1
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Goswami N, Shen M, Gomez LJ, Dannhauer M, Sommer MA, Peterchev AV. A semi-automated pipeline for finite element modeling of electric field induced in nonhuman primates by transcranial magnetic stimulation. J Neurosci Methods 2024; 408:110176. [PMID: 38795980 PMCID: PMC11227653 DOI: 10.1016/j.jneumeth.2024.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is used to treat a range of brain disorders by inducing an electric field (E-field) in the brain. However, the precise neural effects of TMS are not well understood. Nonhuman primates (NHPs) are used to model the impact of TMS on neural activity, but a systematic method of quantifying the induced E-field in the cortex of NHPs has not been developed. NEW METHOD The pipeline uses statistical parametric mapping (SPM) to automatically segment a structural MRI image of a rhesus macaque into five tissue compartments. Manual corrections are necessary around implants. The segmented tissues are tessellated into 3D meshes used in finite element method (FEM) software to compute the TMS induced E-field in the brain. The gray matter can be further segmented into cortical laminae using a volume preserving method for defining layers. RESULTS Models of three NHPs were generated with TMS coils placed over the precentral gyrus. Two coil configurations, active and sham, were simulated and compared. The results demonstrated a large difference in E-fields at the target. Additionally, the simulations were calculated using two different E-field solvers and were found to not significantly differ. COMPARISON WITH EXISTING METHODS Current methods segment NHP tissues manually or use automated methods for only the brain tissue. Existing methods also do not stratify the gray matter into layers. CONCLUSION The pipeline calculates the induced E-field in NHP models by TMS and can be used to plan implant surgeries and determine approximate E-field values around neuron recording sites.
Collapse
Affiliation(s)
- Neerav Goswami
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Michael Shen
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Luis J Gomez
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Moritz Dannhauer
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Abbott CC, Miller J, Farrar D, Argyelan M, Lloyd M, Squillaci T, Kimbrell B, Ryman S, Jones TR, Upston J, Quinn DK, Peterchev AV, Erhardt E, Datta A, McClintock SM, Deng ZD. Amplitude-determined seizure-threshold, electric field modeling, and electroconvulsive therapy antidepressant and cognitive outcomes. Neuropsychopharmacology 2024; 49:640-648. [PMID: 38212442 PMCID: PMC10876627 DOI: 10.1038/s41386-023-01780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 01/13/2024]
Abstract
Electroconvulsive therapy (ECT) pulse amplitude, which dictates the induced electric field (E-field) magnitude in the brain, is presently fixed at 800 or 900 milliamperes (mA) without clinical or scientific rationale. We have previously demonstrated that increased E-field strength improves ECT's antidepressant effect but worsens cognitive outcomes. Amplitude-determined seizure titration may reduce the E-field variability relative to fixed amplitude ECT. In this investigation, we assessed the relationships among amplitude-determined seizure-threshold (STa), E-field magnitude, and clinical outcomes in older adults (age range 50 to 80 years) with depression. Subjects received brain imaging, depression assessment, and neuropsychological assessment pre-, mid-, and post-ECT. STa was determined during the first treatment with a Soterix Medical 4×1 High Definition ECT Multi-channel Stimulation Interface (Investigation Device Exemption: G200123). Subsequent treatments were completed with right unilateral electrode placement (RUL) and 800 mA. We calculated Ebrain defined as the 90th percentile of E-field magnitude in the whole brain for RUL electrode placement. Twenty-nine subjects were included in the final analyses. Ebrain per unit electrode current, Ebrain/I, was associated with STa. STa was associated with antidepressant outcomes at the mid-ECT assessment and bitemporal electrode placement switch. Ebrain/I was associated with changes in category fluency with a large effect size. The relationship between STa and Ebrain/I extends work from preclinical models and provides a validation step for ECT E-field modeling. ECT with individualized amplitude based on E-field modeling or STa has the potential to enhance neuroscience-based ECT parameter selection and improve clinical outcomes.
Collapse
Affiliation(s)
| | - Jeremy Miller
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Danielle Farrar
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Miklos Argyelan
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Megan Lloyd
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Taylor Squillaci
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Brian Kimbrell
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Sephira Ryman
- Mind Research Network, Albuquerque, NM, USA
- Department of Neurology, Albuquerque, NM, USA
| | - Thomas R Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Joel Upston
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | | | - Shawn M McClintock
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhi-De Deng
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Deng ZD, Robins PL, Regenold W, Rohde P, Dannhauer M, Lisanby SH. How electroconvulsive therapy works in the treatment of depression: is it the seizure, the electricity, or both? Neuropsychopharmacology 2024; 49:150-162. [PMID: 37488281 PMCID: PMC10700353 DOI: 10.1038/s41386-023-01677-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
We have known for nearly a century that triggering seizures can treat serious mental illness, but what we do not know is why. Electroconvulsive Therapy (ECT) works faster and better than conventional pharmacological interventions; however, those benefits come with a burden of side effects, most notably memory loss. Disentangling the mechanisms by which ECT exerts rapid therapeutic benefit from the mechanisms driving adverse effects could enable the development of the next generation of seizure therapies that lack the downside of ECT. The latest research suggests that this goal may be attainable because modifications of ECT technique have already yielded improvements in cognitive outcomes without sacrificing efficacy. These modifications involve changes in how the electricity is administered (both where in the brain, and how much), which in turn impacts the characteristics of the resulting seizure. What we do not completely understand is whether it is the changes in the applied electricity, or in the resulting seizure, or both, that are responsible for improved safety. Answering this question may be key to developing the next generation of seizure therapies that lack these adverse side effects, and ushering in novel interventions that are better, faster, and safer than ECT.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - William Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Paul Rohde
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Moritz Dannhauer
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Herrera B, Sajad A, Errington SP, Schall JD, Riera JJ. Cortical origin of theta error signals. Cereb Cortex 2023; 33:11300-11319. [PMID: 37804250 PMCID: PMC10690871 DOI: 10.1093/cercor/bhad367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
A multi-scale approach elucidated the origin of the error-related-negativity (ERN), with its associated theta-rhythm, and the post-error-positivity (Pe) in macaque supplementary eye field (SEF). Using biophysical modeling, synaptic inputs to a subpopulation of layer-3 (L3) and layer-5 (L5) pyramidal cells (PCs) were optimized to reproduce error-related spiking modulation and inter-spike intervals. The intrinsic dynamics of dendrites in L5 but not L3 error PCs generate theta rhythmicity with random phases. Saccades synchronized the phases of the theta-rhythm, which was magnified on errors. Contributions from error PCs to the laminar current source density (CSD) observed in SEF were negligible and could not explain the observed association between error-related spiking modulation in L3 PCs and scalp-EEG. CSD from recorded laminar field potentials in SEF was comprised of multipolar components, with monopoles indicating strong electro-diffusion, dendritic/axonal electrotonic current leakage outside SEF, or violations of the model assumptions. Our results also demonstrate the involvement of secondary cortical regions, in addition to SEF, particularly for the later Pe component. The dipolar component from the observed CSD paralleled the ERN dynamics, while the quadrupolar component paralleled the Pe. These results provide the most advanced explanation to date of the cellular mechanisms generating the ERN.
Collapse
Affiliation(s)
- Beatriz Herrera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| | - Amirsaman Sajad
- Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative & Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37203, United States
| | - Steven P Errington
- Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative & Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37203, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jeffrey D Schall
- Centre for Vision Research, Vision: Science to Applications Program, Departments of Biology and Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - Jorge J Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| |
Collapse
|
6
|
Guillen A, Abbott CC, Deng ZD, Huang Y, Pascoal-Faria P, Truong DQ, Datta A. Impact of modeled field of view in electroconvulsive therapy current flow simulations. Front Psychiatry 2023; 14:1168672. [PMID: 37275969 PMCID: PMC10232815 DOI: 10.3389/fpsyt.2023.1168672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Background The field of view (FOV) considered in MRI-guided forward models of electroconvulsive therapy (ECT) are, as expected, limited to the MRI volume collected. Therefore, there is variation in model extent considered across simulation efforts. This study examines the impact of FOV on the induced electric field (E-field) due to two common electrode placements: right unilateral (RUL) and bilateral (BL). Methods A full-body dataset was obtained and processed for modeling relevant to ECT physics. Multiple extents were derived by truncating from the head down to four levels: upper head (whole-brain), full head, neck, and torso. All relevant stimulation and focality metrics were determined. The differences in the 99th percentile peak of stimulation strength in the brain between each extent to the full-body (reference) model were considered as the relative error (RE). We also determine the FOV beyond which the difference to a full-body model would be negligible. Results The 2D and 3D spatial plots revealed anticipated results in line with prior efforts. The RE for BL upper head was ~50% reducing to ~2% for the neck FOV. The RE for RUL upper head was ~5% reducing to subpercentage (0.28%) for the full-head FOV. As shown previously, BL was found to stimulate a larger brain volume-but restricted to the upper head and for amplitude up to ~480 mA. To some extent, RUL stimulated a larger volume. The RUL-induced volume was larger even when considering the neural activation threshold corresponding to brief pulse BL if ECT amplitude was >270 mA. This finding is explained by the BL-induced current loss through the inferior regions as more FOV is considered. Our result is a departure from prior efforts and raises questions about the focality metric as defined and/or inter-individual differences. Conclusion Our findings highlight that BL is impacted more than RUL with respect to FOV. It is imperative to collect full-head data at a minimum for any BL simulation and possibly more. Clinical practice resorts to using BL ECT when RUL is unsuccessful. However, the notion that BL is more efficacious on the premise of stimulating more brain volume needs to be revisited.
Collapse
Affiliation(s)
- Alexander Guillen
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | | | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Yu Huang
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | - Paula Pascoal-Faria
- Department of Mathematics ESTG and CDRSP Polytechnic Institute of Leiria, Leiria, Portugal
| | - Dennis Q. Truong
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
- City College of New York, New York, NY, United States
| |
Collapse
|
7
|
Wang B, Aberra AS, Grill WM, Peterchev AV. Responses of model cortical neurons to temporal interference stimulation and related transcranial alternating current stimulation modalities. J Neural Eng 2023; 19:10.1088/1741-2552/acab30. [PMID: 36594634 PMCID: PMC9942661 DOI: 10.1088/1741-2552/acab30] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective.Temporal interference stimulation (TIS) was proposed as a non-invasive, focal, and steerable deep brain stimulation method. However, the mechanisms underlying experimentally-observed suprathreshold TIS effects are unknown, and prior simulation studies had limitations in the representations of the TIS electric field (E-field) and cerebral neurons. We examined the E-field and neural response characteristics for TIS and related transcranial alternating current stimulation modalities.Approach.Using the uniform-field approximation, we simulated a range of stimulation parameters in biophysically realistic model cortical neurons, including different orientations, frequencies, amplitude ratios, amplitude modulation, and phase difference of the E-fields, and obtained thresholds for both activation and conduction block.Main results. For two E-fields with similar amplitudes (representative of E-field distributions at the target region), TIS generated an amplitude-modulated (AM) total E-field. Due to the phase difference of the individual E-fields, the total TIS E-field vector also exhibited rotation where the orientations of the two E-fields were not aligned (generally also at the target region). TIS activation thresholds (75-230 V m-1) were similar to those of high-frequency stimulation with or without modulation and/or rotation. For E-field dominated by the high-frequency carrier and with minimal amplitude modulation and/or rotation (typically outside the target region), TIS was less effective at activation and more effective at block. Unlike AM high-frequency stimulation, TIS generated conduction block with some orientations and amplitude ratios of individual E-fields at very high amplitudes of the total E-field (>1700 V m-1).Significance. The complex 3D properties of the TIS E-fields should be accounted for in computational and experimental studies. The mechanisms of suprathreshold cortical TIS appear to involve neural activity block and periodic activation or onset response, consistent with computational studies of peripheral axons. These phenomena occur at E-field strengths too high to be delivered tolerably through scalp electrodes and may inhibit endogenous activity in off-target regions, suggesting limited significance of suprathreshold TIS.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aman S. Aberra
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
| | - Warren M. Grill
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
8
|
Li Z, Peterchev AV, Rothwell JC, Goetz SM. Detection of motor-evoked potentials below the noise floor: rethinking the motor stimulation threshold. J Neural Eng 2022; 19:10.1088/1741-2552/ac7dfc. [PMID: 35785762 PMCID: PMC10155352 DOI: 10.1088/1741-2552/ac7dfc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/04/2022] [Indexed: 12/24/2022]
Abstract
Objective. Motor-evoked potentials (MEPs) are among the most prominent responses to brain stimulation, such as supra-threshold transcranial magnetic stimulation and electrical stimulation. Understanding of the neurophysiology and the determination of the lowest stimulation strength that evokes responses requires the detection of even smaller responses, e.g. from single motor units. However, available detection and quantization methods suffer from a large noise floor. This paper develops a detection method that extracts MEPs hidden below the noise floor. With this method, we aim to estimate excitatory activations of the corticospinal pathways well below the conventional detection level.Approach. The presented MEP detection method presents a self-learning matched-filter approach for improved robustness against noise. The filter is adaptively generated per subject through iterative learning. For responses that are reliably detected by conventional detection, the new approach is fully compatible with established peak-to-peak readings and provides the same results but extends the dynamic range below the conventional noise floor.Main results. In contrast to the conventional peak-to-peak measure, the proposed method increases the signal-to-noise ratio by more than a factor of 5. The first detectable responses appear to be substantially lower than the conventional threshold definition of 50µV median peak-to-peak amplitude.Significance. The proposed method shows that stimuli well below the conventional 50µV threshold definition can consistently and repeatably evoke muscular responses and thus activate excitable neuron populations in the brain. As a consequence, the input-output (IO) curve is extended at the lower end, and the noise cut-off is shifted. Importantly, the IO curve extends so far that the 50µV point turns out to be closer to the center of the logarithmic sigmoid curve rather than close to the first detectable responses. The underlying method is applicable to a wide range of evoked potentials and other biosignals, such as in electroencephalography.
Collapse
Affiliation(s)
- Zhongxi Li
- Department of Electrical & Computer Engineering, Duke University, Durham, USA
| | - Angel V. Peterchev
- Departments of Psychiatry & Behavioral Sciences, Neurosurgery, Biomedical Engineering, and Electrical & Computer Engineering, Duke University, Durham, USA
| | | | - Stefan M. Goetz
- (Corresponding author) Department of Engineering, University of Cambridge, Cambridge, UK () and Departments of Psychiatry & Behavioral Sciences, Neurosurgery, and Electrical & Computer Engineering, Duke University, Durham, USA ()
| |
Collapse
|
9
|
Herrera B, Westerberg JA, Schall MS, Maier A, Woodman GF, Schall JD, Riera JJ. Resolving the mesoscopic missing link: Biophysical modeling of EEG from cortical columns in primates. Neuroimage 2022; 263:119593. [PMID: 36031184 PMCID: PMC9968827 DOI: 10.1016/j.neuroimage.2022.119593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022] Open
Abstract
Event-related potentials (ERP) are among the most widely measured indices for studying human cognition. While their timing and magnitude provide valuable insights, their usefulness is limited by our understanding of their neural generators at the circuit level. Inverse source localization offers insights into such generators, but their solutions are not unique. To address this problem, scientists have assumed the source space generating such signals comprises a set of discrete equivalent current dipoles, representing the activity of small cortical regions. Based on this notion, theoretical studies have employed forward modeling of scalp potentials to understand how changes in circuit-level dynamics translate into macroscopic ERPs. However, experimental validation is lacking because it requires in vivo measurements of intracranial brain sources. Laminar local field potentials (LFP) offer a mechanism for estimating intracranial current sources. Yet, a theoretical link between LFPs and intracranial brain sources is missing. Here, we present a forward modeling approach for estimating mesoscopic intracranial brain sources from LFPs and predict their contribution to macroscopic ERPs. We evaluate the accuracy of this LFP-based representation of brain sources utilizing synthetic laminar neurophysiological measurements and then demonstrate the power of the approach in vivo to clarify the source of a representative cognitive ERP component. To that end, LFP was measured across the cortical layers of visual area V4 in macaque monkeys performing an attention demanding task. We show that area V4 generates dipoles through layer-specific transsynaptic currents that biophysically recapitulate the ERP component through the detailed forward modeling. The constraints imposed on EEG production by this method also revealed an important dissociation between computational and biophysical contributors. As such, this approach represents an important bridge between laminar microcircuitry, through the mesoscopic activity of cortical columns to the patterns of EEG we measure at the scalp.
Collapse
Affiliation(s)
- Beatriz Herrera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| | - Jacob A. Westerberg
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, 111 21st Avenue South, 301 Wilson Hall, Nashville, TN 37240, United States,Corresponding author. (J.A. Westerberg)
| | - Michelle S. Schall
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, 111 21st Avenue South, 301 Wilson Hall, Nashville, TN 37240, United States
| | - Alexander Maier
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, 111 21st Avenue South, 301 Wilson Hall, Nashville, TN 37240, United States
| | - Geoffrey F. Woodman
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, 111 21st Avenue South, 301 Wilson Hall, Nashville, TN 37240, United States
| | - Jeffrey D. Schall
- Centre for Vision Research, Departments of Biology and Psychology, Vision: Science to Applications Program, York University, Toronto, ON M3J 1P3, Canada
| | - Jorge J. Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| |
Collapse
|
10
|
Gomez-Feria J, Fernandez-Corazza M, Martin-Rodriguez JF, Mir P. TMS intensity and focality correlation with coil orientation at three non-motor regions. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac4ef9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. The aim of this study is to define the best coil orientations for transcranial magnetic stimulation (TMS) for three clinically relevant brain areas: pre-supplementary motor area (pre-SMA), inferior frontal gyrus (IFG), and posterior parietal cortex (PPC), by means of simulations in 12 realistic head models of the electric field (E-field). Methods. We computed the E-field generated by TMS in our three volumes of interest (VOI) that were delineated based on published atlases. We then analysed the maximum intensity and spatial focality for the normal and absolute components of the E-field considering different percentile thresholds. Lastly, we correlated these results with the different anatomical properties of our VOIs. Results. Overall, the spatial focality of the E-field for the three VOIs varied depending on the orientation of the coil. Further analysis showed that differences in individual brain anatomy were related to the amount of focality achieved. In general, a larger percentage of sulcus resulted in better spatial focality. Additionally, a higher normal E-field intensity was achieved when the coil axis was placed perpendicular to the predominant orientations of the gyri of each VOI. A positive correlation between spatial focality and E-field intensity was found for PPC and IFG but not for pre-SMA. Conclusions. For a rough approximation, better coil orientations can be based on the individual’s specific brain morphology at the VOI. Moreover, TMS computational models should be employed to obtain better coil orientations in non-motor regions of interest. Significance. Finding better coil orientations in non-motor regions is a challenge in TMS and seeks to reduce interindividual variability. Our individualized TMS simulation pipeline leads to fewer inter-individual variability in the focality, likely enhancing the efficacy of the stimulation and reducing the risk of stimulating adjacent, non-targeted areas.
Collapse
|
11
|
Bohlen MO, McCown TJ, Powell SK, El-Nahal HG, Daw T, Basso MA, Sommer MA, Samulski RJ. Adeno-Associated Virus Capsid-Promoter Interactions in the Brain Translate from Rat to the Nonhuman Primate. Hum Gene Ther 2020; 31:1155-1168. [PMID: 32940068 PMCID: PMC7698875 DOI: 10.1089/hum.2020.196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, we established an adeno-associated virus (AAV9) capsid-promoter interaction that directly determined cell-specific gene expression across two synthetic promoters, Cbh and CBA, in the rat striatum. These studies not only expand this capsid-promoter interaction to include another promoter in the rat striatum but also establish AAV capsid-promoter interactions in the nonhuman primate brain. When AAV serotype 9 (AAV9) vectors were injected into the rat striatum, the minimal synthetic promoter JetI drove green fluorescent protein (GFP) gene expression predominantly in oligodendrocytes. However, similar to our previous findings, the insertion of six alanines into VP1/VP2 of the AAV9 capsid (AAV9AU) significantly shifted JetI-driven GFP gene expression to neurons. In addition, previous retrograde tracing studies in the nonhuman primate brain also revealed the existence of a capsid-promoter interaction. When rAAV2-Retro vectors were infused into the frontal eye field (FEF) of rhesus macaques, local gene expression was prominent using either the hybrid chicken beta actin (CAG) or human synapsin (hSyn) promoters. However, only the CAG promoter, not the hSyn promoter, led to gene expression in the ipsilateral claustrum and contralateral FEF. Conversely, infusion of rAAV2-retro-hSyn vectors, but not rAAV2-retro-CAG, into the macaque superior colliculus led to differential and selective retrograde gene expression in cerebellotectal afferent cells. Clearly, this differential promoter/capsid expression profile could not be attributed to promoter inactivation from retrograde transport of the rAAV2-Retro vector. In summary, we document the potential for AAV capsid/promoter interactions to impact cell-specific gene expression across species, experimental manipulations, and engineered capsids, independent of capsid permissivity.
Collapse
Affiliation(s)
- Martin O. Bohlen
- Department Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Thomas J. McCown
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Gene Therapy Center, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | - Sara K. Powell
- UNC Gene Therapy Center, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
- Asklepios Biopharmaceutical, Inc., Research Triangle Park, NC, USA
| | - Hala G. El-Nahal
- Department Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Tierney Daw
- Department Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Michele A. Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, and Jane and Terry Semel Institute for Neuroscience and Human Behavior, Brain Research Institute—David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Marc A. Sommer
- Department Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina, USA
| | - R. Jude Samulski
- UNC Gene Therapy Center, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
A Minimal Biophysical Model of Neocortical Pyramidal Cells: Implications for Frontal Cortex Microcircuitry and Field Potential Generation. J Neurosci 2020; 40:8513-8529. [PMID: 33037076 PMCID: PMC7605414 DOI: 10.1523/jneurosci.0221-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022] Open
Abstract
Ca2+ spikes initiated in the distal trunk of layer 5 pyramidal cells (PCs) underlie nonlinear dynamic changes in the gain of cellular response, critical for top-down control of cortical processing. Detailed models with many compartments and dozens of ionic channels can account for this Ca2+ spike-dependent gain and associated critical frequency. However, current models do not account for all known Ca2+-dependent features. Previous attempts to include more features have required increasing complexity, limiting their interpretability and utility for studying large population dynamics. We overcome these limitations in a minimal two-compartment biophysical model. In our model, a basal-dendrites/somatic compartment included fast-inactivating Na+ and delayed-rectifier K+ conductances, while an apical-dendrites/trunk compartment included persistent Na+, hyperpolarization-activated cation (I h ), slow-inactivating K+, muscarinic K+, and Ca2+ L-type. The model replicated the Ca2+ spike morphology and its critical frequency plus three other defining features of layer 5 PC synaptic integration: linear frequency-current relationships, back-propagation-activated Ca2+ spike firing, and a shift in the critical frequency by blocking I h Simulating 1000 synchronized layer 5 PCs, we reproduced the current source density patterns evoked by Ca2+ spikes and describe resulting medial-frontal EEG on a male macaque monkey. We reproduced changes in the current source density when I h was blocked. Thus, a two-compartment model with five crucial ionic currents in the apical dendrites reproduces all features of these neurons. We discuss the utility of this minimal model to study the microcircuitry of agranular areas of the frontal lobe involved in cognitive control and responsible for event-related potentials, such as the error-related negativity.SIGNIFICANCE STATEMENT A minimal model of layer 5 pyramidal cells replicates all known features crucial for distal synaptic integration in these neurons. By redistributing voltage-gated and returning transmembrane currents in the model, we establish a theoretical framework for the investigation of cortical microcircuit contribution to intracranial local field potentials and EEG. This tractable model will enable biophysical evaluation of multiscale electrophysiological signatures and computational investigation of cortical processing.
Collapse
|
13
|
Cushnie AK, El-Nahal HG, Bohlen MO, May PJ, Basso MA, Grimaldi P, Wang MZ, de Velasco Ezequiel MF, Sommer MA, Heilbronner SR. Using rAAV2-retro in rhesus macaques: Promise and caveats for circuit manipulation. J Neurosci Methods 2020; 345:108859. [PMID: 32668316 DOI: 10.1016/j.jneumeth.2020.108859] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recent genetic technologies such as opto- and chemogenetics allow for the manipulation of brain circuits with unprecedented precision. Most studies employing these techniques have been undertaken in rodents, but a more human-homologous model for studying the brain is the nonhuman primate (NHP). Optimizing viral delivery of transgenes encoding actuator proteins could revolutionize the way we study neuronal circuits in NHPs. NEW METHOD: rAAV2-retro, a popular new capsid variant, produces robust retrograde labeling in rodents. Whether rAAV2-retro's highly efficient retrograde transport would translate to NHPs was unknown. Here, we characterized the anatomical distribution of labeling following injections of rAAV2-retro encoding opsins or DREADDs in the cortico-basal ganglia and oculomotor circuits of rhesus macaques. RESULTS rAAV2-retro injections in striatum, frontal eye field, and superior colliculus produced local labeling at injection sites and robust retrograde labeling in many afferent regions. In every case, however, a few brain regions with well-established projections to the injected structure lacked retrogradely labeled cells. We also observed robust terminal field labeling in downstream structures. COMPARISON WITH EXISTING METHOD(S) Patterns of labeling were similar to those obtained with traditional tract-tracers, except for some afferent labeling that was noticeably absent. CONCLUSIONS rAAV2-retro promises to be useful for circuit manipulation via retrograde transduction in NHPs, but caveats were revealed by our findings. Some afferently connected regions lacked retrogradely labeled cells, showed robust axon terminal labeling, or both. This highlights the importance of anatomically characterizing rAAV2-retro's expression in target circuits in NHPs before moving to manipulation studies.
Collapse
Affiliation(s)
- Adriana K Cushnie
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, 39216, United States
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Piercesare Grimaldi
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Maya Zhe Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | | | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
14
|
Hong R, Chen K, Hou X, Sun Q, Liu N, Liu QH. Mixed Finite Element Method for Full-Wave Simulation of Bioelectromagnetism From DC to Microwave Frequencies. IEEE Trans Biomed Eng 2020; 67:2765-2772. [PMID: 32011997 DOI: 10.1109/tbme.2020.2970607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bioelectromagnetism focuses on the study of electromagnetic fields in biological tissues from direct current (DC) to optical frequencies. It is challenging to develop an electromagnetics (EM) simulation method to cover this entire frequency band due to the electrically small/large scattering problem at extremely low/high frequencies. This paper focuses on the band from DC to microwave frequencies in bioelectromagnetism. Its main research objective is to develop a method that can overcome the low frequency breakdown problem at low frequencies (practically DC) and still stay stable at microwave frequencies. Based on the scattered field vector Helmholtz equation, the mixed finite element method (mixed FEM) is developed for the broadband electromagnetic field simulation in biological tissues. By imposing Gauss' law as the constraint condition, the mixed FEM overcomes the low frequency breakdown problem without resorting to the quasi-static approximation and remains effective and accurate at high frequencies. Extremely low frequency and high frequency numerical results are demonstrated to verify that the mixed FEM is a stable full-wave electromagnetic field simulation method for the full-bandwidth bioelectromagnetism.
Collapse
|
15
|
Goetz SM, Li Z, Peterchev AV. Noninvasive Detection of Motor-Evoked Potentials in Response to Brain Stimulation Below the Noise Floor-How Weak Can a Stimulus Be and Still Stimulate. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2687-2690. [PMID: 30440960 DOI: 10.1109/embc.2018.8512765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Motor-evoked potentials (MEP) are one of the most important responses to brain stimulation, such as supra-threshold transcranial magnetic stimulation (TMS) and electrical stimulation. The understanding of the neurophysiology and the determination of the lowest stimulation strength that evokes responses requires the detection of even smallest responses, e.g., from single motor units, but available detection and quantization methods are rather simple and suffer from a large noise floor. The paper introduces a more sophisticated matched-filter detection method that increases the detection sensitivity and shows that activation occurs well below the conventional detection level. In consequence, also conventional threshold definitions, e.g., as 50 μV median response amplitude, turn out to be substantially higher than the point at which first detectable responses occur. The presented method uses a matched-filter approach for improved sensitivity and generates the filter through iterative learning from the presented data. In contrast to conventional peak-to-peak measures, the presented method has a higher signal-to-noise ratio (≥14 dB). For responses that are reliably detected by conventional detection, the new approach is fully compatible and provides the same results but extends the dynamic range below the conventional noise floor. The underlying method is applicable to a wide range of well-timed biosignals and evoked potentials, such as in electroencephalography.
Collapse
|
16
|
Goetz SM, Alavi SMM, Deng ZD, Peterchev AV. Statistical Model of Motor-Evoked Potentials. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1539-1545. [PMID: 31283508 DOI: 10.1109/tnsre.2019.2926543] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Motor-evoked potentials (MEPs) are widely used for biomarkers and dose individualization in transcranial stimulation. The large variability of MEPs requires sophisticated methods of analysis to extract information fast and correctly. Development and testing of such methods relies on the availability for realistic models of MEP generation, which are presently lacking. This paper presents a statistical model that can simulate long sequences of individualized MEP amplitude data with properties matching experimental observations. The MEP model includes three sources of trial-to-trial variability: excitability fluctuations, variability in the neural and muscular pathways, and physiological and measurement noise. It also generates virtual human subject data from statistics of population variability. All parameters are extracted as statistical distributions from experimental data from the literature. The model exhibits previously described features, such as stimulus-intensity-dependent MEP amplitude distributions, including bimodal ones. The model can generate long sequences of test data for individual subjects with specified parameters or for subjects from a virtual population. The presented MEP model is the most detailed to date and can be used for the development and implementation of dosing and biomarker estimation algorithms for transcranial stimulation.
Collapse
|
17
|
Labruna L, Stark-Inbar A, Breska A, Dabit M, Vanderschelden B, Nitsche MA, Ivry RB. Individual differences in TMS sensitivity influence the efficacy of tDCS in facilitating sensorimotor adaptation. Brain Stimul 2019; 12:992-1000. [PMID: 30930208 PMCID: PMC6592723 DOI: 10.1016/j.brs.2019.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) can enhance cognitive function in healthy individuals, with promising applications as a therapeutic intervention. Despite this potential, variability in the efficacy of tDCS has been a considerable concern. OBJECTIVE /Hypothesis: Given that tDCS is always applied at a set intensity, we examined whether individual differences in sensitivity to brain stimulation might be one variable that modulates the efficacy of tDCS in a motor learning task. METHODS In the first part of the experiment, single-pulse transcranial magnetic stimulation (TMS) over primary motor cortex (M1) was used to determine each participant's resting motor threshold (rMT). This measure was used as a proxy of individual sensitivity to brain stimulation. In an experimental group of 28 participants, 2 mA tDCS was then applied during a motor learning task with the anodal electrode positioned over left M1. Another 14 participants received sham stimulation. RESULTS M1-Anodal tDCS facilitated learning relative to participants who received sham stimulation. Of primary interest was a within-group analysis of the experimental group, showing that the rate of learning was positively correlated with rMT: Participants who were more sensitive to brain stimulation as operationalized by our TMS proxy (low rMT), showed faster adaptation. CONCLUSIONS Methodologically, the results indicate that TMS sensitivity can predict tDCS efficacy in a behavioral task, providing insight into one source of variability that may contribute to replication problems with tDCS. Theoretically, the results provide further evidence of a role of sensorimotor cortex in adaptation, with the boost from tDCS observed during acquisition.
Collapse
Affiliation(s)
- L Labruna
- Department of Psychology, University of California, 94704, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, 94704, Berkeley, CA, USA.
| | - A Stark-Inbar
- Department of Psychology, University of California, 94704, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, 94704, Berkeley, CA, USA
| | - A Breska
- Department of Psychology, University of California, 94704, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, 94704, Berkeley, CA, USA
| | - M Dabit
- Department of Psychology, University of California, 94704, Berkeley, CA, USA
| | - B Vanderschelden
- Department of Psychology, University of California, 94704, Berkeley, CA, USA
| | - M A Nitsche
- Leibniz Research Center for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - R B Ivry
- Department of Psychology, University of California, 94704, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, 94704, Berkeley, CA, USA
| |
Collapse
|
18
|
Sharma K, Sharma R. Design considerations for effective neural signal sensing and amplification: a review. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Liu A, Vöröslakos M, Kronberg G, Henin S, Krause MR, Huang Y, Opitz A, Mehta A, Pack CC, Krekelberg B, Berényi A, Parra LC, Melloni L, Devinsky O, Buzsáki G. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun 2018; 9:5092. [PMID: 30504921 PMCID: PMC6269428 DOI: 10.1038/s41467-018-07233-7] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022] Open
Abstract
Noninvasive brain stimulation techniques are used in experimental and clinical fields for their potential effects on brain network dynamics and behavior. Transcranial electrical stimulation (TES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), has gained popularity because of its convenience and potential as a chronic therapy. However, a mechanistic understanding of TES has lagged behind its widespread adoption. Here, we review data and modelling on the immediate neurophysiological effects of TES in vitro as well as in vivo in both humans and other animals. While it remains unclear how typical TES protocols affect neural activity, we propose that validated models of current flow should inform study design and artifacts should be carefully excluded during signal recording and analysis. Potential indirect effects of TES (e.g., peripheral stimulation) should be investigated in more detail and further explored in experimental designs. We also consider how novel technologies may stimulate the next generation of TES experiments and devices, thus enhancing validity, specificity, and reproducibility.
Collapse
Affiliation(s)
- Anli Liu
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA.
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA.
| | - Mihály Vöröslakos
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, Faculty of Medicine, University of Szeged, 10 Dom sq., Szeged, H-6720, Hungary
- New York University Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA
| | - Greg Kronberg
- Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Simon Henin
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA
| | - Matthew R Krause
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Yu Huang
- Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Alexander Opitz
- Department of Biomedical Engineering of Minnesota, 312 Church St. SE, Minneapolis, MN, 55455, USA
| | - Ashesh Mehta
- Department of Neurosurgery, Hofstra Northwell School of Medicine, 611 Northern Blvd, Great Neck, NY, 11021, USA
- Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Christopher C Pack
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ, 07102, USA
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, Faculty of Medicine, University of Szeged, 10 Dom sq., Szeged, H-6720, Hungary
| | - Lucas C Parra
- Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Lucia Melloni
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA
- Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322, Frankfurt am Main, Germany
| | - Orrin Devinsky
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA
| | - György Buzsáki
- New York University Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA.
| |
Collapse
|
20
|
Lee WH, Kennedy NI, Bikson M, Frangou S. A Computational Assessment of Target Engagement in the Treatment of Auditory Hallucinations with Transcranial Direct Current Stimulation. Front Psychiatry 2018; 9:48. [PMID: 29520240 PMCID: PMC5826940 DOI: 10.3389/fpsyt.2018.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/05/2018] [Indexed: 01/04/2023] Open
Abstract
We use auditory verbal hallucinations (AVH) to illustrate the challenges in defining and assessing target engagement in the context of transcranial direct current stimulation (tDCS) for psychiatric disorders. We defined the target network as the cluster of regions of interest (ROIs) that are consistently implicated in AVH based on the conjunction of multimodal meta-analytic neuroimaging data. These were prescribed in the New York Head (a population derived model) and head models of four single individuals. We appraised two potential measures of target engagement, tDCS-induced peak electric field strength and tDCS-modulated volume defined as the percentage of the volume of the AVH network exposed to electric field magnitude stronger than the postulated threshold for neuronal excitability. We examined a left unilateral (LUL) montage targeting the prefrontal cortex (PFC) and temporoparietal junction (TPJ), a bilateral (BL) prefrontal montage, and a 2 × 1 montage targeting the left PFC and the TPJ bilaterally. Using computational modeling, we estimated the peak electric field strength and modulated volume induced by each montage for current amplitudes ranging 1-4 mA. We found that the LUL montage was inferior to both other montages in terms of peak electric field strength in right-sided AVH-ROIs. The BL montage was inferior to both other montages in terms of modulated volume of the left-sided AVH-ROIs. As the modulated volume is non-linear, its variability between montages reduced for current amplitudes above 3 mA. These findings illustrate how computational target engagement for tDCS can be tailored to specific networks and provide a principled approach for future study design.
Collapse
Affiliation(s)
- Won Hee Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nigel I. Kennedy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY, United States
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
21
|
Lee WH, Lisanby SH, Laine AF, Peterchev AV. Minimum Electric Field Exposure for Seizure Induction with Electroconvulsive Therapy and Magnetic Seizure Therapy. Neuropsychopharmacology 2017; 42:1192-1200. [PMID: 27934961 PMCID: PMC5437889 DOI: 10.1038/npp.2016.276] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/05/2016] [Accepted: 12/04/2016] [Indexed: 11/09/2022]
Abstract
Lowering and individualizing the current amplitude in electroconvulsive therapy (ECT) has been proposed as a means to produce stimulation closer to the neural activation threshold and more focal seizure induction, which could potentially reduce cognitive side effects. However, the effect of current amplitude on the electric field (E-field) in the brain has not been previously linked to the current amplitude threshold for seizure induction. We coupled MRI-based E-field models with amplitude titrations of motor threshold (MT) and seizure threshold (ST) in four nonhuman primates (NHPs) to determine the strength, distribution, and focality of stimulation in the brain for four ECT electrode configurations (bilateral, bifrontal, right-unilateral, and frontomedial) and magnetic seizure therapy (MST) with cap coil on vertex. At the amplitude-titrated ST, the stimulated brain subvolume (23-63%) was significantly less than for conventional ECT with high, fixed current (94-99%). The focality of amplitude-titrated right-unilateral ECT (25%) was comparable to cap coil MST (23%), demonstrating that ECT with a low current amplitude and focal electrode placement can induce seizures with E-field as focal as MST, although these electrode and coil configurations affect differently specific brain regions. Individualizing the current amplitude reduced interindividual variation in the stimulation focality by 40-53% for ECT and 26% for MST, supporting amplitude individualization as a means of dosing especially for ECT. There was an overall significant correlation between the measured amplitude-titrated ST and the prediction of the E-field models, supporting a potential role of these models in dosing of ECT and MST. These findings may guide the development of seizure therapy dosing paradigms with improved risk/benefit ratio.
Collapse
Affiliation(s)
- Won H Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA,Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Andrew F Laine
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA,Department of Biomedical Engineering, Duke University, Durham, NC, USA,Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA,Department of Psychiatry and Behavioral Sciences, Duke University, Box 3620 DUMC, Durham, NC 27710, USA, Tel: 919 684 0383, Fax: 919 681 9962, E-mail:
| |
Collapse
|
22
|
Petrichella S, Johnson N, He B. The influence of corticospinal activity on TMS-evoked activity and connectivity in healthy subjects: A TMS-EEG study. PLoS One 2017; 12:e0174879. [PMID: 28384197 PMCID: PMC5383066 DOI: 10.1371/journal.pone.0174879] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/16/2017] [Indexed: 11/30/2022] Open
Abstract
Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) can be used to analyze cortical reactivity and connectivity. However, the effects of corticospinal and peripheral muscle activity on TMS-evoked potentials (TEPs) are not well understood. The aim of this paper is to evaluate the relationship between cortico-spinal activity, in the form of peripheral motor-evoked potentials (MEPs), and the TEPs from motor areas, along with the connectivity among activated brain areas. TMS was applied to left and right motor cortex (M1), separately, at motor threshold while multi-channel EEG responses were recorded in 17 healthy human subjects. Cortical excitability and source imaging analysis were performed for all trials at each stimulation location, as well as comparing trials resulting in MEPs to those without. Connectivity analysis was also performed comparing trials resulting in MEPs to those without. Cortical excitability results significantly differed between the MEP and no-MEP conditions for left M1 TMS at 60 ms (CP1, CP3, C1) and for right M1 TMS at 54 ms (CP6, C6). Connectivity analysis revealed higher outflow and inflow between M1 and somatosensory cortex bi-directionally for trials with MEPs than those without for both left M1 TMS (at 60, 100, 164 ms) and right M1 TMS (at 54, 100, and 164 ms). Both TEP amplitudes and connectivity measures related to motor and somatosensory areas ipsilateral to the stimulation were shown to correspond with peripheral MEP amplitudes. This suggests that cortico-spinal activation, along with the resulting somatosensory feedback, affects the cortical activity and dynamics within motor areas reflected in the TEPs. The findings suggest that TMS-EEG, along with adaptive connectivity estimators, can be used to evaluate the cortical dynamics associated with sensorimotor integration and proprioceptive manipulation along with the influence of peripheral muscle feedback.
Collapse
Affiliation(s)
- Sara Petrichella
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Nessa Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
23
|
Peterchev AV. Transcranial electric stimulation seen from within the brain. eLife 2017; 6. [PMID: 28350293 PMCID: PMC5370182 DOI: 10.7554/elife.25812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022] Open
Abstract
Computer models can make transcranial electric stimulation a better tool for research and therapy.
Collapse
Affiliation(s)
- Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, United States.,Department of Biomedical Engineering, Duke University, Durham, United States.,Department of Electrical and Computer Engineering, Duke University, Durham, United States.,Department of Neurosurgery, Duke University, Durham, United States
| |
Collapse
|
24
|
Shin SS, Pelled G. Novel Neuromodulation Techniques to Assess Interhemispheric Communication in Neural Injury and Neurodegenerative Diseases. Front Neural Circuits 2017; 11:15. [PMID: 28337129 PMCID: PMC5343068 DOI: 10.3389/fncir.2017.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
Abstract
Interhemispheric interaction has a major role in various neurobehavioral functions. Its disruption is a major contributor to the pathological changes in the setting of brain injury such as traumatic brain injury, peripheral nerve injury, and stroke, as well as neurodegenerative diseases. Because interhemispheric interaction has a crucial role in functional consequence in these neuropathological states, a review of noninvasive and state-of-the-art molecular based neuromodulation methods that focus on or have the potential to elucidate interhemispheric interaction have been performed. This yielded approximately 170 relevant articles on human subjects or animal models. There has been a recent surge of reports on noninvasive methods such as transcranial magnetic stimulation and transcranial direct current stimulation. Since these are noninvasive techniques with little to no side effects, their widespread use in clinical studies can be easily justified. The overview of novel neuromodulation methods and how they can be applied to study the role of interhemispheric communication in neural injury and neurodegenerative disease is provided. Additionally, the potential of each method in therapeutic use as well as investigating the pathophysiology of interhemispheric interaction in neurodegenerative diseases and brain injury is discussed. New technologies such as transcranial magnetic stimulation or transcranial direct current stimulation could have a great impact in understanding interhemispheric pathophysiology associated with acquired injury and neurodegenerative diseases, as well as designing improved rehabilitation therapies. Also, advances in molecular based neuromodulation techniques such as optogenetics and other chemical, thermal, and magnetic based methods provide new capabilities to stimulate or inhibit a specific brain location and a specific neuronal population.
Collapse
Affiliation(s)
- Samuel S Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Galit Pelled
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
25
|
Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, Bikson M, Doyle WK, Devinsky O, Parra LC. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. eLife 2017; 6:18834. [PMID: 28169833 PMCID: PMC5370189 DOI: 10.7554/elife.18834] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/06/2017] [Indexed: 11/13/2022] Open
Abstract
Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.8 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.86) and depth (r = 0.88) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI:http://dx.doi.org/10.7554/eLife.18834.001
Collapse
Affiliation(s)
- Yu Huang
- Department of Biomedical Engineering, City College of the City University of New York, New York, United States
| | - Anli A Liu
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, United States
| | - Belen Lafon
- Department of Biomedical Engineering, City College of the City University of New York, New York, United States
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, United States
| | - Michael Dayan
- Department of Neurology, Mayo Clinic, Rochester, United States
| | - Xiuyuan Wang
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, United States
| | - Marom Bikson
- Department of Biomedical Engineering, City College of the City University of New York, New York, United States
| | - Werner K Doyle
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, United States
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, United States
| | - Lucas C Parra
- Department of Biomedical Engineering, City College of the City University of New York, New York, United States
| |
Collapse
|
26
|
Baxter BS, Edelman BJ, Nesbitt N, He B. Sensorimotor Rhythm BCI with Simultaneous High Definition-Transcranial Direct Current Stimulation Alters Task Performance. Brain Stimul 2016; 9:834-841. [PMID: 27522166 PMCID: PMC5143161 DOI: 10.1016/j.brs.2016.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been used to alter the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex before or during task learning. The motor cortex is also active during the performance of motor imagination, a cognitive task during which a person imagines, but does not execute, a movement. Motor imagery can be used with noninvasive brain computer interfaces (BCIs) to control virtual objects in up to three dimensions, but to master control of such devices requires long training times. OBJECTIVE To evaluate the effect of high-definition tDCS on the performance and underlying electrophysiology of motor imagery based BCI. METHODS We utilize high-definition tDCS to investigate the effect of stimulation on motor imagery-based BCI performance across and within sessions over multiple training days. RESULTS We report a decreased time-to-hit with anodal stimulation both within and across sessions. We also found differing electrophysiological changes of the stimulated sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal stimulation led to a decrease in alpha and beta band power during task performance compared to sham stimulation for right hand imagination trials. CONCLUSION These results suggest that unilateral tDCS over the sensorimotor motor cortex differentially affects cortical areas based on task specific neural activation.
Collapse
Affiliation(s)
- Bryan S Baxter
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bradley J Edelman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas Nesbitt
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
27
|
Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, Bikson M. Animal models of transcranial direct current stimulation: Methods and mechanisms. Clin Neurophysiol 2016; 127:3425-3454. [PMID: 27693941 PMCID: PMC5083183 DOI: 10.1016/j.clinph.2016.08.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022]
Abstract
The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary. One tDCS theory regarding "functional targeting" suggests the specificity of tDCS effects are possible by modulating ongoing function (plasticity). Use of animal models of disease are summarized including pain, movement disorders, stroke, and epilepsy.
Collapse
Affiliation(s)
- Mark P Jackson
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Asif Rahman
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Belen Lafon
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Gregory Kronberg
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Doris Ling
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of The City University of New York, NY, USA.
| |
Collapse
|
28
|
Lee WH, Lisanby SH, Laine AF, Peterchev AV. Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model. Eur Psychiatry 2016; 36:55-64. [PMID: 27318858 DOI: 10.1016/j.eurpsy.2016.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND This study examines the strength and spatial distribution of the electric field induced in the brain by electroconvulsive therapy (ECT) and magnetic seizure therapy (MST). METHODS The electric field induced by standard (bilateral, right unilateral, and bifrontal) and experimental (focal electrically administered seizure therapy and frontomedial) ECT electrode configurations as well as a circular MST coil configuration was simulated in an anatomically realistic finite element model of the human head. Maps of the electric field strength relative to an estimated neural activation threshold were used to evaluate the stimulation strength and focality in specific brain regions of interest for these ECT and MST paradigms and various stimulus current amplitudes. RESULTS The standard ECT configurations and current amplitude of 800-900mA produced the strongest overall stimulation with median of 1.8-2.9 times neural activation threshold and more than 94% of the brain volume stimulated at suprathreshold level. All standard ECT electrode placements exposed the hippocampi to suprathreshold electric field, although there were differences across modalities with bilateral and right unilateral producing respectively the strongest and weakest hippocampal stimulation. MST stimulation is up to 9 times weaker compared to conventional ECT, resulting in direct activation of only 21% of the brain. Reducing the stimulus current amplitude can make ECT as focal as MST. CONCLUSIONS The relative differences in electric field strength may be a contributing factor for the cognitive sparing observed with right unilateral compared to bilateral ECT, and MST compared to right unilateral ECT. These simulations could help understand the mechanisms of seizure therapies and develop interventions with superior risk/benefit ratio.
Collapse
Affiliation(s)
- W H Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - A F Laine
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - A V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
29
|
Peterchev AV, Krystal AD, Rosa MA, Lisanby SH. Individualized Low-Amplitude Seizure Therapy: Minimizing Current for Electroconvulsive Therapy and Magnetic Seizure Therapy. Neuropsychopharmacology 2015; 40:2076-84. [PMID: 25920013 PMCID: PMC4613599 DOI: 10.1038/npp.2015.122] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/31/2015] [Accepted: 04/24/2015] [Indexed: 11/09/2022]
Abstract
Electroconvulsive therapy (ECT) at conventional current amplitudes (800-900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112-174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST.
Collapse
Affiliation(s)
- Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Andrew D Krystal
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Moacyr A Rosa
- Institute for Advanced Research in Neurostimulation, São Paulo, Brazil
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
30
|
|