Liu M, He Y, Qian W, Wei Y, Liu X. Cell Population Tracking in a Honeycomb Structure Using an IMM Filter Based 3D Local Graph Matching Model.
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018;
15:1706-1717. [PMID:
28991748 DOI:
10.1109/tcbb.2017.2760300]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing algorithms for plant cell population tracking is very critical for the modeling of plant cell growth pattern and gene expression dynamics. The tracking of plant cells in microscopic image stacks is very challenging for several reasons: (1) plant cells are densely packed in a specific honeycomb structure; (2) they are frequently dividing; and (3) they are imaged in different layers within 3D image stacks. Based on an existing 2D local graph matching algorithm, this paper focuses on building a 3D plant cell matching model, by exploiting the cells' 3D spatiotemporal context. Furthermore, the Interacting Multi-Model filter (IMM) is combined with the 3D local graph matching model to track the plant cell population simultaneously. Because our tracking algorithm does not require the identification of "tracking seeds", the tracking stability and efficiency are greatly enhanced. Last, the plant cell lineages are achieved by associating the cell tracklets, using a maximum-a-posteriori (MAP) method. Compared with the 2D matching method, the experimental results on multiple datasets show that our proposed approach does not only greatly improve the tracking accuracy by 18 percent, but also successfully tracks the plant cells located at the high curvature primordial region, which is not addressed in previous work.
Collapse