1
|
Al-Suhaimi EA, Aljafary MA, Alfareed TM, Alshuyeh HA, Alhamid GM, Sonbol B, Almofleh A, Alkulaifi FM, Altwayan RK, Alharbi JN, Binmahfooz NM, Alhasani ES, Tombuloglu H, Rasdan AS, lardhi AA, Baykal A, Homeida AM. Nanogenerator-Based Sensors for Energy Harvesting From Cardiac Contraction. FRONTIERS IN ENERGY RESEARCH 2022; 10. [DOI: 10.3389/fenrg.2022.900534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Biomedical electric devices provide great assistance for health and life quality. However, their maintainable need remains a serious issue for the restricted duration of energy storage. Therefore, scientists are investigating alternative technologies such as nanogenerators that could harvest the mechanical energy of the human heart to act as the main source of energy for the pacemaker. Cardiac contraction is not a source for circulation; it utilizes body energy as an alternative energy source to recharge pacemaker devices. This is a key biomedical innovation to protect patients’ lives from possible risks resulting from repeated surgery. A batteryless pacemaker is possible via an implantable energy collecting tool, exchanging the restriction of the current batteries for a sustainable self-energy resource technique. In this context, the physiology of heart energy in the preservation of blood distribution pulse generation and the effects of cardiac hormones on the heart’s pacemaker shall be outlined. In this review, we summarized different technologies for the implantable energy harvesters and self-powered implantable medical devices with emphasis on nanogenerator-based sensors for energy harvesting from cardiac contraction. It could conclude that recent hybrid bio-nanogenerator systems of both piezoelectric and triboelectric devices based on biocompatible biomaterials and clean energy are promising biomedical devices for harvesting energy from cardiac and body movement. These implantable and wearable nanogenerators become self-powered biomedical tools with high efficacy, durability, thinness, flexibility, and low cost. Although many studies have proven their safety, there is a need for their long-term biosafety and biocompatibility. A further note on the biocompatibility of bio-generator sensors shall be addressed.
Collapse
|
2
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Kondapalli SH, Chakrabartty S. Sub-Nanowatt Ultrasonic Bio-Telemetry Using B-Scan Imaging. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2021; 2:17-25. [PMID: 33748769 PMCID: PMC7978362 DOI: 10.1109/ojemb.2021.3053174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Goal: The objective of this paper is to investigate if the use of a B-scan ultrasound imaging system can reduce the energy requirements, and hence the power-dissipation requirements to support wireless bio-telemetry at an implantable device. Methods: B-scan imaging data were acquired using a commercial 256-element linear ultrasound transducer array which was driven by a commercial echoscope. As a transmission medium, we used a water-bath and the operation of the implantable device was emulated using a commercial-off-the-shelf micro-controller board. The telemetry parameters (e.g. transmission rate and transmission power) were wirelessly controlled using a two-way radio-frequency transceiver. B-scan imaging data were post-processed using a maximum-threshold decoder and the quality of the ultrasonic telemetry link was quantified in terms of its bit-error-rate (BER). Results: Measured results show that a reliable B-scan communication link with an implantable device can be achieved at transmission power levels of 100 pW and for implantation depths greater than 10 cm. Conclusions: In this paper we demonstrated that a combination of B-scan imaging and a simple decoding algorithm can significantly reduce the energy-budget requirements for reliable ultrasonic telemetry.
Collapse
Affiliation(s)
- Sri Harsha Kondapalli
- Department of Electrical and Systems Engineering at Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Shantanu Chakrabartty
- Department of Electrical and Systems Engineering at Washington University in St. Louis, St. Louis, MO 63130 USA
| |
Collapse
|
4
|
Jiang D, Shi B, Ouyang H, Fan Y, Wang ZL, Li Z. Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. ACS NANO 2020; 14:6436-6448. [PMID: 32459086 DOI: 10.1021/acsnano.9b08268] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Implantable energy harvesters (IEHs) are the crucial component for self-powered devices. By harvesting energy from organisms such as heartbeat, respiration, and chemical energy from the redox reaction of glucose, IEHs are utilized as the power source of implantable medical electronics. In this review, we summarize the IEHs and self-powered implantable medical electronics (SIMEs). The typical IEHs are nanogenerators, biofuel cells, electromagnetic generators, and transcutaneous energy harvesting devices that are based on ultrasonic or optical energy. A benefit from these technologies of energy harvesting in vivo, SIMEs emerged, including cardiac pacemakers, nerve/muscle stimulators, and physiological sensors. We provide perspectives on the challenges and potential solutions associated with IEHs and SIMEs. Beyond the energy issue, we highlight the implanted devices that show the therapeutic function in vivo.
Collapse
Affiliation(s)
- Dongjie Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bojing Shi
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Han Ouyang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|