1
|
Swift LM, Jaimes R, McCullough D, Burke M, Reilly M, Maeda T, Zhang H, Ishibashi N, Rogers JM, Posnack NG. Optocardiography and Electrophysiology Studies of Ex Vivo Langendorff-perfused Hearts. J Vis Exp 2019. [PMID: 31762469 DOI: 10.3791/60472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Small animal models are most commonly used in cardiovascular research due to the availability of genetically modified species and lower cost compared to larger animals. Yet, larger mammals are better suited for translational research questions related to normal cardiac physiology, pathophysiology, and preclinical testing of therapeutic agents. To overcome the technical barriers associated with employing a larger animal model in cardiac research, we describe an approach to measure physiological parameters in an isolated, Langendorff-perfused piglet heart. This approach combines two powerful experimental tools to evaluate the state of the heart: electrophysiology (EP) study and simultaneous optical mapping of transmembrane voltage and intracellular calcium using parameter sensitive dyes (RH237, Rhod2-AM). The described methodologies are well suited for translational studies investigating the cardiac conduction system, alterations in action potential morphology, calcium handling, excitation-contraction coupling and the incidence of cardiac alternans or arrhythmias.
Collapse
Affiliation(s)
- Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital
| | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital
| | - Morgan Burke
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital
| | - Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital
| | - Takuya Maeda
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital; Center for Neuroscience Research, Children's National Hospital
| | - Hanyu Zhang
- Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham
| | - Nobuyuki Ishibashi
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital; Center for Neuroscience Research, Children's National Hospital
| | - Jack M Rogers
- Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital; Department of Pediatrics, Department of Pharmacology & Physiology, School of Medicine and Health Sciences, George Washington University;
| |
Collapse
|
2
|
Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models. Sci Rep 2017; 7:43217. [PMID: 28240274 PMCID: PMC5327492 DOI: 10.1038/srep43217] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/20/2017] [Indexed: 01/29/2023] Open
Abstract
Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.
Collapse
|
3
|
Dura M, Schröder-Schetelig J, Luther S, Lehnart SE. Toward panoramic in situ mapping of action potential propagation in transgenic hearts to investigate initiation and therapeutic control of arrhythmias. Front Physiol 2014; 5:337. [PMID: 25249982 PMCID: PMC4157545 DOI: 10.3389/fphys.2014.00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/19/2014] [Indexed: 11/23/2022] Open
Abstract
To investigate the dynamics and propensity for arrhythmias in intact transgenic hearts comprehensively, optical strategies for panoramic fluorescence imaging of action potential (AP) propagation are essential. In particular, mechanism-oriented molecular studies usually depend on transgenic mouse hearts of only a few millimeters in size. Furthermore, the temporal scales of the mouse heart remain a challenge for panoramic fluorescence imaging with heart rates ranging from 200 min−1 (e.g., depressed sinus node function) to over 1200 min−1 during fast arrhythmias. To meet these challenging demands, we and others developed physiologically relevant mouse models and characterized their hearts with planar AP mapping. Here, we summarize the progress toward panoramic fluorescence imaging and its prospects for the mouse heart. In general, several high-resolution cameras are synchronized and geometrically arranged for panoramic voltage mapping and the surface and blood vessel anatomy documented through image segmentation and heart surface reconstruction. We expect that panoramic voltage imaging will lead to novel insights about molecular arrhythmia mechanisms through quantitative strategies and organ-representative analysis of intact mouse hearts.
Collapse
Affiliation(s)
- Miroslav Dura
- Heart Research Center Göttingen Göttingen, Germany ; Department of Cardiology and Pulmonology, University Medical Center Göttingen Göttingen, Germany
| | - Johannes Schröder-Schetelig
- Heart Research Center Göttingen Göttingen, Germany ; Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany ; Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen Göttingen, Germany
| | - Stefan Luther
- Heart Research Center Göttingen Göttingen, Germany ; Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany ; Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen Göttingen, Germany ; German Centre for Cardiovascular Research (DZHK), partner site Göttingen (DZHK-GOE) Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen Göttingen, Germany ; Department of Cardiology and Pulmonology, University Medical Center Göttingen Göttingen, Germany ; German Centre for Cardiovascular Research (DZHK), partner site Göttingen (DZHK-GOE) Göttingen, Germany
| |
Collapse
|
4
|
Ronzhina M, Cmiel V, Janoušek O, Kolářová J, Nováková M, Babula P, Provazník I. Application of the optical method in experimental cardiology: action potential and intracellular calcium concentration measurement. Physiol Res 2012; 62:125-37. [PMID: 23234419 DOI: 10.33549/physiolres.932369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It has been shown that, in addition to conventional contact electrode techniques, optical methods using fluorescent dyes can be successfully used for cardiac signal measurement. In this review, the physical and technical fundamentals of the method are described, as well as the properties of the most common systems for measuring action potentials and intracellular calcium concentration. Special attention is paid to summarizing limitations and trends in developing this method.
Collapse
Affiliation(s)
- M Ronzhina
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
5
|
Lee P, Yan P, Ewart P, Kohl P, Loew LM, Bollensdorff C. Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques. Pflugers Arch 2012; 464:403-14. [PMID: 22886365 DOI: 10.1007/s00424-012-1135-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electrophysiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart.
Collapse
Affiliation(s)
- Peter Lee
- Department of Physics, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
6
|
Scull JA, McSpadden LC, Himel HD, Badie N, Bursac N. Single-detector simultaneous optical mapping of V(m) and [Ca(2+)](i) in cardiac monolayers. Ann Biomed Eng 2011; 40:1006-17. [PMID: 22124794 DOI: 10.1007/s10439-011-0478-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/17/2011] [Indexed: 11/29/2022]
Abstract
Simultaneous mapping of transmembrane voltage (V(m)) and intracellular Ca(2+) concentration (Ca(i)) has been used for studies of normal and abnormal impulse propagation in cardiac tissues. Existing dual mapping systems typically utilize one excitation and two emission bandwidths, requiring two photodetectors with precise pixel registration. In this study we describe a novel, single-detector mapping system that utilizes two excitation and one emission band for the simultaneous recording of action potentials and calcium transients in monolayers of neonatal rat cardiomyocytes. Cells stained with the Ca(2+)-sensitive dye X-Rhod-1 and the voltage-sensitive dye Di-4-ANEPPS were illuminated by a programmable, multicolor LED matrix. Blue and green LED pulses were flashed 180° out of phase at a rate of 488.3 Hz using a custom-built dual bandpass excitation filter that transmitted blue (482 ± 6 nm) and green (577 ± 31 nm) light. A long-pass emission filter (>605 nm) and a 504-channel photodiode array were used to record combined signals from cardiomyocytes. Green excitation yielded Ca(i) transients without significant crosstalk from V(m). Crosstalk present in V(m) signals obtained with blue excitation was removed by subtracting an appropriately scaled version of the Ca(i) transient. This method was applied to study delay between onsets of action potentials and Ca(i) transients in anisotropic cardiac monolayers.
Collapse
Affiliation(s)
- James A Scull
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
7
|
Holcomb MR, Woods MC, Uzelac I, Wikswo JP, Gilligan JM, Sidorov VY. The potential of dual camera systems for multimodal imaging of cardiac electrophysiology and metabolism. Exp Biol Med (Maywood) 2009; 234:1355-73. [PMID: 19657065 DOI: 10.3181/0902-rm-47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fluorescence imaging has become a common modality in cardiac electrodynamics. A single fluorescent parameter is typically measured. Given the growing emphasis on simultaneous imaging of more than one cardiac variable, we present an analysis of the potential of dual camera imaging, using as an example our straightforward dual camera system that allows simultaneous measurement of two dynamic quantities from the same region of the heart. The advantages of our system over others include an optional software camera calibration routine that eliminates the need for precise camera alignment. The system allows for rapid setup, dichroic image separation, dual-rate imaging, and high spatial resolution, and it is generally applicable to any two-camera measurement. This type of imaging system offers the potential for recording simultaneously not only transmembrane potential and intracellular calcium, two frequently measured quantities, but also other signals more directly related to myocardial metabolism, such as [K(+)](e), NADH, and reactive oxygen species, leading to the possibility of correlative multimodal cardiac imaging. We provide a compilation of dye and camera information critical to the design of dual camera systems and experiments.
Collapse
Affiliation(s)
- Mark R Holcomb
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235-1807, USA
| | | | | | | | | | | |
Collapse
|
8
|
Holcomb MR, Bekele RY, Lima EA, Wikswo JP. Universal serial bus powered and controlled isolated constant-current physiological stimulator. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:126103. [PMID: 19123594 PMCID: PMC2736648 DOI: 10.1063/1.3030861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Accepted: 10/26/2008] [Indexed: 05/27/2023]
Abstract
We have developed a compact, isolated, physiological, constant-current stimulator that is powered and controlled by a universal serial bus (USB) interface. The stimulator is designed to be used in ex vivo cardiac experiments but is suitable for a wide variety of settings. The cost and features compare very favorably with commercial stimulators usually used in research and student laboratories. In addition to being USB powered, other novel aspects of our stimulator include the ability to produce large currents, up to 100 mA through a typical 1 kOmega load, by means of a single high-voltage dc-to-dc converter; user-specified variable period, magnitude, and duration of complex monophasic or biphasic sequences; and easy integration via hardware or software into existing experimental setups.
Collapse
Affiliation(s)
- Mark R Holcomb
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
9
|
Seale KT, Reiserer RS, Markov DA, Ges IA, Wright C, Janetopoulos C, Wikswo JP. Mirrored pyramidal wells for simultaneous multiple vantage point microscopy. J Microsc 2008; 232:1-6. [PMID: 19017196 PMCID: PMC3789065 DOI: 10.1111/j.1365-2818.2008.02110.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling.
Collapse
Affiliation(s)
- K T Seale
- Department of Biological Sciences, Vanderbilt University, VU Station B 351807, Nashville, TN 37235-1807, USA
| | | | | | | | | | | | | |
Collapse
|