1
|
Pradeep P, J K. Comprehensive review of literature on Parkinson's disease diagnosis. Comput Biol Chem 2024; 113:108228. [PMID: 39413446 DOI: 10.1016/j.compbiolchem.2024.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
PD is one of the neurodegenerative illnesses affects 1-2 individuals per 1000 people over the age of 60 and has a 1 % prevalence rate. It affects both the non-motor and motor aspects of movement, including initiation, execution, and planning. Prior to behavioral and cognitive abnormalities like dementia, movement-related symptoms including stiffness, tremor, and initiation issues may be observed. Patients with PD have substantial reductions in social interactions, quality of life (QoL), and familial ties, as well as significant financial burdens on both the individual and societal levels. The healthcare industry is mostly using ML approaches with the modalities like image, signal, and data as well. Therefore, this survey aims to conduct a review of 50 articles on Parkinson disease diagnosis using different modalities. The survey includes (i) Classifying multimodal articles on Parkinson disease diagnosis (image, signal, data) using various machine learning, deep learning, and other approaches. (ii) Analyzing different datasets, simulation tools used in the existing papers. (iii)Examining certain performance measures, assessing the best performance, and chronological review of reviewed paper. Finally, the review determines the research gaps and obstacles in this research topic.
Collapse
Affiliation(s)
- P Pradeep
- VIT University, Vellore, Tamil Nadu 632002, India.
| | | |
Collapse
|
2
|
Cho CH, Huang PJ, Chen MC, Lin CW. Closed-Loop Deep Brain Stimulation With Reinforcement Learning and Neural Simulation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3615-3624. [PMID: 39302783 DOI: 10.1109/tnsre.2024.3465243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Deep Brain Stimulation (DBS) is effective for movement disorders, particularly Parkinson's disease (PD). However, a closed-loop DBS system using reinforcement learning (RL) for automatic parameter tuning, offering enhanced energy efficiency and the effect of thalamus restoration, is yet to be developed for clinical and commercial applications. In this research, we instantiate a basal ganglia-thalamic (BGT) model and design it as an interactive environment suitable for RL models. Four finely tuned RL agents based on different frameworks, namely Soft Actor-Critic (SAC), Twin Delayed Deep Deterministic Policy Gradient (TD3), Proximal Policy Optimization (PPO), and Advantage Actor-Critic (A2C), are established for further comparison. Within the implemented RL architectures, the optimized TD3 demonstrates a significant 67% reduction in average power dissipation when compared to the open-loop system while preserving the normal response of the simulated BGT circuitry. As a result, our method mitigates thalamic error responses under pathological conditions and prevents overstimulation. In summary, this study introduces a novel approach to implementing an adaptive parameter-tuning closed-loop DBS system. Leveraging the advantages of TD3, our proposed approach holds significant promise for advancing the integration of RL applications into DBS systems, ultimately optimizing therapeutic effects in future clinical trials.
Collapse
|
3
|
Fleming JE, Senneff S, Lowery MM. Multivariable closed-loop control of deep brain stimulation for Parkinson's disease. J Neural Eng 2023; 20:056029. [PMID: 37733003 DOI: 10.1088/1741-2552/acfbfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Objective. Closed-loop deep brain stimulation (DBS) methods for Parkinson's disease (PD) to-date modulate either stimulation amplitude or frequency to control a single biomarker. While good performance has been demonstrated for symptoms that are correlated with the chosen biomarker, suboptimal regulation can occur for uncorrelated symptoms or when the relationship between biomarker and symptom varies. Control of stimulation-induced side-effects is typically not considered.Approach.A multivariable control architecture is presented to selectively target suppression of either tremor or subthalamic nucleus beta band oscillations. DBS pulse amplitude and duration are modulated to maintain amplitude below a threshold and avoid stimulation of distal large diameter axons associated with stimulation-induced side effects. A supervisor selects between a bank of controllers which modulate DBS pulse amplitude to control rest tremor or beta activity depending on the level of muscle electromyographic (EMG) activity detected. A secondary controller limits pulse amplitude and modulates pulse duration to target smaller diameter axons lying close to the electrode. The control architecture was investigated in a computational model of the PD motor network which simulated the cortico-basal ganglia network, motoneuron pool, EMG and muscle force signals.Main results.Good control of both rest tremor and beta activity was observed with reduced power delivered when compared with conventional open loop stimulation, The supervisor avoided over- or under-stimulation which occurred when using a single controller tuned to one biomarker. When DBS amplitude was constrained, the secondary controller maintained the efficacy of stimulation by increasing pulse duration to compensate for reduced amplitude. Dual parameter control delivered effective control of the target biomarkers, with additional savings in the power delivered.Significance.Non-linear multivariable control can enable targeted suppression of motor symptoms for PD patients. Moreover, dual parameter control facilitates automatic regulation of the stimulation therapeutic dosage to prevent overstimulation, whilst providing additional power savings.
Collapse
Affiliation(s)
- John E Fleming
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom
| | - Sageanne Senneff
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Madeleine M Lowery
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation. Inf Process Manag 2022. [DOI: 10.1016/j.ipm.2022.102909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Rodriguez-Zurrunero R, Araujo A, Lowery MM. Methods for Lowering the Power Consumption of OS-Based Adaptive Deep Brain Stimulation Controllers. SENSORS (BASEL, SWITZERLAND) 2021; 21:2349. [PMID: 33800544 PMCID: PMC8036781 DOI: 10.3390/s21072349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
The identification of a new generation of adaptive strategies for deep brain stimulation (DBS) will require the development of mixed hardware-software systems for testing and implementing such controllers clinically. Towards this aim, introducing an operating system (OS) that provides high-level features (multitasking, hardware abstraction, and dynamic operation) as the core element of adaptive deep brain stimulation (aDBS) controllers could expand the capabilities and development speed of new control strategies. However, such software frameworks also introduce substantial power consumption overhead that could render this solution unfeasible for implantable devices. To address this, in this work four techniques to reduce this overhead are proposed and evaluated: a tick-less idle operation mode, reduced and dynamic sampling, buffered read mode, and duty cycling. A dual threshold adaptive deep brain stimulation algorithm for suppressing pathological oscillatory neural activity was implemented along with the proposed energy saving techniques on an energy-efficient OS, YetiOS, running on a STM32L476RE microcontroller. The system was then tested using an emulation environment coupled to a mean field model of the parkinsonian basal ganglia to simulate local field potential (LFPs) which acted as a biomarker for the controller. The OS-based controller alone introduced a power consumption overhead of 10.03 mW for a sampling rate of 1 kHz. This was reduced to 12 μW by applying the proposed tick-less idle mode, dynamic sampling, buffered read and duty cycling techniques. The OS-based controller using the proposed methods can facilitate rapid and flexible testing and implementation of new control methods. Furthermore, the approach has the potential to become a central element in future implantable devices to enable energy-efficient implementation of a wide range of control algorithms across different neurological conditions and hardware platforms.
Collapse
Affiliation(s)
| | - Alvaro Araujo
- B105 Electronic Systems Lab. ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Madeleine M. Lowery
- School of Electrical, Electronical and Communications Engineering, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
6
|
Fleming JE, Orłowski J, Lowery MM, Chaillet A. Self-Tuning Deep Brain Stimulation Controller for Suppression of Beta Oscillations: Analytical Derivation and Numerical Validation. Front Neurosci 2020; 14:639. [PMID: 32694975 PMCID: PMC7339866 DOI: 10.3389/fnins.2020.00639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 01/06/2023] Open
Abstract
Closed-loop control strategies for deep brain stimulation (DBS) in Parkinson's disease offer the potential to provide more effective control of patient symptoms and fewer side effects than continuous stimulation, while reducing battery consumption. Most of the closed-loop methods proposed and tested to-date rely on controller parameters, such as controller gains, that remain constant over time. While the controller may operate effectively close to the operating point for which it is set, providing benefits when compared to conventional open-loop DBS, it may perform sub-optimally if the operating conditions evolve. Such changes may result from, for example, diurnal variation in symptoms, disease progression or changes in the properties of the electrode-tissue interface. In contrast, an adaptive or “self-tuning” control mechanism has the potential to accommodate slowly varying changes in system properties over a period of days, months, or years. Such an adaptive mechanism would automatically adjust the controller parameters to maintain the desired performance while limiting side effects, despite changes in the system operating point. In this paper, two neural modeling approaches are utilized to derive and test an adaptive control scheme for closed-loop DBS, whereby the gain of a feedback controller is continuously adjusted to sustain suppression of pathological beta-band oscillatory activity at a desired target level. First, the controller is derived based on a simplified firing-rate model of the reciprocally connected subthalamic nucleus (STN) and globus pallidus (GPe). Its efficacy is shown both when pathological oscillations are generated endogenously within the STN-GPe network and when they arise in response to exogenous cortical STN inputs. To account for more realistic biological features, the control scheme is then tested in a physiologically detailed model of the cortical basal ganglia network, comprised of individual conductance-based spiking neurons, and simulates the coupled DBS electric field and STN local field potential. Compared to proportional feedback methods without gain adaptation, the proposed adaptive controller was able to suppress beta-band oscillations with less power consumption, even as the properties of the controlled system evolve over time due to alterations in the target for beta suppression, beta fluctuations and variations in the electrode impedance.
Collapse
Affiliation(s)
- John E Fleming
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Jakub Orłowski
- Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec, Gif-sur-Yvette, France
| | - Madeleine M Lowery
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec, Gif-sur-Yvette, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
7
|
Yousif N, Bain PG, Nandi D, Borisyuk R. A Population Model of Deep Brain Stimulation in Movement Disorders From Circuits to Cells. Front Hum Neurosci 2020; 14:55. [PMID: 32210779 PMCID: PMC7066497 DOI: 10.3389/fnhum.2020.00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/05/2020] [Indexed: 01/04/2023] Open
Abstract
For more than 30 years, deep brain stimulation (DBS) has been used to target the symptoms of a number of neurological disorders and in particular movement disorders such as Parkinson’s disease (PD) and essential tremor (ET). It is known that the loss of dopaminergic neurons in the substantia nigra leads to PD, while the exact impact of this on the brain dynamics is not fully understood, the presence of beta-band oscillatory activity is thought to be pathological. The cause of ET, however, remains uncertain, however pathological oscillations in the thalamocortical-cerebellar network have been linked to tremor. Both of these movement disorders are treated with DBS, which entails the surgical implantation of electrodes into a patient’s brain. While DBS leads to an improvement in symptoms for many patients, the mechanisms underlying this improvement is not clearly understood, and computational modeling has been used extensively to improve this. Many of the models used to study DBS and its effect on the human brain have mainly utilized single neuron and single axon biophysical models. We have previously shown in separate models however, that the use of population models can shed much light on the mechanisms of the underlying pathological neural activity in PD and ET in turn, and on the mechanisms underlying DBS. Together, this work suggested that the dynamics of the cerebellar-basal ganglia thalamocortical network support oscillations at frequency range relevant to movement disorders. Here, we propose a new combined model of this network and present new results that demonstrate that both Parkinsonian oscillations in the beta band and oscillations in the tremor frequency range arise from the dynamics of such a network. We find regions in the parameter space demonstrating the different dynamics and go on to examine the transition from one oscillatory regime to another as well as the impact of DBS on these different types of pathological activity. This work will allow us to better understand the changes in brain activity induced by DBS, and allow us to optimize this clinical therapy, particularly in terms of target selection and parameter setting.
Collapse
Affiliation(s)
- Nada Yousif
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Peter G Bain
- Division of Brain Sciences, Imperial College Healthcare NHS Trust, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dipankar Nandi
- Division of Brain Sciences, Imperial College Healthcare NHS Trust, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Roman Borisyuk
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom.,Institute of Mathematical Problems of Biology, The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
8
|
Fleming JE, Dunn E, Lowery MM. Simulation of Closed-Loop Deep Brain Stimulation Control Schemes for Suppression of Pathological Beta Oscillations in Parkinson's Disease. Front Neurosci 2020; 14:166. [PMID: 32194372 PMCID: PMC7066305 DOI: 10.3389/fnins.2020.00166] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
This study presents a computational model of closed-loop control of deep brain stimulation (DBS) for Parkinson's disease (PD) to investigate clinically viable control schemes for suppressing pathological beta-band activity. Closed-loop DBS for PD has shown promising results in preliminary clinical studies and offers the potential to achieve better control of patient symptoms and side effects with lower power consumption than conventional open-loop DBS. However, extensive testing of algorithms in patients is difficult. The model presented provides a means to explore a range of control algorithms in silico and optimize control parameters before preclinical testing. The model incorporates (i) the extracellular DBS electric field, (ii) antidromic and orthodromic activation of STN afferent fibers, (iii) the LFP detected at non-stimulating contacts on the DBS electrode and (iv) temporal variation of network beta-band activity within the thalamo-cortico-basal ganglia loop. The performance of on-off and dual-threshold controllers for suppressing beta-band activity by modulating the DBS amplitude were first verified, showing levels of beta suppression and reductions in power consumption comparable with previous clinical studies. Proportional (P) and proportional-integral (PI) closed-loop controllers for amplitude and frequency modulation were then investigated. A simple tuning rule was derived for selecting effective PI controller parameters to target long duration beta bursts while respecting clinical constraints that limit the rate of change of stimulation parameters. Of the controllers tested, PI controllers displayed superior performance for regulating network beta-band activity whilst accounting for clinical considerations. Proportional controllers resulted in undesirable rapid fluctuations of the DBS parameters which may exceed clinically tolerable rate limits. Overall, the PI controller for modulating DBS frequency performed best, reducing the mean error by 83% compared to DBS off and the mean power consumed to 25% of that utilized by open-loop DBS. The network model presented captures sufficient physiological detail to act as a surrogate for preclinical testing of closed-loop DBS algorithms using a clinically accessible biomarker, providing a first step for deriving and testing novel, clinically suitable closed-loop DBS controllers.
Collapse
Affiliation(s)
- John E. Fleming
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
9
|
The role of coupling connections in a model of the cortico-basal ganglia-thalamocortical neural loop for the generation of beta oscillations. Neural Netw 2020; 123:381-392. [DOI: 10.1016/j.neunet.2019.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/02/2019] [Accepted: 12/22/2019] [Indexed: 11/18/2022]
|
10
|
Bernardinis M, Atashzar SF, Jog MS, Patel RV. Differential Temporal Perception Abilities in Parkinson's Disease Patients Based on Timing Magnitude. Sci Rep 2019; 9:19638. [PMID: 31873093 PMCID: PMC6928024 DOI: 10.1038/s41598-019-55827-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/29/2019] [Indexed: 11/09/2022] Open
Abstract
Non-motor symptoms in Parkinson's Disease (PD) predate motor symptoms and substantially decrease quality of life; however, detection, monitoring, and treatments are unavailable for many of these symptoms. Temporal perception abnormalities in PD are generally attributed to altered Basal Ganglia (BG) function. Present studies are confounded by motor control facilitating movements that are integrated into protocols assessing temporal perception. There is uncertainty regarding the BG's influence on timing processes of different time scales and how PD therapies affect this perception. In this study, PD patients using Levodopa (n = 25), Deep Brain Stimulation (DBS; n = 6), de novo patients (n = 6), and healthy controls (n = 17) completed a visual temporal perception task in seconds and sub-section timing scales using a computer-generated graphical tool. For all patient groups, there were no impairments seen at the smaller tested magnitudes (using sub-second timing). However, all PD groups displayed significant impairments at the larger tested magnitudes (using interval timing). Neither Levodopa nor DBS therapy led to significant improvements in timing abilities. Levodopa resulted in a strong trend towards impairing timing processes and caused a deterioration in perceptual coherency according to Weber's Law. It is shown that timing abnormalities in PD occur in the seconds range but do not extend to the sub-second range. Furthermore, observed timing deficits were shown to not be solely caused by motor deficiency. This provides evidence to support internal clock models involving the BG (among other neural regions) in interval timing, and cerebellar control of sub-second timing. This study also revealed significant temporal perception deficits in recently diagnosed PD patients; thus, temporal perception abnormalities might act as an early disease marker, with the graphical tool showing potential for disease monitoring.
Collapse
Affiliation(s)
- Matthew Bernardinis
- School of Biomedical Engineering and Faculty of Engineering, University of Western Ontario (UWO), London, Canada.
- Canadian Surgical Technologies & Advanced Robotics (CSTAR), London, Canada.
- Movement Disorders Centre, London Health Sciences Centre, London, Canada.
| | - S Farokh Atashzar
- Electrical and Computer Engineering, and Mechanical and Aerospace Engineering, New York University (NYU), New York City, United States of America.
| | - Mandar S Jog
- School of Biomedical Engineering and Faculty of Engineering, University of Western Ontario (UWO), London, Canada
- Department of Clinical Neurological Sciences, University of Western Ontario (UWO), London, Canada
- Movement Disorders Centre, London Health Sciences Centre, London, Canada
| | - Rajni V Patel
- School of Biomedical Engineering and Faculty of Engineering, University of Western Ontario (UWO), London, Canada
- Department of Clinical Neurological Sciences, University of Western Ontario (UWO), London, Canada
- Canadian Surgical Technologies & Advanced Robotics (CSTAR), London, Canada
| |
Collapse
|
11
|
Lu M, Wei X, Che Y, Wang J, Loparo KA. Application of Reinforcement Learning to Deep Brain Stimulation in a Computational Model of Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2019; 28:339-349. [PMID: 31715567 DOI: 10.1109/tnsre.2019.2952637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deep brain stimulation (DBS) has been proven to be an effective treatment to deal with the symptoms of Parkinson's disease (PD). Currently, the DBS is in an open-loop pattern with which the stimulation parameters remain constant regardless of fluctuations in the disease state, and adjustments of parameters rely mostly on trial and error of experienced clinicians. This could bring adverse effects to patients due to possible overstimulation. Thus closed-loop DBS of which stimulation parameters are automatically adjusted based on variations in the ongoing neurophysiological signals is desired. In this paper, we present a closed-loop DBS method based on reinforcement learning (RL) to regulate stimulation parameters based on a computational model. The network model consists of interconnected biophysically-based spiking neurons, and the PD state is described as distorted relay reliability of thalamus (TH). Results show that the RL-based closed-loop control strategy can effectively restore the distorted relay reliability of the TH but with less DBS energy expenditure.
Collapse
|
12
|
Hell F, Palleis C, Mehrkens JH, Koeglsperger T, Bötzel K. Deep Brain Stimulation Programming 2.0: Future Perspectives for Target Identification and Adaptive Closed Loop Stimulation. Front Neurol 2019; 10:314. [PMID: 31001196 PMCID: PMC6456744 DOI: 10.3389/fneur.2019.00314] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Deep brain stimulation has developed into an established treatment for movement disorders and is being actively investigated for numerous other neurological as well as psychiatric disorders. An accurate electrode placement in the target area and the effective programming of DBS devices are considered the most important factors for the individual outcome. Recent research in humans highlights the relevance of widespread networks connected to specific DBS targets. Improving the targeting of anatomical and functional networks involved in the generation of pathological neural activity will improve the clinical DBS effect and limit side-effects. Here, we offer a comprehensive overview over the latest research on target structures and targeting strategies in DBS. In addition, we provide a detailed synopsis of novel technologies that will support DBS programming and parameter selection in the future, with a particular focus on closed-loop stimulation and associated biofeedback signals.
Collapse
Affiliation(s)
- Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jan H. Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
13
|
Verification of a Method for Measuring Parkinson's Disease Related Temporal Irregularity in Spiral Drawings. SENSORS 2017; 17:s17102341. [PMID: 29027941 PMCID: PMC5677449 DOI: 10.3390/s17102341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 11/27/2022]
Abstract
Parkinson’s disease (PD) is a progressive movement disorder caused by the death of dopamine-producing cells in the midbrain. There is a need for frequent symptom assessment, since the treatment needs to be individualized as the disease progresses. The aim of this paper was to verify and further investigate the clinimetric properties of an entropy-based method for measuring PD-related upper limb temporal irregularities during spiral drawing tasks. More specifically, properties of a temporal irregularity score (TIS) for patients at different stages of PD, and medication time points were investigated. Nineteen PD patients and 22 healthy controls performed repeated spiral drawing tasks on a smartphone. Patients performed the tests before a single levodopa dose and at specific time intervals after the dose was given. Three movement disorder specialists rated videos of the patients based on the unified PD rating scale (UPDRS) and the Dyskinesia scale. Differences in mean TIS between the groups of patients and healthy subjects were assessed. Test-retest reliability of the TIS was measured. The ability of TIS to detect changes from baseline (before medication) to later time points was investigated. Correlations between TIS and clinical rating scores were assessed. The mean TIS was significantly different between healthy subjects and patients in advanced groups (p-value = 0.02). Test-retest reliability of TIS was good with Intra-class Correlation Coefficient of 0.81. When assessing changes in relation to treatment, TIS contained some information to capture changes from Off to On and wearing off effects. However, the correlations between TIS and clinical scores (UPDRS and Dyskinesia) were weak. TIS was able to differentiate spiral drawings drawn by patients in an advanced stage from those drawn by healthy subjects, and TIS had good test-retest reliability. TIS was somewhat responsive to single-dose levodopa treatment. Since TIS is an upper limb high-frequency-based measure, it cannot be detected during clinical assessment.
Collapse
|
14
|
Parastarfeizabadi M, Kouzani AZ, Gibson I, Tye SJ. A miniature closed-loop deep brain stimulation device. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1786-1789. [PMID: 28268674 DOI: 10.1109/embc.2016.7591064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper presents a miniature light-weight closed-loop deep brain stimulation (DBS) device that delivers on-demand stimulation current pulses by monitoring and analysing local field potentials. The device includes monitoring and DBS units, each designed and fabricated on a separate small round circuit board. The closed-loop DBS device has been successfully validated by injecting a pre-recorded neural signal into its input, and collecting and analysing its output. The monitoring unit has an amplification gain of 113 dB in frequency range of 0.7-50 Hz. The DBS unit gives on-demand stimulation current pulses of duration 90 μs, frequency 130 Hz, and amplitude 200 μA. The total weight of the device including a 3V coin battery is 1.41 g. The diameter of the device is 11.4 mm. This portable head-mountable device is suitable for use in pre-clinical trials with small laboratory animals.
Collapse
|
15
|
Velarde OM, Mato G, Dellavale D. Mechanisms for pattern specificity of deep-brain stimulation in Parkinson's disease. PLoS One 2017; 12:e0182884. [PMID: 28813460 PMCID: PMC5558964 DOI: 10.1371/journal.pone.0182884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/26/2017] [Indexed: 01/21/2023] Open
Abstract
Deep brain stimulation (DBS) has become a widely used technique for treating advanced stages of neurological and psychiatric illness. In the case of motor disorders related to basal ganglia (BG) dysfunction, several mechanisms of action for the DBS therapy have been identified which might be involved simultaneously or in sequence. However, the identification of a common key mechanism underlying the clinical relevant DBS configurations has remained elusive due to the inherent complexity related to the interaction between the electrical stimulation and the neural tissue, and the intricate circuital structure of the BG-thalamocortical network. In this work, it is shown that the clinically relevant range for both, the frequency and intensity of the electrical stimulation pattern, is an emergent property of the BG anatomy at the system-level that can be addressed using mean-field descriptive models of the BG network. Moreover, it is shown that the activity resetting mechanism elicited by electrical stimulation provides a natural explanation to the ineffectiveness of irregular (i.e., aperiodic) stimulation patterns, which has been commonly observed in previously reported pathophysiology models of Parkinson’s disease. Using analytical and numerical techniques, these results have been reproduced in both cases: 1) a reduced mean-field model that can be thought as an elementary building block capable to capture the underlying fundamentals of the relevant loops constituting the BG-thalamocortical network, and 2) a detailed model constituted by the direct and hyperdirect loops including one-dimensional spatial structure of the BG nuclei. We found that the optimal ranges for the essential parameters of the stimulation patterns can be understood without taking into account biophysical details of the relevant structures.
Collapse
Affiliation(s)
- Osvaldo Matías Velarde
- Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión Nacional de Energía Atómica (CNEA), 8400 San Carlos de Bariloche, Río Negro, Argentina
| | - Germán Mato
- Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión Nacional de Energía Atómica (CNEA), 8400 San Carlos de Bariloche, Río Negro, Argentina
| | - Damián Dellavale
- Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión Nacional de Energía Atómica (CNEA), 8400 San Carlos de Bariloche, Río Negro, Argentina
- * E-mail:
| |
Collapse
|
16
|
Parastarfeizabadi M, Kouzani AZ. Advances in closed-loop deep brain stimulation devices. J Neuroeng Rehabil 2017; 14:79. [PMID: 28800738 PMCID: PMC5553781 DOI: 10.1186/s12984-017-0295-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/04/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Millions of patients around the world are affected by neurological and psychiatric disorders. Deep brain stimulation (DBS) is a device-based therapy that could have fewer side-effects and higher efficiencies in drug-resistant patients compared to other therapeutic options such as pharmacological approaches. Thus far, several efforts have been made to incorporate a feedback loop into DBS devices to make them operate in a closed-loop manner. METHODS This paper presents a comprehensive investigation into the existing research-based and commercial closed-loop DBS devices. It describes a brief history of closed-loop DBS techniques, biomarkers and algorithms used for closing the feedback loop, components of the current research-based and commercial closed-loop DBS devices, and advancements and challenges in this field of research. This review also includes a comparison of the closed-loop DBS devices and provides the future directions of this area of research. RESULTS Although we are in the early stages of the closed-loop DBS approach, there have been fruitful efforts in design and development of closed-loop DBS devices. To date, only one commercial closed-loop DBS device has been manufactured. However, this system does not have an intelligent and patient dependent control algorithm. A closed-loop DBS device requires a control algorithm to learn and optimize the stimulation parameters according to the brain clinical state. CONCLUSIONS The promising clinical effects of open-loop DBS have been demonstrated, indicating DBS as a pioneer technology and treatment option to serve neurological patients. However, like other commercial devices, DBS needs to be automated and modernized.
Collapse
Affiliation(s)
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Waurn Ponds, VIC 3216 Australia
| |
Collapse
|
17
|
Liu F, Wang J, Liu C, Li H, Deng B, Fietkiewicz C, Loparo KA. A neural mass model of basal ganglia nuclei simulates pathological beta rhythm in Parkinson's disease. CHAOS (WOODBURY, N.Y.) 2016; 26:123113. [PMID: 28039987 DOI: 10.1063/1.4972200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with movement disorder, such as Parkinson's disease. The motor cortex and an excitatory-inhibitory neuronal network composed of the subthalamic nucleus (STN) and the external globus pallidus (GPe) are thought to play an important role in the generation of these oscillations. In this paper, we propose a neuron mass model of the basal ganglia on the population level that reproduces the Parkinsonian oscillations in a reciprocal excitatory-inhibitory network. Moreover, it is shown that the generation and frequency of these pathological beta oscillations are varied by the coupling strength and the intrinsic characteristics of the basal ganglia. Simulation results reveal that increase of the coupling strength induces the generation of the beta oscillation, as well as enhances the oscillation frequency. However, for the intrinsic properties of each nucleus in the excitatory-inhibitory network, the STN primarily influences the generation of the beta oscillation while the GPe mainly determines its frequency. Interestingly, describing function analysis applied on this model theoretically explains the mechanism of pathological beta oscillations.
Collapse
Affiliation(s)
- Fei Liu
- School of Electrical Engineering and Automation, Tianjin University, 300072 Tianjin, China
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, 300072 Tianjin, China
| | - Chen Liu
- School of Electrical Engineering and Automation, Tianjin University, 300072 Tianjin, China
| | - Huiyan Li
- School of Automation and Electrical Engineering, Tianjin University of Technology and Educations, 300222 Tianjin, China
| | - Bin Deng
- School of Electrical Engineering and Automation, Tianjin University, 300072 Tianjin, China
| | - Chris Fietkiewicz
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Kenneth A Loparo
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|