1
|
Coppola A, Zorzetto G, Piacentino F, Bettoni V, Pastore I, Marra P, Perani L, Esposito A, De Cobelli F, Carcano G, Fontana F, Fiorina P, Venturini M. Imaging in experimental models of diabetes. Acta Diabetol 2022; 59:147-161. [PMID: 34779949 DOI: 10.1007/s00592-021-01826-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022]
Abstract
Translational medicine, experimental medicine and experimental animal models, in particular mice and rats, represent a multidisciplinary field that has made it possible to achieve, in the last decades, important scientific progress. In this review, we have summarized the most frequently used imaging animal models, such as ultrasound (US), micro-CT, MRI and the optical imaging methods, and their main implications in diagnostic and therapeutic fields, with a particular focus on diabetes mellitus, a multifactorial disease extremely widespread among the general population.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy.
| | | | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Valeria Bettoni
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paolo Marra
- Department of Diagnostic Radiology, Giovanni XXIII Hospital, Milano-Bicocca University, Bergamo, Italy
| | - Laura Perani
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Francesco De Cobelli
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Giulio Carcano
- Insubria University, Varese, Italy
- General, Emergency, and Transplant Surgery Unit, ASST Settelaghi, Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Paolo Fiorina
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| |
Collapse
|
2
|
Herrmann AM, Meckel S, Gounis MJ, Kringe L, Motschall E, Mülling C, Boltze J. Large animals in neurointerventional research: A systematic review on models, techniques and their application in endovascular procedures for stroke, aneurysms and vascular malformations. J Cereb Blood Flow Metab 2019; 39:375-394. [PMID: 30732549 PMCID: PMC6421248 DOI: 10.1177/0271678x19827446] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuroendovascular procedures have led to breakthroughs in the treatment of ischemic stroke, intracranial aneurysms, and intracranial arteriovenous malformations. Due to these substantial successes, there is continuous development of novel and refined therapeutic approaches. Large animal models feature various conceptual advantages in translational research, which makes them appealing for the development of novel endovascular treatments. However, the availability and role of large animal models have not been systematically described so far. Based on comprehensive research in two databases, this systematic review describes current large animal models in neuroendovascular research including their primary use. It may therefore serve as a compact compendium for researchers entering the field or looking for opportunities to refine study concepts. It also describes particular applications for ischemic stroke and aneurysm therapy, as well as for the treatment of arteriovenous malformations. It focuses on most promising study designs and readout parameters, as well as on important pitfalls in endovascular translational research including ways to circumvent them.
Collapse
Affiliation(s)
- Andrea M Herrmann
- 1 Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,2 Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Stephan Meckel
- 1 Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthew J Gounis
- 3 Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Leona Kringe
- 1 Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,2 Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Edith Motschall
- 4 Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Christoph Mülling
- 2 Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Johannes Boltze
- 5 School of Life Sciences, University of Warwick, UK.,6 Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology and Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Perfusion Angiography in Acute Ischemic Stroke. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:2478324. [PMID: 27446232 PMCID: PMC4947508 DOI: 10.1155/2016/2478324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/26/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
Abstract
Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases. For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high spatial resolution. This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood volume (CBV), mean transit time (MTT), time-to-peak (TTP), and Tmax, are computed using a bolus tracking method based on the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences and might be used to evaluate the impact of endovascular interventions more precisely.
Collapse
|
4
|
Clark DP, Badea CT. Spectral diffusion: an algorithm for robust material decomposition of spectral CT data. Phys Med Biol 2014; 59:6445-66. [PMID: 25296173 DOI: 10.1088/0031-9155/59/21/6445] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.
Collapse
Affiliation(s)
- Darin P Clark
- Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
5
|
Clark DP, Badea CT. Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med 2014; 30:619-34. [PMID: 24974176 PMCID: PMC4138257 DOI: 10.1016/j.ejmp.2014.05.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 02/06/2023] Open
Abstract
Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g., measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality.
Collapse
Affiliation(s)
- D P Clark
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710, USA
| | - C T Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Kampf T, Helluy X, Gutjahr FT, Winter P, Meyer CB, Jakob PM, Bauer WR, Ziener CH. Myocardial perfusion quantification using the T
1
-based FAIR-ASL method: The influence of heart anatomy, cardiopulmonary blood flow and look-locker readout. Magn Reson Med 2013; 71:1784-97. [DOI: 10.1002/mrm.24843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 05/07/2013] [Accepted: 05/22/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Thomas Kampf
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Xavier Helluy
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Fabian T. Gutjahr
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Patrick Winter
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Cord B. Meyer
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Peter M. Jakob
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Wolfgang R. Bauer
- Universität Würzburg, Medizinische Klinik und Poliklinik I; Oberdürrbacher Straße 6 Würzburg Germany
| | - Christian H. Ziener
- German Cancer Research Center DKFZ; Im Neuenheimer Feld 280 Heidelberg Germany
| |
Collapse
|
7
|
Umetani K, Fukushima K. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:034302. [PMID: 23556830 DOI: 10.1063/1.4795830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 μm, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 μm diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 μm was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct investigation of mechanisms of vascular dysfunctions.
Collapse
Affiliation(s)
- K Umetani
- Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.
| | | |
Collapse
|
8
|
Shirai M, Schwenke DO, Tsuchimochi H, Umetani K, Yagi N, Pearson JT. Synchrotron radiation imaging for advancing our understanding of cardiovascular function. Circ Res 2013; 112:209-21. [PMID: 23287456 DOI: 10.1161/circresaha.111.300096] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synchrotron radiation (SR) is increasingly being used for micro-level and nano-level functional imaging in in vivo animal experiments. This review focuses on the methodology that enables repeated and regional assessment of vessel internal diameter and flow in the resistance vessels of different organ systems. In particular, SR absorption microangiography approaches offer unique opportunities for real-time in vivo vascular imaging in small animals, even during dynamic motion of the heart and lungs. We also describe recent progress in the translation of multiple phase-contrast imaging techniques from ex vivo to in vivo small-animal studies. Furthermore, we also review the utility of SR for multiple pinpoint (dimensions 0.2×0.2 mm) assessments of myocardial function at the cross-bridge level in different regions of the heart using small-angle X-ray scattering, resulting from increases in SR flux at modern facilities. Finally, we present cases for the use of complementary SR approaches to study cardiovascular function, particularly the pathological changes associated with disease using small-animal models.
Collapse
Affiliation(s)
- Mikiyasu Shirai
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT. J Med Eng 2013; 2013:581617. [PMID: 27006920 PMCID: PMC4782637 DOI: 10.1155/2013/581617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/21/2013] [Indexed: 12/02/2022] Open
Abstract
CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.
Collapse
|
10
|
Figueiredo G, Boll H, Kramer M, Groden C, Brockmann MA. In vivo X-ray digital subtraction and CT angiography of the murine cerebrovasculature using an intra-arterial route of contrast injection. AJNR Am J Neuroradiol 2012; 33:1702-9. [PMID: 22576899 DOI: 10.3174/ajnr.a3071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Investigation of the anatomy, patency, and blood flow of arterial and venous vessels in small animal models of cerebral ischemia, venous thrombosis, or vasospasm is of major interest. However, due to their small caliber, in vivo examination of these vessels is technically challenging. Using micro-CT, we compared the feasibility of in vivo DSA and CTA of the murine cerebrovasculature using an intra-arterial route of contrast administration. MATERIALS AND METHODS The ECA was catheterized in 5 C57BL/6J mice. During intra-arterial injection of an iodized contrast agent (30 μL/1 sec), DSA of the intra- and extracranial vessels was performed in mice breathing room air and repeated in hypoxic/hypercapnic mice. Micro-CTA was performed within 20 seconds of intra-arterial contrast injection (220 μL/20 sec). Image quality of both methods was compared. Radiation dose measurements were performed with thermoluminescence dosimeters. RESULTS Both methods provided high-resolution images of the murine cerebrovasculature, with the smallest identifiable vessel calibers of ≤ 50 μm. Due to its high temporal resolution of 30 fps, DSA allowed identification of anastomoses between the ICA and ECA by detection of retrograde flow within the superficial temporal artery. Micro-CTA during intra-arterial contrast injection resulted in a reduced injection volume and a higher contrast-to-noise ratio (19.0 ± 1.0) compared with DSA (10.0 ± 1.8) or micro-CTA when using an intravenous injection route (1.3 ± 0.4). CONCLUSIONS DSA of the murine cerebrovasculature is feasible using micro-CT and allows precise and repeated measurements of the vessel caliber, and changes of the vessel caliber, while providing relevant information on blood flow in vivo.
Collapse
Affiliation(s)
- G Figueiredo
- Department of Neuroradiology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | | | | | | | | |
Collapse
|
11
|
Figueiredo G, Brockmann C, Boll H, Heilmann M, Schambach SJ, Fiebig T, Kramer M, Groden C, Brockmann MA. Comparison of digital subtraction angiography, micro-computed tomography angiography and magnetic resonance angiography in the assessment of the cerebrovascular system in live mice. Clin Neuroradiol 2011; 22:21-8. [PMID: 22109696 DOI: 10.1007/s00062-011-0113-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
PURPOSE Mice are often used as small animal models of brain ischemia, venous thrombosis, or vasospasm. This article aimed at providing an overview of the currently available methodologies for in vivo imaging of the murine cerebrovasculature and comparing the capabilities and limitations of the different methods. METHODS Micro-computed tomography angiography (CTA) was performed during intra-arterial and intravenous administration of a contrast agent bolus. Digital subtraction angiography (DSA) was performed during intra-arterial administration of contrast agent using the micro-CT scanner. Time-of-flight (ToF) magnetic resonance (MR) angiography was performed using a small animal scanner (9.4 T) equipped with a cryogenic transceive quadrature coil. Datasets were compared for scan time, contrast-to-noise ratio (CNR), temporal and spatial resolution, radiation dose, contrast agent dose and detailed recognition of cerebrovascular structures. RESULTS Highest spatial resolution was achieved using micro-CTA (16 x 16 x 16 µm) and DSA (14 x 14 µm). Compared to micro-CTA (20-40 s) and ToF-MRA (57 min), DSA provided highest temporal resolutions (30 fps) allowing analyses of the cerebrovascular blood flow. Highest mean CNR was reached using ToF-MRA (50.7 ± 15.0), while CNR of micro-CTA depended on the intra-arterial (19.0 ± 1.0) and intravenous (1.3 ± 0.4) use of agents. The CNR of DSA was 10.0 ± 1.8. CONCLUSIONS The use of dedicated small animal scanners allows cerebrovascular imaging in live animals as small as mice. As each of the methods analyzed has its advantages and limitations, choosing the best suited imaging modality for a defined question is of great importance. By this means the aforementioned methods offer a great potential for future projects in preclinical cerebrovascular research including ischemic stroke or vasospasm.
Collapse
Affiliation(s)
- Giovanna Figueiredo
- Department of Neuroradiology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Phenylephrine-modulated cardiopulmonary blood flow measured with use of X-ray digital subtraction angiography. J Pharmacol Toxicol Methods 2011; 64:180-6. [PMID: 21846505 DOI: 10.1016/j.vascn.2011.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 07/25/2011] [Accepted: 08/01/2011] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Cardiopulmonary blood flow is an important indicator of organ function. Limitations in measuring blood flow in live rodents suggest that rapid physiological changes may be overlooked. For instance, relative measurements limit imaging to whole organs or large sections without adequately visualizing vasculature. Additionally, current methods use small samples and invasive techniques that often require killing animals, limiting sampling speed, or both. A recently developed high spatial- and temporal-resolution X-ray digital subtraction angiography (DSA) system visualizes vasculature and measures blood flow in rodents. This study was the first to use this system to measure changes in cardiopulmonary blood flow in rats after administering the vasoconstrictor phenylephrine. METHODS Cardiopulmonary blood flow and vascular anatomy were assessed in 11 rats before, during, and after recovery from phenylephrine. After acquiring DSA images at 12 time points, a calibrated non-parametric deconvolution technique using singular value decomposition (SVD) was applied to calculate quantitative aortic blood flow in absolute metrics (mL/min). Trans-pulmonary transit time was calculated as the time interval between maximum signal enhancement in the pulmonary trunk and aorta. Pulmonary blood volume was calculated based on the central volume principle. Statistical analysis compared differences in trans-pulmonary blood volume and pressure, and aortic diameter using paired t-tests on baseline, peak, and late-recovery time points. RESULTS Phenylephrine had dramatic qualitative and quantitative effects on vascular anatomy and blood flow. Major vessels distended significantly (aorta, ~1.2-times baseline) and mean arterial blood pressure increased ~2 times. Pulmonary blood volume, flow, pressure, and aortic diameter were not significantly different between baseline and late recovery, but differences were significant between baseline and peak, as well as peak and recovery time points. DISCUSSION The DSA system with calibrated SVD technique acquired blood flow measurements every 30s with a high level of regional specificity, thus providing a new option for in vivo functional assessment in small animals.
Collapse
|
13
|
Badea CT, Hedlund LW, Qi Y, Berridge B, Johnson GA. In vivo imaging of rat coronary arteries using bi-plane digital subtraction angiography. J Pharmacol Toxicol Methods 2011; 64:151-7. [PMID: 21683146 DOI: 10.1016/j.vascn.2011.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/19/2011] [Accepted: 05/31/2011] [Indexed: 12/14/2022]
Abstract
INTRODUCTION X-ray based digital subtraction angiography (DSA) is a common clinical imaging method for vascular morphology and function. Coronary artery characterization is one of its most important applications. We show that bi-plane DSA of rat coronary arteries can provide a powerful imaging tool for translational safety assessment in drug discovery. METHODS A novel, dual tube/detector system, constructed explicitly for preclinical imaging, supports image acquisition at 10 frames/s with 88-micron spatial resolution. Ventilation, x-ray exposure, and contrast injection are all precisely synchronized using a biological sequence controller implemented as a LabVIEW application. A set of experiments were performed to test and optimize the sampling and image quality. We applied the DSA imaging protocol to record changes in the visualization of coronaries and myocardial perfusion induced by a vasodilator drug, nitroprusside. The drug was infused into a tail vein catheter using a peristaltic infusion pump at a rate of 0.07 mL/h for 3 min (dose: 0.0875 mg). Multiple DSA sequences were acquired before, during, and up to 25 min after drug infusion. Perfusion maps of the heart were generated in MATLAB to compare the drug effects over time. RESULTS The best trade-off between the injection time, pressure, and image quality was achieved at 60 PSI, with the injection of 150 ms occurring early in diastole (60 ms delay) and resulting in the delivery of 113 μL of contrast agent. DSA images clearly show the main branches of the coronary arteries in an intact, beating heart. The drug test demonstrated that DSA can detect relative changes in coronary circulation via perfusion maps. CONCLUSIONS The methodology for DSA imaging of rat coronary arteries can serve as a template for future translational studies to assist in safety evaluation of new pharmaceuticals. Although x-ray imaging involves radiation, the associated dose (0.4 Gy) is not a major limitation.
Collapse
Affiliation(s)
- Cristian T Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
14
|
Badea CT, Johnston SM, Qi Y, Johnson GA. 4D micro-CT for cardiac and perfusion applications with view under sampling. Phys Med Biol 2011; 56:3351-69. [PMID: 21558587 DOI: 10.1088/0031-9155/56/11/011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic voxel size of 88 µm and 10 ms temporal resolution. 4D pulmonary perfusion images were obtained in a mouse at 176 µm and 687 ms temporal resolution. Compared with FBP reconstruction, the streak reduction ratio is 70% and the contrast to noise ratio is 2.5 times greater in the deconvolved images. The radiation dose associated with the proposed methods is in the range of a typical micro-CT dose (0.17 Gy for the cardiac study and 0.21 Gy for the perfusion study). The low dose 4D micro-CT imaging presented here can be applied in high-throughput longitudinal studies in a wide range of applications, including drug safety and cardiopulmonary phenotyping.
Collapse
Affiliation(s)
- Cristian T Badea
- Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, NC 27710,USA.
| | | | | | | |
Collapse
|
15
|
Sandhu GS, Solorio L, Broome AM, Salem N, Kolthammer J, Shah T, Flask C, Duerk JL. Whole animal imaging. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:398-421. [PMID: 20836038 DOI: 10.1002/wsbm.71] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Translational research plays a vital role in understanding the underlying pathophysiology of human diseases, and hence development of new diagnostic and therapeutic options for their management. After creating an animal disease model, pathophysiologic changes and effects of a therapeutic intervention on them are often evaluated on the animals using immunohistologic or imaging techniques. In contrast to the immunohistologic techniques, the imaging techniques are noninvasive and hence can be used to investigate the whole animal, oftentimes in a single exam which provides opportunities to perform longitudinal studies and dynamic imaging of the same subject, and hence minimizes the experimental variability, requirement for the number of animals, and the time to perform a given experiment. Whole animal imaging can be performed by a number of techniques including x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, positron emission tomography, single photon emission computed tomography, fluorescence imaging, and bioluminescence imaging, among others. Individual imaging techniques provide different kinds of information regarding the structure, metabolism, and physiology of the animal. Each technique has its own strengths and weaknesses, and none serves every purpose of image acquisition from all regions of an animal. In this review, a broad overview of basic principles, available contrast mechanisms, applications, challenges, and future prospects of many imaging techniques employed for whole animal imaging is provided. Our main goal is to briefly describe the current state of art to researchers and advanced students with a strong background in the field of animal research.
Collapse
Affiliation(s)
- Gurpreet Singh Sandhu
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luis Solorio
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ann-Marie Broome
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicolas Salem
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeff Kolthammer
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tejas Shah
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chris Flask
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey L Duerk
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
16
|
Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivosmall animal imaging: Current status and future prospects. Med Phys 2010; 37:6421-42. [DOI: 10.1118/1.3515456] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Buhalog A, Yasuda R, Consigny D, Maurer K, Strother CM. A method for serial selective arterial catheterization and digital subtraction angiography in rodents. AJNR Am J Neuroradiol 2010; 31:1508-11. [PMID: 20488903 DOI: 10.3174/ajnr.a2134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Imaging is a key element in the study of many rodent models of human diseases. The application of DSA has been limited in these studies in part because of a lack of a method that allows serial intra-arterial examinations to be performed during an extended period of time. It was our intent to develop and test a method for performing sequential arterial catheterizations and DSA in rats. MATERIALS AND METHODS Using a transfemoral approach, we subjected 12 adult male Harvey rats to 3 sequential DSA examinations during a 6- to 8-week period. At each examination, 2 selective arterial catheterizations and a DSA were performed. Animals were monitored for ill effects, and images from the 3 examinations were compared for quality and the presence of any arterial injury. RESULTS Ten of the 12 rats survived all 3 examinations. There were no adverse effects noted and no evidence of arterial injury from the examinations. CONCLUSIONS With the technique described, it is possible to perform serial arterial catheterizations and DSA in rats. This technique will be useful as an adjunct in the use of rodents for the study of human diseases.
Collapse
Affiliation(s)
- A Buhalog
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
18
|
Badea CT, Johnston SM, Subashi E, Qi Y, Hedlund LW, Johnson GA. Lung perfusion imaging in small animals using 4D micro-CT at heartbeat temporal resolution. Med Phys 2010; 37:54-62. [PMID: 20175466 DOI: 10.1118/1.3264619] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Quantitative in vivo imaging of lung perfusion in rodents can provide critical information for preclinical studies. However, the combined challenges of high temporal and spatial resolution have made routine quantitative perfusion imaging difficult in small animals. The purpose of this work is to demonstrate 4D micro-CT for perfusion imaging in rodents at heartbeat temporal resolution and isotropic spatial resolution. METHODS We have recently developed a dual tube/detector micro-CT scanner that is well suited to capture first pass kinetics of a bolus of contrast agent used to compute perfusion information. Our approach is based on the paradigm that similar time density curves can be reproduced in a number of consecutive, small volume injections of iodinated contrast agent at a series of different angles. This reproducibility is ensured by the high-level integration of the imaging components of our system with a microinjector, a mechanical ventilator, and monitoring applications. Sampling is controlled through a biological pulse sequence implemented in LABVIEW. Image reconstruction is based on a simultaneous algebraic reconstruction technique implemented on a graphic processor unit. The capabilities of 4D micro-CT imaging are demonstrated in studies on lung perfusion in rats. RESULTS We report 4D micro-CT imaging in the rat lung with a heartbeat temporal resolution (approximately 150 ms) and isotropic 3D reconstruction with a voxel size of 88 microm based on sampling using 16 injections of 50 microL each. The total volume of contrast agent injected during the experiments (0.8 mL) was less than 10% of the total blood volume in a rat. This volume was not injected in a single bolus, but in multiple injections separated by at least 2 min interval to allow for clearance and adaptation. We assessed the reproducibility of the time density curves with multiple injections and found that these are very similar. The average time density curves for the first eight and last eight injections are slightly different, i.e., for the last eight injections, both the maximum of the average time density curves and its area under the curve are decreased by 3.8% and 7.2%, respectively, relative to the average time density curves based on the first eight injections. The radiation dose associated with our 4D micro-CT imaging is 0.16 Gy and is therefore in the range of a typical micro-CT dose. CONCLUSIONS 4D micro-CT-based perfusion imaging demonstrated here has immediate application in a wide range of preclinical studies such as tumor perfusion, angiogenesis, and renal function. Although our imaging system is in many ways unique, we believe that our approach based on the multiple injection paradigm can be used with the newly developed flat-panel slip-ring-based micro-CT to increase their temporal resolution in dynamic perfusion studies.
Collapse
Affiliation(s)
- Cristian T Badea
- Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Lin M, Marshall CT, Qi Y, Johnston SM, Badea CT, Piantadosi CA, Johnson GA. Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography. Med Phys 2010; 36:5347-58. [PMID: 19994543 DOI: 10.1118/1.3231823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, are invasive, or require euthanasia. METHODS In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100 x 100 microm2). RESULTS A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0 +/- 5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90 x CODSA = COFick. CONCLUSIONS This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.
Collapse
Affiliation(s)
- MingDe Lin
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
De Lin M, Toncheva G, Nguyen G, Kim S, Anderson-Evans C, Johnson GA, Yoshizumi TT. Application of MOSFET detectors for dosimetry in small animal radiography using short exposure times. Radiat Res 2008; 170:260-3. [PMID: 18666818 DOI: 10.1667/rr1328.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 05/01/2008] [Indexed: 11/03/2022]
Abstract
Digital subtraction angiography (DSA) X-ray imaging for small animals can be used for functional phenotyping given its ability to capture rapid physiological changes at high spatial and temporal resolution. The higher temporal and spatial requirements for small-animal imaging drive the need for short, high-flux X-ray pulses. However, high doses of ionizing radiation can affect the physiology. The purpose of this study was to verify and apply metal oxide semiconductor field effect transistor (MOSFET) technology to dosimetry for small-animal diagnostic imaging. A tungsten anode X-ray source was used to expose a tissue-equivalent mouse phantom. Dose measurements were made on the phantom surface and interior. The MOSFETs were verified with thermoluminescence dosimeters (TLDs). Bland-Altman analysis showed that the MOSFET results agreed with the TLD results (bias, 0.0625). Using typical small animal DSA scan parameters, the dose ranged from 0.7 to 2.2 cGy. Application of the MOSFETs in the small animal environment provided two main benefits: (1) the availability of results in near real-time instead of the hours needed for TLD processes and (2) the ability to support multiple exposures with different X-ray techniques (various of kVp, mA and ms) using the same MOSFET. This MOSFET technology has proven to be a fast, reliable small animal dosimetry method for DSA imaging and is a good system for dose monitoring for serial and gene expression studies.
Collapse
Affiliation(s)
- Ming De Lin
- Center for In Vivo Microscopy, Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Badea CT, Drangova M, Holdsworth DW, Johnson GA. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 2008; 53:R319-50. [PMID: 18758005 DOI: 10.1088/0031-9155/53/19/r01] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Small-animal imaging has a critical role in phenotyping, drug discovery and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo x-ray based small-animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging.
Collapse
Affiliation(s)
- C T Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|