 mΩ-3 kΩ and 100 nF-100 μF, respectively. The ECG/ETI system consumes 3.6 mW using a single 1.8 V supply.
Collapse
|
4
|
Kweon SJ, Rafi AK, Cheon SI, Je M, Ha S. On-Chip Sinusoidal Signal Generators for Electrical Impedance Spectroscopy: Methodological Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:337-360. [PMID: 35482701 DOI: 10.1109/tbcas.2022.3171163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper reviews architectures and circuit implementations of on-chip sinusoidal signal generators (SSGs) for electrical impedance spectroscopy (EIS) applications. In recent years, there have been increasing interests in on-chip EIS systems, which measure a target material's impedance spectrum over a frequency range. The on-chip implementation allows EIS systems to have low power and small form factor, enabling various biomedical applications. One of the key building blocks of on-chip EIS systems is on-chip SSG, which determines the frequency range and the analysis precision of the whole EIS system. On-chip SSGs are generally required to have high linearity, wide frequency range, and high power and area efficiency. They are typically composed of three stages in general: waveform generation, linearity enhancement, and current injection. First, a sinusoidal waveform should be generated in SSGs. The generated waveform's frequency should be accurately adjustable over a wide range. The firstly generated waveform may not be perfectly linear, including unwanted harmonics. In the following linearity-enhancement step, these harmonics are attenuated by using filters typically. As the linearity of the waveform is improved, the precision of the EIS system gets ensured. Lastly, the filtered voltage waveform is now converted to a current by a current driver. Then, the current sinusoidal signal is injected into the target impedance. This review discusses the principles, advantages, and disadvantages of various techniques applied to each step in state-of-the-art on-chip SSGs. In addition, state-of-the-art designs are compared and summarized.
Collapse
|
5
|
Cheon SI, Kweon SJ, Kim Y, Koo J, Ha S, Je M. A Polar-Demodulation-Based Impedance-Measurement IC Using Frequency-Shift Technique With Low Power Consumption and Wide Frequency Range. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1210-1220. [PMID: 34914595 DOI: 10.1109/tbcas.2021.3135836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, we present a new impedance measurement integrated circuit (IC) for achieving a wideband coverage up to 10 MHz and low power consumption. A frequency-shift technique is applied to down-shift the input frequency, which ranges from 100 kHz to 10 MHz, into an intermediate frequency of 10 kHz, while the frequency-shifting is bypassed when the input frequency falls in the range from 100 Hz to 100 kHz. It results in 100 times relaxation of the requirement on the instrumentation amplifier (IA) bandwidth and the comparator delay, greatly reducing overall power consumption. The proposed IC employs the polar demodulation structure with a reference resistor that provides reference timing information avoiding any synchronization issue with the transmitter. In order to compensate for the comparator delay and nonlinearity of the IA, the reference magnitude measurement path is added, making only the mismatch of the circuit affects the accuracy. This allows for employing the auto-zeroing technique that can remove the offset but increase the absolute delay by using an additional capacitor to the comparator. The chip fabricated in a 0.18- μm CMOS technology consumes the power of 756 μW while covering the measurement frequency range from 100 Hz to 10 MHz and exhibiting the maximum magnitude and phase errors of 1.1 % and 1.9 °, respectively.
Collapse
|
6
|
Analysis, Simulation, and Development of a Low-Cost Fully Active-Electrode Bioimpedance Measurement Module. TECHNOLOGIES 2021. [DOI: 10.3390/technologies9030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A low-cost 1 kHz–400 kHz operating frequency fully-active electrode bioimpedance measurement module, based on Howland current source, is presented in this paper. It includes a buffered positive feedback Howland current source, implemented with operational amplifiers, as well as an AD8421 instrumentation amplifier, for the differential voltage measurements. Each active electrode module can be connected to others, assembling a wearable active electrode module array. From this array, 2 electrodes can be selected to be driven from a THS413 fully differential amplifier, activating a mirrored Howland current source. This work performs a complete circuit analysis, verified with MATLAB and SPICE simulations of the current source’s transconductance and output impedance over the frequency range between 1 kHz and 1 MHz. Resistors’ tolerances, possible mismatches, and the operational amplifiers’ non-idealities are considered in both the analysis and simulations. A comparison study between four selected operational amplifiers (ADA4622, OPA2210, AD8034, and AD8672) is additionally performed. The module is also hardware-implemented and tested in the lab for all four operational amplifiers and the transconductance is measured for load resistors of 150 Ω, 660 Ω, and 1200 Ω. Measurements showed that, using the AD8034 operational amplifier, the current source’s transconductance remains constant for frequencies up to 400 KHz for a 150 Ω load and 250 kHz for a 1200 Ω load, while lower performance is achieved with the other 3 operational amplifiers. Finally, transient simulations and measurements are performed at the AD8421 output for bipolar measurements on the 3 aforementioned load resistor values.
Collapse
|
7
|
Rao AJ, Murphy EK, Shahghasemi M, Odame KM. Current-conveyor-based wide-band current driver for electrical impedance tomography. Physiol Meas 2019; 40:034005. [PMID: 30831568 DOI: 10.1088/1361-6579/ab0c3c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In this paper a wide-band integrated current driver for electrical impedance tomography (EIT) is presented. The application is primarily for prostate and breast cancer detection which require the tissue to be interrogated at frequencies up to 10 MHz while achieving low harmonic distortion and high accuracy. APPROACH The current driver is based on current conveyor architecture and can deliver 1.2 mA of peak to peak ac current between frequencies of 100 Hz-10 MHz. It is fabricated in CMOS 0.18 [Formula: see text]m technology with a power supply of 3.3 V, and occupies a core area of 0.26 [Formula: see text]. MAIN RESULTS The measured harmonic distortion for a peak current of 1.2 mA is <[Formula: see text] for frequencies less than 100 kHz, and increases to [Formula: see text] at 10 MHz. The measured output impedance of the current driver is 101 k[Formula: see text] at 1 MHz and 19.5 k[Formula: see text] at 10 MHz. SIGNIFICANCE The circuit is suitable for high frequency active electrode applications.
Collapse
Affiliation(s)
- A J Rao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | | | | | | |
Collapse
|
8
|
Takhti M, Odame K. Structured Design Methodology to Achieve a High SNR Electrical Impedance Tomography. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:364-375. [PMID: 30668480 DOI: 10.1109/tbcas.2019.2894157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, we present a methodology for designing the main circuit building blocks of an electrical impedance tomography (EIT) system. In particular, we derive equations that map system-level EIT specifications to the performance requirements of each circuit block. We also review the circuit architectures that are best suited for meeting a given set of performance requirements. Our proposed design methodology is focused on maximizing the EIT system's signal-to-noise ratio while minimizing total power consumption.
Collapse
|
9
|
Analog Integrated Current Drivers for Bioimpedance Applications: A Review. SENSORS 2019; 19:s19040756. [PMID: 30781772 PMCID: PMC6412483 DOI: 10.3390/s19040756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022]
Abstract
An important component in bioimpedance measurements is the current driver, which can operate over a wide range of impedance and frequency. This paper provides a review of integrated circuit analog current drivers which have been developed in the last 10 years. Important features for current drivers are high output impedance, low phase delay, and low harmonic distortion. In this paper, the analog current drivers are grouped into two categories based on open loop or closed loop designs. The characteristics of each design are identified.
Collapse
|
10
|
Wu Y, Jiang D, Liu X, Bayford R, Demosthenous A. A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1322-1333. [PMID: 30371386 DOI: 10.1109/tbcas.2018.2878395] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm2). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩp-p.
Collapse
|
11
|
Hersek S, Töreyin H, Inan OT. A Robust System for Longitudinal Knee Joint Edema and Blood Flow Assessment Based on Vector Bioimpedance Measurements. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:545-555. [PMID: 26841413 DOI: 10.1109/tbcas.2015.2487300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a robust vector bioimpedance measurement system for longitudinal knee joint health assessment, capable of acquiring high resolution static (slowly varying over the course of hours to days) and dynamic (rapidly varying on the order of milli-seconds) bioresistance and bioreactance signals. Occupying an area of 78×90 mm(2) and consuming 0.25 W when supplied with ±5 V, the front-end achieves a dynamic range of 345 Ω and noise floor of 0.018 mΩrms (resistive) and 0.055 mΩrms (reactive) within a bandwidth of 0.1-20 Hz. A microcontroller allows real-time calibration to minimize errors due to environmental variability (e.g., temperature) that can be experienced outside of lab environments, and enables data storage on a micro secure digital card. The acquired signals are then processed using customized physiology-driven algorithms to extract musculoskeletal (edema) and cardiovascular (local blood volume pulse) features from the knee joint. In a feasibility study, we found statistically significant differences between the injured and contralateral static knee impedance measures for two subjects with recent unilateral knee injury compared to seven controls. Specifically, the impedance was lower for the injured knees, supporting the physiological expectations for increased edema and damaged cell membranes. In a second feasibility study, we demonstrate the sensitivity of the dynamic impedance measures with a cold-pressor test, with a 20 mΩ decrease in the pulsatile resistance associated with increased downstream peripheral vascular resistance. The proposed system will serve as a foundation for future efforts aimed at quantifying joint health status continuously during normal daily life.
Collapse
|
12
|
Langlois PJ, Neshatvar N, Demosthenous A. A Sinusoidal Current Driver With an Extended Frequency Range and Multifrequency Operation for Bioimpedance Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:401-411. [PMID: 25148669 DOI: 10.1109/tbcas.2014.2332136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper describes an alternative sinusoidal current driver suitable for bioimpedance applications where high frequency operation is required. The circuit is based on a transconductor and provides current outputs with low phase error for frequencies around its pole frequency. This extends the upper frequency operational limit of the current driver. Multifrequency currents can be generated where each individual frequency is phase corrected. Analysis of the circuit is presented together with simulation and experimental results which demonstrate the proof of concept for both single and dual frequency current drivers. Measurements on a discrete test version of the circuit demonstrate a phase reduction from 25° to 4° at 3 MHz for 2 mAp-p output current. The output impedance of the current driver is essentially constant at about 1.1 M Ω over a frequency range of 100 kHz to 5 MHz due to the introduction of the phase compensation. The compensation provides a bandwidth increase of a factor of about six for a residual phase delay of 4°.
Collapse
|
13
|
Guermandi M, Cardu R, Franchi Scarselli E, Guerrieri R. Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:21-33. [PMID: 24860040 DOI: 10.1109/tbcas.2014.2311836] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The IC presented integrates the front-end for EEG and Electrical Impedance Tomography (EIT) acquisition on the electrode, together with electrode-skin contact impedance monitoring and EIT current generation, so as to improve signal quality and integration of the two techniques for brain imaging applications. The electrode size is less than 2 cm(2) and only 4 wires connect the electrode to the back-end. The readout circuit is based on a Differential Difference Amplifier and performs single-ended amplification and frequency division multiplexing of the three signals that are sent to the back-end on a single wire which also provides power supply. Since the system's CMRR is a function of each electrode's gain accuracy, an analysis is performed on how this is influenced by mismatches in passive and active components. The circuit is fabricated in 0.35 μm CMOS process and occupies 4 mm(2), the readout circuit consumes 360 μW, the input referred noise for bipolar EEG signal acquisition is 0.56 μVRMS between 0.5 and 100 Hz and almost halves if only EEG signal is acquired.
Collapse
|