1
|
Lyu Y, Chen G, Lu Z, Chen Y, Mok GSP. The effects of mismatch between SPECT and CT images on quantitative activity estimation - A simulation study. Z Med Phys 2023; 33:54-69. [PMID: 35644776 PMCID: PMC10082378 DOI: 10.1016/j.zemedi.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Quantitative activity estimation is essential in nuclear medicine imaging. Mismatch between SPECT and CT images at the same imaging time point due to patient movement degrades accuracy in both diagnostic studies and target radionuclide therapy dosimetry. This work aims to study the mismatch effects between CT and SPECT data on attenuation correction (AC), volume-of-interest (VOI) delineation, and registration for activity estimation. METHODS Nine 4D XCAT phantoms were generated at 1, 24, and 144 h post In-111 Zevalin injection, varying in activity distributions, body sizes, and organ sizes. Realistic noisy SPECT projections were generated by an analytical projector and reconstructed with a quantitative OS-EM method. CT images were shifted, corresponding to SPECT images at each imaging time point, from -5 to 5 voxels and also according to a clinical reference. The effect of mismatched AC maps was evaluated using mismatched CT images for AC in SPECT reconstruction while VOIs were mapped out from matched CTs. The effect of mismatched VOI drawings was evaluated using mismatched CTs to map out target organs while using matched CTs for AC. The effect of mismatched CT images for registration was evaluated by registering sequential mismatched CTs to align corresponding SPECT images, with no AC and VOI mismatch. Bi-exponential curve fitting was performed to obtain time-integrated activity (TIA). Organ activity errors (%OAE) and TIA errors (%TIAE) were calculated. RESULTS According to the clinical reference, %OAE was larger for organs near ribs for AC effect. For VOI effect, %OAE was larger for small and low uptake organs. For registration effect, %TIAE were larger when mismatch existed in more numbers of SPECT/CT images, while no substantial difference was observed when using mismatched CT at different imaging time points as registration reference. %TIAE was highest for VOI, followed by registration and AC, e.g., 20.62%±8.61%, 9.33%±4.66% and 1.13%±0.90% respectively for kidneys. CONCLUSIONS The mismatch between CT and SPECT images poses a significant impact on the accuracy of quantitative activity estimation, attributed particularly from VOI delineation errors. It is recommended to perform registration between emission and transmission images at the same time point to ensure diagnostic and dosimetric accuracy.
Collapse
Affiliation(s)
- Yingqing Lyu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No. 25, Taiping St., Luzhou, Sichuan, China.
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China; Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China; Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
2
|
Lu Z, Chen G, Lyu Y, Chen Y, Mok GSP. Technical Note: Respiratory impacts on static and respiratory gated 99m Tc-MAA SPECT/CT for liver radioembolization- A simulation study. Med Phys 2022; 49:5330-5339. [PMID: 35446448 DOI: 10.1002/mp.15682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE We aimed to evaluate respiratory impacts on static and respiratory gated (RG) 99m Tc-MAA SPECT in terms of respiratory motion (RM) blur, attenuation correction (AC) and volume-of-interest (VOI) segmentation on lung shunt faction (LSF) and tumor-to-normal liver ratio (TNR) estimation for liver radioembolization therapy planning. METHODS The XCAT phantom was used to simulate a population of 300 phantoms, modelling various anatomical variations, tumor characteristics, respiratory motion amplitudes, LSFs and TNRs. One hundred and twenty noisy projections of average activity maps near end-expiration (End-EX) and whole respiratory cycle were simulated analytically, modeling attenuation and geometric collimator-detector-response (GCDR). The OS-EM algorithm was employed for reconstruction, modeling AC and GCDR. RM effect was evaluated for static SPECT, while AC and VOI mismatch effects were investigated independently and together for static and RG SPECT utilizing one gate, i.e., End-EX. LSF and TNR errors were measured based on the ground truth. Lesions with different characteristics were also investigated for static and RG SPECT. RESULTS RM overestimates LSF and underestimates TNR. The VOI mismatch caused the largest errors in both RG and static SPECT for LSF and TNR estimation, reaching 160% and -52% correspondingly with extremely mismatched VOIs for RG SPECT, even larger than those for static SPECT. With matched AC and VOIs, RG SPECT has better performance than static SPECT. Larger TNR errors are associated with tumors of smaller sizes and higher TNR for static SPECT. CONCLUSIONS The VOI segmentation mismatch has a stronger impact, followed by RM and AC in static 99m Tc-MAA SPECT/CT. This effect is more pronounced for RG SPECT. When VOI masks are derived from a matched CT, RG SPECT is generally superior to static SPECT for LSF and TNR estimation. The performance of RG SPECT could be worse than static SPECT when a mismatched CT is used for segmentation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Yingqing Lyu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China.,Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
3
|
Lu Z, Chen G, Lin KH, Wu TH, Mok GSP. Evaluation of different CT maps for attenuation correction and segmentation in static 99m Tc-MAA SPECT/CT for 90 Y radioembolization treatment planning: A simulation study. Med Phys 2021; 48:3842-3851. [PMID: 34013551 DOI: 10.1002/mp.14991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Conventional 99m Tc-macroaggregated albumin (99m Tc-MAA) planar scintigraphy overestimates lung shunt fraction (LSF) compared to SPECT/CT. However, the respiratory motion artifact due to the temporal mismatch between static SPECT and helical CT (HCT) may compromise the SPECT quantitation accuracy by incorrect attenuation correction (AC) and volume-of-interest (VOI) segmentation. This study aims to evaluate AC and VOI segmentation effects systematically and to propose a CT map for LSF and tumor-to-normal liver ratio (TNR) estimation in static 99m Tc-MAA SPECT/CT. METHODS The 4D XCAT phantom was used to simulate a phantom population of 120 phantoms, modeling 10 different anatomical variations, nine TNRs (2-13.2), nine tumor sizes (2-6.7 cm diameter), eight tumor locations, three axial motion amplitudes of 1, 1.5, and 2 (cm), and four LSFs of 5%, 10%, 15%, and 20%. An analytical projector for low-energy high-resolution parallel-hole collimator was used to simulate 60 noisy projections over 360°, modeling attenuation and geometric collimator-detector response (GCDR). AC and VOI mismatch effects were investigated independently and together, using cine average CT (CACT), HCT at end-inspiration (HCT-IN), mid-respiration (HCT-MID), and end-expiration (HCT-EX) respectively as attenuation and segmentation maps. SPECT images without motion, AC, and VOI errors were also generated as reference. LSF and TNR errors were measured as compared to the ground truth. RESULTS HCT-MID has slightly better performance for AC effect compared with other CT maps in LSF and TNR estimation, while HCT-EX and HCT-MID perform better for VOI effect. For a respiratory motion amplitude of 1.5 cm and a LSF of 5%, the LSF errors are 19.56 ± 4.58%, -6.79 ± 1.74%, 77.29 ± 14.74%, and 111.25 ± 18.29% corresponding to HCT-MID, HCT-EX, HCT-IN, and CACT in static SPECT. The TNR errors are -12.38 ± 6.42%, -20.55 ± 11.25%, -20.89 ± 9.98%, and -22.89 ± 14.38% respectively. HCT-MID has the best performance for LSF estimation for LSF > 10% and TNR estimation, followed by HCT-EX, HCT-IN, and CACT. CONCLUSIONS The HCT-MID is recommended for AC and segmentation to alleviate respiratory artifacts and improve quantitation accuracy in 90 Y radioembolization treatment planning. HCT-EX would also be a recommended choice if HCT-MID is not available.
Collapse
Affiliation(s)
- Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Kuan-Heng Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Industrial PhD Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Hsin Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| |
Collapse
|
4
|
Chen DL, Ballout S, Chen L, Cheriyan J, Choudhury G, Denis-Bacelar AM, Emond E, Erlandsson K, Fisk M, Fraioli F, Groves AM, Gunn RN, Hatazawa J, Holman BF, Hutton BF, Iida H, Lee S, MacNee W, Matsunaga K, Mohan D, Parr D, Rashidnasab A, Rizzo G, Subramanian D, Tal-Singer R, Thielemans K, Tregay N, van Beek EJR, Vass L, Vidal Melo MF, Wellen JW, Wilkinson I, Wilson FJ, Winkler T. Consensus Recommendations on the Use of 18F-FDG PET/CT in Lung Disease. J Nucl Med 2020; 61:1701-1707. [PMID: 32948678 PMCID: PMC9364897 DOI: 10.2967/jnumed.120.244780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
PET with 18F-FDG has been increasingly applied, predominantly in the research setting, to study drug effects and pulmonary biology and to monitor disease progression and treatment outcomes in lung diseases that interfere with gas exchange through alterations of the pulmonary parenchyma, airways, or vasculature. To date, however, there are no widely accepted standard acquisition protocols or imaging data analysis methods for pulmonary 18F-FDG PET/CT in these diseases, resulting in disparate approaches. Hence, comparison of data across the literature is challenging. To help harmonize the acquisition and analysis and promote reproducibility, we collated details of acquisition protocols and analysis methods from 7 PET centers. From this information and our discussions, we reached the consensus recommendations given here on patient preparation, choice of dynamic versus static imaging, image reconstruction, and image analysis reporting.
Collapse
Affiliation(s)
- Delphine L Chen
- Department of Radiology, University of Washington, Seattle Cancer Care Alliance, Seattle, Washington
| | - Safia Ballout
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Laigao Chen
- Worldwide Research, Development, and Medical, Pfizer Inc., Cambridge, Massachusetts
| | - Joseph Cheriyan
- Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gourab Choudhury
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Elise Emond
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Kjell Erlandsson
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Marie Fisk
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Ashley M Groves
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Roger N Gunn
- inviCRO, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University, Osaka, Japan
| | - Beverley F Holman
- Nuclear Medicine Department, Royal Free Hospital, London, United Kingdom
| | - Brian F Hutton
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Hidehiro Iida
- Faculty of Biomedicine and Turku PET Center, University of Turku, Turku, Finland
| | - Sarah Lee
- Amallis Consulting Ltd., London, United Kingdom
| | - William MacNee
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Keiko Matsunaga
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University, Osaka, Japan
| | - Divya Mohan
- Medical Innovation, Value Evidence, and Outcomes, GlaxoSmithKline R&D, Collegeville, Pennsylvania
| | - David Parr
- University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Alaleh Rashidnasab
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Gaia Rizzo
- inviCRO, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Ruth Tal-Singer
- Medical Innovation, Value Evidence, and Outcomes, GlaxoSmithKline R&D, Collegeville, Pennsylvania
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Nicola Tregay
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edwin J R van Beek
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Laurence Vass
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marcos F Vidal Melo
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeremy W Wellen
- Research and Early Development, Celgene, Cambridge, Massachusetts; and
| | - Ian Wilkinson
- Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Frederick J Wilson
- Clinical Imaging, Clinical Pharmacology, and Experimental Medicine, GlaxoSmithKline, Stevenage, United Kingdom
| | - Tilo Winkler
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Zhang Q, Zhang D, Mok GSP. Comparison of Different Attenuation Correction Methods for Dual Gating Myocardial Perfusion SPECT/CT. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2019.2899066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Zhang D, Ghaly M, Mok GSP. InterpolatedCTfor attenuation correction on respiratory gating cardiacSPECT/CT— A simulation study. Med Phys 2019; 46:2621-2628. [DOI: 10.1002/mp.13513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Duo Zhang
- Biomedical Imaging Laboratory (BIG) Department of Electrical and Computer Engineering Faculty of Science and Technology University of Macau Macau SAR China
| | - Michael Ghaly
- Russell H Morgan Department of Radiology and Radiological Science Johns Hopkins University Baltimore MD USA
- Radiopharmaceutical Imaging and Dosimetry (RAPID), LLC Baltimore MD USA
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory (BIG) Department of Electrical and Computer Engineering Faculty of Science and Technology University of Macau Macau SAR China
- Faculty of Health Sciences University of Macau Macau SAR China
| |
Collapse
|
7
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synthesis of Realistic Simultaneous Positron Emission Tomography and Magnetic Resonance Imaging Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:703-711. [PMID: 29533892 DOI: 10.1109/tmi.2017.2768130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The investigation of the performance of different positron emission tomography (PET) reconstruction and motion compensation methods requires accurate and realistic representation of the anatomy and motion trajectories as observed in real subjects during acquisitions. The generation of well-controlled clinical datasets is difficult due to the many different clinical protocols, scanner specifications, patient sizes, and physiological variations. Alternatively, computational phantoms can be used to generate large data sets for different disease states, providing a ground truth. Several studies use registration of dynamic images to derive voxel deformations to create moving computational phantoms. These phantoms together with simulation software generate raw data. This paper proposes a method for the synthesis of dynamic PET data using a fast analytic method. This is achieved by incorporating realistic models of respiratory motion into a numerical phantom to generate datasets with continuous and variable motion with magnetic resonance imaging (MRI)-derived motion modeling and high resolution MRI images. In this paper, data sets for two different clinical traces are presented, 18F-FDG and 68Ga-PSMA. This approach incorporates realistic models of respiratory motion to generate temporally and spatially correlated MRI and PET data sets, as those expected to be obtained from simultaneous PET-MRI acquisitions.
Collapse
|
8
|
Segars WP, Tsui BMW, Jing Cai, Fang-Fang Yin, Fung GSK, Samei E. Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:680-692. [PMID: 28809677 PMCID: PMC5809240 DOI: 10.1109/tmi.2017.2738448] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The four-dimensional (4-D) eXtended CArdiac-Torso (XCAT) series of phantoms was developed to provide accurate computerized models of the human anatomy and physiology. The XCAT series encompasses a vast population of phantoms of varying ages from newborn to adult, each including parameterized models for the cardiac and respiratory motions. With great flexibility in the XCAT's design, any number of body sizes, different anatomies, cardiac or respiratory motions or patterns, patient positions and orientations, and spatial resolutions can be simulated. As such, the XCAT phantoms are gaining a wide use in biomedical imaging research. There they can provide a virtual patient base from which to quantitatively evaluate and improve imaging instrumentation, data acquisition, techniques, and image reconstruction and processing methods which can lead to improved image quality and more accurate clinical diagnoses. The phantoms have also found great use in radiation dosimetry, radiation therapy, medical device design, and even the security and defense industry. This review paper highlights some specific areas in which the XCAT phantoms have found use within biomedical imaging and other fields. From these examples, we illustrate the increasingly important role that computerized phantoms and computer simulation are playing in the research community.
Collapse
|
9
|
Cuplov V, Holman BF, McClelland J, Modat M, Hutton BF, Thielemans K. Issues in quantification of registered respiratory gated PET/CT in the lung. ACTA ACUST UNITED AC 2017; 63:015007. [DOI: 10.1088/1361-6560/aa950b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Zhang D, Yang BH, Wu NY, Mok GSP. Respiratory average CT for attenuation correction in myocardial perfusion SPECT/CT. Ann Nucl Med 2016; 31:172-180. [PMID: 28000164 DOI: 10.1007/s12149-016-1144-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/29/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Cine average CT (CACT) and interpolated average CT (IACT) have been proposed to improve attenuation correction (AC) for PET/CT in oncologic and cardiac studies. This study aims to evaluate their effectiveness on myocardial perfusion SPECT/CT using computer simulation and physical phantom experiments. METHODS We first simulated normal male with 99mTc-sestamibi distribution using digital XCAT phantom with respiratory motion amplitudes of 2, 3, and 4 cm. Average activity and attenuation maps represented static SPECT and CACT, while the attenuation maps of end-inspiration and end-expiration represented two helical CTs (HCTs), respectively. Sixty noise-free and noisy projections were simulated over 180° using an analytical parallel-hole projector. We then filled 673 MBq 99mTc into an anthropomorphic torso phantom with normal heart or heart with a defect which placed on a programmable respiratory platform to model various respiratory amplitudes. Sixty projections were acquired over 180° using a clinical SPECT/CT scanner. The CACT, standard HCT, and 2 HCTs at extreme phases were acquired. Interpolated CT phases were generated between them using affine plus b-spline registration, and IACT was obtained by averaging the interpolated phases and the 2 original extreme phases for both simulation and phantom experiments. Projections were reconstructed with AC using CACT, IACT, and HCTs, respectively. Polar and 17-segment plots were analyzed by relative difference (RD) of the uptake. Two regions-of-interest (ROI) were drawn on the defect and background area to obtain the intensity ratio (IR). RESULTS No substantial difference was observed on the polar plots generated from different AC methods, while the quantitative RD measurements showed that SPECTCACT were most similar to the original phantom, followed by SPECTIACT, with RDmax <8 and <10% in the simulation study. The RD of SPECTHCTs deviated from the original phantom and SPECTCACT in various segments, with RDmax of 19.76 and 16.68% in the simulation and phantom experiment, respectively. The IR of SPECTHCTs fluctuated more from the truth for higher motion amplitude. CONCLUSIONS Both CACT-AC and IACT-AC reduced respiratory artifacts and improved quantitation in myocardial perfusion SPECT as compared to HCT-AC. The use of IACT further reduced the radiation dose.
Collapse
Affiliation(s)
- Duo Zhang
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Bang-Hung Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
- Department of Nuclear Medicine, National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nien Yun Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
- Department of Nuclear Medicine, National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Greta Seng Peng Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
11
|
Mok GSP, Ho CYT, Yang BH, Wu TH. Interpolated average CT for cardiac PET/CT attenuation correction. J Nucl Cardiol 2016; 23:1072-1079. [PMID: 25933679 DOI: 10.1007/s12350-015-0140-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Previously, we proposed interpolated averaged CT (IACT) for improved attenuation correction (AC) in thoracic PET/CT. This study aims to evaluate its feasibility and effectiveness on cardiac PET/CT. METHODS We simulated (18)F-FDG distribution using the XCAT phantom with normal and abnormal cardiac uptake. Average activity and attenuation maps represented static PET and respiration average CT (ACT), respectively, while the attenuation maps of end-inspiration/expiration represented 2 helical CTs (HCT). IACT was obtained by averaging the 2 extreme phases and the interpolated phases generated between them. Later, we recruited 4 patients who were scanned 1 hr post 315-428 MBq (18)F-FDG injection. Simulated and clinical PET sinograms were reconstructed with AC using (1) HCT, (2) IACT, and (3) ACT. Polar plots and the 17-segment plots were analyzed. Two regions-of-interest were drawn on lesion and background area to obtain the intensity ratio (IR). RESULTS Polar plots of PETIACT-AC were more similar to PETACT-AC in both simulation and clinical data. Artifacts were observed in various segments in PETHCT-AC. IR differences of HCT as compared to the phantom were up to ~20%. CONCLUSIONS IACT-AC reduced respiratory artifacts and improved PET/CT matching similarly to ACT-AC. It is a promising low-dose alternate of ACT for cardiac PET/CT.
Collapse
Affiliation(s)
- Greta S P Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China.
| | - Cobie Y T Ho
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
| | - Bang-Hung Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tung-Hsin Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Interpolated average CT for PET attenuation correction in different lesion characteristics. Nucl Med Commun 2016; 37:297-306. [DOI: 10.1097/mnm.0000000000000435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Huang TC, Chou KT, Yang SN, Chang CK, Liang JA, Zhang G. Fractionated changes in prostate cancer radiotherapy using cone-beam computed tomography. Med Dosim 2015; 40:222-5. [PMID: 25683282 DOI: 10.1016/j.meddos.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/09/2014] [Accepted: 12/22/2014] [Indexed: 11/15/2022]
Abstract
The high mobility of the bladder and the rectum causes uncertainty in radiation doses prescribed to patients with prostate cancer who undergo radiotherapy (RT) multifraction treatments. The purpose of this study was to estimate the dose received by the bladder, rectum, and prostate from multifraction treatments using daily cone-beam computed tomography (CBCT). Overall, 28 patients with prostate cancer who planned to receive radiation treatments were enrolled in the study. The acquired CBCT before the treatment delivery was registered with the planning CT to map the dose distribution used in the treatment plan for estimating the received dose during clinical treatment. For all 28 patients with 112 data sets, the mean percentage differences (± standard deviation) in the volume and radiation dose were 44% (± 41) and 18% (± 17) for the bladder, 20% (± 21) and 2% (± 2) for the prostate, and 36% (± 29) and 22% (± 15) for the rectum, respectively. Substantial differences between the volumes and radiation dose and those specified in treatment plans were observed. Besides the use of image-guided RT to improve patient setup accuracy, further consideration of large changes in bladder and rectum volumes is strongly suggested when using external beam radiation for prostate cancer.
Collapse
Affiliation(s)
- Tzung-Chi Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan; Department of Biomedical Informatics, Asia University, Taichung City, Taiwan.
| | - Kuei-Ting Chou
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan
| | - Shih-Neng Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan; Department of Biomedical Informatics, Asia University, Taichung City, Taiwan
| | - Chih-Kai Chang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, Taichung City, Taiwan
| | - Geoffrey Zhang
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
14
|
Lin YH, Huang SM, Huang CY, Tu YN, Liu SH, Huang TC. Quantitative analysis of respiration-related movement for abdominal artery in multiphase hepatic CT. PLoS One 2014; 9:e114222. [PMID: 25536144 PMCID: PMC4275208 DOI: 10.1371/journal.pone.0114222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022] Open
Abstract
Objectives Respiration-induced motion in the liver causes potential errors on the measurement of contrast medium in abdominal artery from multiphase hepatic CT scans. In this study, we investigated the use of hepatic CT images to quantitatively estimate the abdominal artery motion due to respiration by optical flow method. Materials and Methods A total of 132 consecutive patients were included in our patient cohort. We apply the optical flow method to compute the motion of the abdominal artery due to respiration. Results The minimum and maximum displacements of the abdominal artery motion were 0.02 and 30.87 mm by manual delineation, 0.03 and 40.75 mm calculated by optical flow method, respectively. Both high consistency and correlation between the present method and the physicians’ manual delineations were acquired with the regression equation of movement, y = 0.81x+0.25, r = 0.95, p<0.001. Conclusion We estimated the motion of abdominal artery due to respiration using the optical flow method in multiphase hepatic CT scans and the motion estimations were validated with the visualization of physicians. The quantitative analysis of respiration-related movement of abdominal artery could be used for motion correction in the measurement of contrast medium passing though abdominal artery in multiphase CT liver scans.
Collapse
Affiliation(s)
- Yang-Hsien Lin
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan
| | - Shih-Min Huang
- Department of Radiology, China Medical University Hospital, Taichung City, Taiwan
| | - Chin-Yi Huang
- Department of Diagnostic Radiology, Peng Hu Hospital, Ministry of Health and Welfare, Peng Hu City, Taiwan
| | - Yun-Niang Tu
- Department of Diagnostic Radiology, Peng Hu Hospital, Ministry of Health and Welfare, Peng Hu City, Taiwan
| | - Shing-Hong Liu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung, Taiwan
| | - Tzung-Chi Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung City, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Huang TC, Chou KT, Wang YC, Zhang G. Motion freeze for respiration motion correction in PET/CT: a preliminary investigation with lung cancer patient data. BIOMED RESEARCH INTERNATIONAL 2014; 2014:167491. [PMID: 25250313 PMCID: PMC4164623 DOI: 10.1155/2014/167491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 11/17/2022]
Abstract
PURPOSE Respiratory motion presents significant challenges for accurate PET/CT. It often introduces apparent increase of lesion size, reduction of measured standardized uptake value (SUV), and the mismatch in PET/CT fusion images. In this study, we developed the motion freeze method to use 100% of the counts collected by recombining the counts acquired from all phases of gated PET data into a single 3D PET data, with correction of respiration by deformable image registration. METHODS Six patients with diagnosis of lung cancer confirmed by oncologists were recruited. PET/CT scans were performed with Discovery STE system. The 4D PET/CT with the Varian real-time position management for respiratory motion tracking was followed by a clinical 3D PET/CT scan procedure in the static mode. Motion freeze applies the deformation matrices calculated by optical flow method to generate a single 3D effective PET image using the data from all the 4D PET phases. RESULTS The increase in SUV and decrease in tumor size with motion freeze for all lesions compared to the results from 3D and 4D was observed in the preliminary data of lung cancer patients. In addition, motion freeze substantially reduced tumor mismatch between the CT image and the corresponding PET images. CONCLUSION Motion freeze integrating 100% of the PET counts has the potential to eliminate the influences induced by respiratory motion in PET data.
Collapse
Affiliation(s)
- Tzung-Chi Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, 91 Hsueh-Shih Road, Taichung City, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung City, Taiwan
| | - Kuei-Ting Chou
- Department of Biomedical Imaging and Radiological Science, China Medical University, 91 Hsueh-Shih Road, Taichung City, Taiwan
| | - Yao-Ching Wang
- Department of Radiation Oncology, China Medical University Hospital, Taichung City, Taiwan
| | - Geoffrey Zhang
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
16
|
Respiratory motion reduction in PET/CT using abdominal compression for lung cancer patients. PLoS One 2014; 9:e98033. [PMID: 24837352 PMCID: PMC4024027 DOI: 10.1371/journal.pone.0098033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/14/2014] [Indexed: 12/25/2022] Open
Abstract
Purpose Respiratory motion causes substantial artifacts in reconstructed PET images when using helical CT as the attenuation map in PET/CT imaging. In this study, we aimed to reduce the respiratory artifacts in PET/CT images of patients with lung tumors using an abdominal compression device. Methods Twelve patients with lung cancer located in the middle or lower lobe of the lung were recruited. The patients were injected with 370 MBq of 18F-FDG. During PET, the patients assumed two bed positions for 1.5 min/bed. After conducting free-breathing imaging, we obtained images of the patients with abdominal compression by applying the same setup used in the free-breathing scan. The differences in the standardized uptake value (SUV)max, SUVmean, tumor volume, and the centroid of the tumors between PET and various CT schemes were measured. Results The SUVmax and SUVmean derived from PET/CT imaging using an abdominal compression device increased for all the lesions, compared with those obtained using the conventional approach. The percentage increases were 18.1% ±14% and 17% ±16.8% for SUVmax and SUVmean, respectively. PET/CT imaging combined with abdominal compression generally reduced the tumor mismatch between CT and the corresponding attenuation corrected PET images, with an average decrease of 1.9±1.7 mm over all the cases. Conclusions PET/CT imaging combined with abdominal compression reduces respiratory artifacts and PET/CT misregistration, and enhances quantitative SUV in tumor. Abdominal compression is easy to set up and is an effective method used in PET/CT imaging for clinical oncology, especially in the thoracic region.
Collapse
|
17
|
Nam WH, Ahn IJ, Kim KM, Kim BI, Ra JB. Motion-compensated PET image reconstruction with respiratory-matched attenuation correction using two low-dose inhale and exhale CT images. Phys Med Biol 2013; 58:7355-74. [DOI: 10.1088/0031-9155/58/20/7355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Huang TC, Wang YC, Kao CH. Thoracic tumor volume delineation in 4D-PET/CT by low dose interpolated CT for attenuation correction. PLoS One 2013; 8:e75903. [PMID: 24086662 PMCID: PMC3784394 DOI: 10.1371/journal.pone.0075903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022] Open
Abstract
PURPOSE 4D-PET/CT imaging is an excellent solution for reducing the breathing-induced effects in both CT and PET images. In 4D-PET/CT, 4D-CT images are selected to match those of 4D-PET phase by phase and the corresponding phases are used for attenuation correction in 4D-PET. However, the high radiation dose that patients acquire while undergoing 4D-CT imaging for diagnostic purposes remains a concern. This study aims to assess low-dose interpolated CT (ICT) for PET attenuation correction (PETICT) in thoracic tumor volume delineation. METHODS AND MATERIALS Twelve thoracic cancer patients (10 esophageal and 2 lung cancer cases) were recruited. All patients underwent 4D-PET/CT scans. The optical flow method based on image intensity gradient was applied to calculate the motion displacement in three dimensions for each voxel on two original extreme CT phases in the respiratory cycle, end-inspiration and end-expiration. The interpolated CTs were generated from two phases of the original 4D-CT using motion displacement. RESULTS Tumor motion due to respiration was estimated in the anterior-posterior dimension, the lateral dimension and the superior-inferior dimension by the optical flow method. The PETICT and ICT (4D-PET ICT/ICT) matched each other spatially in all the phases. The distortion of tumor shape and size resulting from respiratory motion artifacts were not observed in 4D-PETICT. The tumor volume measured by 4D-PET ICT/ICT correlated to the tumor volume measured by 4D-PET/CT (p = 0.98). CONCLUSIONS 4D-PETICT consistently represented the interpretation of FDG uptake as effectively as 4D-PET. 4D-PET ICT/ICT is a low-dose alternative to 4D-CT and significantly improves the interpretation of PET and CT images, while solving the respiratory motion problem as effectively as 4D-PET/CT.
Collapse
Affiliation(s)
- Tzung-Chi Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan
| | - Yao-Ching Wang
- Division of Radiation Oncology, China Medical University Hospital, Taichung City, Taiwan
| | - Chia-Hung Kao
- Department of Nuclear Medicine, China Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
19
|
Sun T, Wu TH, Wang SJ, Yang BH, Wu NY, Mok GSP. Low dose interpolated average CT for thoracic PET/CT attenuation correction using an active breathing controller. Med Phys 2013; 40:102507. [DOI: 10.1118/1.4820976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
Improvement of internal tumor volumes of non-small cell lung cancer patients for radiation treatment planning using interpolated average CT in PET/CT. PLoS One 2013; 8:e64665. [PMID: 23696903 PMCID: PMC3655997 DOI: 10.1371/journal.pone.0064665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022] Open
Abstract
Respiratory motion causes uncertainties in tumor edges on either computed tomography (CT) or positron emission tomography (PET) images and causes misalignment when registering PET and CT images. This phenomenon may cause radiation oncologists to delineate tumor volume inaccurately in radiotherapy treatment planning. The purpose of this study was to analyze radiology applications using interpolated average CT (IACT) as attenuation correction (AC) to diminish the occurrence of this scenario. Thirteen non-small cell lung cancer patients were recruited for the present comparison study. Each patient had full-inspiration, full-expiration CT images and free breathing PET images by an integrated PET/CT scan. IACT for AC in PETIACT was used to reduce the PET/CT misalignment. The standardized uptake value (SUV) correction with a low radiation dose was applied, and its tumor volume delineation was compared to those from HCT/PETHCT. The misalignment between the PETIACT and IACT was reduced when compared to the difference between PETHCT and HCT. The range of tumor motion was from 4 to 17 mm in the patient cohort. For HCT and PETHCT, correction was from 72% to 91%, while for IACT and PETIACT, correction was from 73% to 93% (*p<0.0001). The maximum and minimum differences in SUVmax were 0.18% and 27.27% for PETHCT and PETIACT, respectively. The largest percentage differences in the tumor volumes between HCT/PET and IACT/PET were observed in tumors located in the lowest lobe of the lung. Internal tumor volume defined by functional information using IACT/PETIACT fusion images for lung cancer would reduce the inaccuracy of tumor delineation in radiation therapy planning.
Collapse
|