1
|
Ge C, Masalehdan T, Shojaei Baghini M, Duran Toro V, Signorelli L, Thomson H, Gregurec D, Heidari H. Microfabrication Technologies for Nanoinvasive and High-Resolution Magnetic Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404254. [PMID: 39445520 PMCID: PMC11633526 DOI: 10.1002/advs.202404254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The increasing demand for precise neuromodulation necessitates advancements in techniques to achieve higher spatial resolution. Magnetic stimulation, offering low signal attenuation and minimal tissue damage, plays a significant role in neuromodulation. Conventional transcranial magnetic stimulation (TMS), though noninvasive, lacks the spatial resolution and neuron selectivity required for spatially precise neuromodulation. To address these limitations, the next generation of magnetic neurostimulation technologies aims to achieve submillimeter-resolution and selective neuromodulation with high temporal resolution. Invasive and nanoinvasive magnetic neurostimulation are two next-generation approaches: invasive methods use implantable microcoils, while nanoinvasive methods use magnetic nanoparticles (MNPs) to achieve high spatial and temporal resolution of magnetic neuromodulation. This review will introduce the working principles, technical details, coil designs, and potential future developments of these approaches from an engineering perspective. Furthermore, the review will discuss state-of-the-art microfabrication in depth due to its irreplaceable role in realizing next-generation magnetic neuromodulation. In addition to reviewing magnetic neuromodulation, this review will cover through-silicon vias (TSV), surface micromachining, photolithography, direct writing, and other fabrication technologies, supported by case studies, providing a framework for the integration of magnetic neuromodulation and microelectronics technologies.
Collapse
Affiliation(s)
- Changhao Ge
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Tahereh Masalehdan
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Mahdieh Shojaei Baghini
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Vicente Duran Toro
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Lorenzo Signorelli
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Hannah Thomson
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Danijela Gregurec
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Hadi Heidari
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
2
|
Lee KJ, Jang JW, Kim JS, Kim S. Epidural magnetic stimulation of the motor cortex using an implantable coil. Brain Stimul 2024; 17:1157-1166. [PMID: 39384084 DOI: 10.1016/j.brs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Magnetic stimulation, represented by transcranial magnetic stimulation (TMS), is used to treat neurological diseases. Various strategies have been explored to improve the spatial resolution of magnetic stimulation. While reducing the coil size is the most impactful approach for increasing the spatial resolution, it decreases the stimulation intensity and increases heat generation. OBJECTIVE We aim to demonstrate the feasibility of magnetic stimulation using an epidurally implanted millimeter-sized coil and that it does not damage the cortical tissue via heating even when a repetitive stimulation protocol is used. METHODS A coil with dimensions of 3.5 × 3.5 × 2.6 mm3 was epidurally implanted on the left motor cortex of rat, corresponding to the right hindlimb. Before and after epidural magnetic stimulation using a quadripulse stimulation (QPS) protocol, changes in the amplitude of motor evoked potentials (MEPs) elicited by a TMS coil were compared. RESULTS The experimental group showed an average increase of 88 % in MEP amplitude in the right hindlimb after QPS, whereas the MEP amplitude in the left hindlimb increased by 18 % on average. The control group showed no significant change in MEP amplitude after QPS in either hindlimb. The temperature changes at the coil surface remained <2 °C during repetitive stimulation, meeting the thermal safety limit for implantable medical devices. CONCLUSION These results demonstrate the feasibility of epidural magnetic stimulation using an implantable coil to induce neuromodulation effects. This novel method is expected to be a promising alternative for focal magnetic stimulation with an improved spatial resolution and lowered stimulus current than previous magnetic stimulation methods.
Collapse
Affiliation(s)
- Kyeong Jae Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jae-Won Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - June Sic Kim
- Clinical Research Institute, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
3
|
Whalen AJ, Fried SI. Thermal safety considerations for implantable micro-coil design. J Neural Eng 2023; 20:10.1088/1741-2552/ace79a. [PMID: 37451256 PMCID: PMC10467159 DOI: 10.1088/1741-2552/ace79a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Micro magnetic stimulation of the brain via implantable micro-coils is a promising novel technology for neuromodulation. Careful consideration of the thermodynamic profile of such devices is necessary for effective and safe designs.Objective.We seek to quantify the thermal profile of bent wire micro-coils in order to understand and mitigate thermal impacts of micro-coil stimulation.Approach. In this study, we use fine wire thermocouples and COMSOL finite element modeling to examine the profile of the thermal gradients generated near bent wire micro-coils submerged in a water bath during stimulation. We tested a range of stimulation parameters previously reported in the literature such as voltage amplitude, stimulus frequency, stimulus repetition rate and coil wire materials.Main results. We found temperature increases ranging from <1 °C to 8.4 °C depending upon the stimulation parameters tested and coil wire materials used. Numerical modeling of the thermodynamics identified hot spots of the highest temperatures along the micro-coil contributing to the thermal gradients and demonstrated that these thermal gradients can be mitigated by the choice of wire conductor material and construction geometry.Significance. ISO standard 14708-1 designates a thermal safety limit of 2 °C temperature increase for active implantable medical devices. By switching the coil wire material from platinum/iridium to gold, our study achieved a 5-6-fold decrease in the thermal impact of coil stimulation. The thermal gradients generated from the gold wire coil were measured below the 2 °C safety limit for all stimulation parameters tested.
Collapse
Affiliation(s)
- Andrew J. Whalen
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Shelley I. Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Boston VA Medical Center, Boston, USA
| |
Collapse
|
4
|
Lee KJ, Park B, Jang JW, Kim S. Magnetic stimulation of the sciatic nerve using an implantable high-inductance coil with low-intensity current. J Neural Eng 2023; 20:036035. [PMID: 37290431 DOI: 10.1088/1741-2552/acdcbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/08/2023] [Indexed: 06/10/2023]
Abstract
Objective.Magnetic stimulation using implantable devices may offer a promising alternative to other stimulation methods such as transcranial magnetic stimulation (TMS) or electric stimulation using implantable devices. This alternative may increase the selectivity of stimulation compared to TMS, and eliminate the need to expose tissue to metals in the body, as is required in electric stimulation using implantable devices. However, previous studies of magnetic stimulation of the sciatic nerve used large coils, with a diameter of several tens of mm, and a current intensity in the order of kA.Approach.Since such large coils and high current intensity are not suitable for implantable devices, we investigated the feasibility of using a smaller implantable coil and lower current to elicit neuronal responses. A coil with a diameter of 3 mm and an inductance of 1 mH was used as the implantable stimulator.Main results.Beforein vivoexperiments, we used 3D computational models to estimate the minimum stimulus intensity required to elicit neuronal responses, resulting in a threshold current above 3.5 A. Inin vivoexperiments, we observed successful nerve stimulation via compound muscle action potentials elicited in hind-limb muscles when the applied current was above 3.8 A, a significantly reduced current than that used in conventional magnetic stimulation.Significance.We report the feasibility of magnetic stimulation using an implantable millimeter-sized coil and low current of a few amperes to elicit neural responses in peripheral nerves. The proposed method is expected to be an alternative to TMS, with the merit of improved selectivity in stimulation, and to electrical stimulation based on implantable devices, with the merit of avoiding the exposure of conducting metals to neural tissues.
Collapse
Affiliation(s)
- Kyeong Jae Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Byungwook Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jae-Won Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
5
|
Sohn WJ, Lim J, Wang PT, Pu H, Malekzadeh-Arasteh O, Shaw SJ, Armacost M, Gong H, Kellis S, Andersen RA, Liu CY, Heydari P, Nenadic Z, Do AH. Benchtop and bedside validation of a low-cost programmable cortical stimulator in a testbed for bi-directional brain-computer-interface research. Front Neurosci 2023; 16:1075971. [PMID: 36711153 PMCID: PMC9878125 DOI: 10.3389/fnins.2022.1075971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Bi-directional brain-computer interfaces (BD-BCI) to restore movement and sensation must achieve concurrent operation of recording and decoding of motor commands from the brain and stimulating the brain with somatosensory feedback. Methods A custom programmable direct cortical stimulator (DCS) capable of eliciting artificial sensorimotor response was integrated into an embedded BCI system to form a safe, independent, wireless, and battery powered testbed to explore BD-BCI concepts at a low cost. The BD-BCI stimulator output was tested in phantom brain tissue by assessing its ability to deliver electrical stimulation equivalent to an FDA-approved commercial electrical cortical stimulator. Subsequently, the stimulator was tested in an epilepsy patient with subcortical electrocorticographic (ECoG) implants covering the sensorimotor cortex to assess its ability to elicit equivalent responses as the FDA-approved counterpart. Additional safety features (impedance monitoring, artifact mitigation, and passive and active charge balancing mechanisms) were also implemeneted and tested in phantom brain tissue. Finally, concurrent operation with interleaved stimulation and BCI decoding was tested in a phantom brain as a proof-of-concept operation of BD-BCI system. Results The benchtop prototype BD-BCI stimulator's basic output features (current amplitude, pulse frequency, pulse width, train duration) were validated by demonstrating the output-equivalency to an FDA-approved commercial cortical electrical stimulator (R 2 > 0.99). Charge-neutral stimulation was demonstrated with pulse-width modulation-based correction algorithm preventing steady state voltage deviation. Artifact mitigation achieved a 64.5% peak voltage reduction. Highly accurate impedance monitoring was achieved with R 2 > 0.99 between measured and actual impedance, which in-turn enabled accurate charge density monitoring. An online BCI decoding accuracy of 93.2% between instructional cues and decoded states was achieved while delivering interleaved stimulation. The brain stimulation mapping via ECoG grids in an epilepsy patient showed that the two stimulators elicit equivalent responses. Significance This study demonstrates clinical validation of a fully-programmable electrical stimulator, integrated into an embedded BCI system. This low-cost BD-BCI system is safe and readily applicable as a testbed for BD-BCI research. In particular, it provides an all-inclusive hardware platform that approximates the limitations in a near-future implantable BD-BCI. This successful benchtop/human validation of the programmable electrical stimulator in a BD-BCI system is a critical milestone toward fully-implantable BD-BCI systems.
Collapse
Affiliation(s)
- Won Joon Sohn
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Jeffrey Lim
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Po T. Wang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Haoran Pu
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Omid Malekzadeh-Arasteh
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Susan J. Shaw
- Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Michelle Armacost
- Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Hui Gong
- Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Spencer Kellis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Richard A. Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Charles Y. Liu
- Department of Neurosurgery, Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Payam Heydari
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Zoran Nenadic
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - An H. Do
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Kim T, Kadji H, Whalen AJ, Ashourvan A, Freeman E, Fried SI, Tadigadapa S, Schiff SJ. Thermal effects on neurons during stimulation of the brain. J Neural Eng 2022; 19:056029. [PMID: 36126646 PMCID: PMC9855718 DOI: 10.1088/1741-2552/ac9339] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
All electric and magnetic stimulation of the brain deposits thermal energy in the brain. This occurs through either Joule heating of the conductors carrying current through electrodes and magnetic coils, or through dissipation of energy in the conductive brain.Objective.Although electrical interaction with brain tissue is inseparable from thermal effects when electrodes are used, magnetic induction enables us to separate Joule heating from induction effects by contrasting AC and DC driving of magnetic coils using the same energy deposition within the conductors. Since mammalian cortical neurons have no known sensitivity to static magnetic fields, and if there is no evidence of effect on spike timing to oscillating magnetic fields, we can presume that the induced electrical currents within the brain are below the molecular shot noise where any interaction with tissue is purely thermal.Approach.In this study, we examined a range of frequencies produced from micromagnetic coils operating below the molecular shot noise threshold for electrical interaction with single neurons.Main results.We found that small temperature increases and decreases of 1∘C caused consistent transient suppression and excitation of neurons during temperature change. Numerical modeling of the biophysics demonstrated that the Na-K pump, and to a lesser extent the Nernst potential, could account for these transient effects. Such effects are dependent upon compartmental ion fluxes and the rate of temperature change.Significance.A new bifurcation is described in the model dynamics that accounts for the transient suppression and excitation; in addition, we note the remarkable similarity of this bifurcation's rate dependency with other thermal rate-dependent tipping points in planetary warming dynamics. These experimental and theoretical findings demonstrate that stimulation of the brain must take into account small thermal effects that are ubiquitously present in electrical and magnetic stimulation. More sophisticated models of electrical current interaction with neurons combined with thermal effects will lead to more accurate modulation of neuronal activity.
Collapse
Affiliation(s)
- TaeKen Kim
- Department of Physics, The Pennsylvania State University, University Park, PA, United States of America
| | - Herve Kadji
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
- Department of Radiation Oncology, Hackensack Meridian Health Mountainside Medical Center, Montclair, NJ, United States of America
| | - Andrew J Whalen
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States of America
| | - Arian Ashourvan
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
| | - Eugene Freeman
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Honeywell International Aerospace Advanced Technology, Plymouth, MN, United States of America
| | - Shelley I Fried
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States of America
- Boston VA Healthcare System, Boston 02130, United States of America
| | - Srinivas Tadigadapa
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Steven J Schiff
- Department of Physics, The Pennsylvania State University, University Park, PA, United States of America
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Department of Neurosurgery, Yale University, 333 Cedar Street, TMP 410, New Haven, CT 06510, United States of America
| |
Collapse
|
7
|
Gutierrez MI, Poblete-Naredo I, Mercado-Gutierrez JA, Toledo-Peral CL, Quinzaños-Fresnedo J, Yanez-Suarez O, Gutierrez-Martinez J. Devices and Technology in Transcranial Magnetic Stimulation: A Systematic Review. Brain Sci 2022; 12:1218. [PMID: 36138954 PMCID: PMC9496961 DOI: 10.3390/brainsci12091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/18/2023] Open
Abstract
The technology for transcranial magnetic stimulation (TMS) has significantly changed over the years, with important improvements in the signal generators, the coils, the positioning systems, and the software for modeling, optimization, and therapy planning. In this systematic literature review (SLR), the evolution of each component of TMS technology is presented and analyzed to assess the limitations to overcome. This SLR was carried out following the PRISMA 2020 statement. Published articles of TMS were searched for in four databases (Web of Science, PubMed, Scopus, IEEE). Conference papers and other reviews were excluded. Records were filtered using terms about TMS technology with a semi-automatic software; articles that did not present new technology developments were excluded manually. After this screening, 101 records were included, with 19 articles proposing new stimulator designs (18.8%), 46 presenting or adapting coils (45.5%), 18 proposing systems for coil placement (17.8%), and 43 implementing algorithms for coil optimization (42.6%). The articles were blindly classified by the authors to reduce the risk of bias. However, our results could have been influenced by our research interests, which would affect conclusions for applications in psychiatric and neurological diseases. Our analysis indicates that more emphasis should be placed on optimizing the current technology with a special focus on the experimental validation of models. With this review, we expect to establish the base for future TMS technological developments.
Collapse
Affiliation(s)
- Mario Ibrahin Gutierrez
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, CONACYT —Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | | | - Jorge Airy Mercado-Gutierrez
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Cinthya Lourdes Toledo-Peral
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Jimena Quinzaños-Fresnedo
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Oscar Yanez-Suarez
- Neuroimaging Research Laboratory, Electrical Engineering Department, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City 14389, Mexico
| | - Josefina Gutierrez-Martinez
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| |
Collapse
|
8
|
Saha R, Wu K, Bloom RP, Liang S, Tonini D, Wang JP. A review on magnetic and spintronic neurostimulation: challenges and prospects. NANOTECHNOLOGY 2022; 33:182004. [PMID: 35013010 DOI: 10.1088/1361-6528/ac49be] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In the treatment of neurodegenerative, sensory and cardiovascular diseases, electrical probes and arrays have shown quite a promising success rate. However, despite the outstanding clinical outcomes, their operation is significantly hindered by non-selective control of electric fields. A promising alternative is micromagnetic stimulation (μMS) due to the high permeability of magnetic field through biological tissues. The induced electric field from the time-varying magnetic field generated by magnetic neurostimulators is used to remotely stimulate neighboring neurons. Due to the spatial asymmetry of the induced electric field, high spatial selectivity of neurostimulation has been realized. Herein, some popular choices of magnetic neurostimulators such as microcoils (μcoils) and spintronic nanodevices are reviewed. The neurostimulator features such as power consumption and resolution (aiming at cellular level) are discussed. In addition, the chronic stability and biocompatibility of these implantable neurostimulator are commented in favor of further translation to clinical settings. Furthermore, magnetic nanoparticles (MNPs), as another invaluable neurostimulation material, has emerged in recent years. Thus, in this review we have also included MNPs as a remote neurostimulation solution that overcomes physical limitations of invasive implants. Overall, this review provides peers with the recent development of ultra-low power, cellular-level, spatially selective magnetic neurostimulators of dimensions within micro- to nano-range for treating chronic neurological disorders. At the end of this review, some potential applications of next generation neuro-devices have also been discussed.
Collapse
Affiliation(s)
- Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Robert P Bloom
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Denis Tonini
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
9
|
Saha R, Faramarzi S, Bloom R, Benally OJ, Wu K, di Girolamo A, Tonini D, Keirstead SA, Low WC, Netoff T, Wang JP. Strength-frequency curve for micromagnetic neurostimulation through excitatory postsynaptic potentials (EPSPs) on rat hippocampal neurons and numerical modeling of magnetic microcoil (μcoil). J Neural Eng 2022; 19. [PMID: 35030549 DOI: 10.1088/1741-2552/ac4baf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The objective of this study was to measure the effect of micromagnetic stimulation (μMS) on hippocampal neurons, by using single microcoil (μcoil) prototype, Magnetic Pen (MagPen). MagPen will be used to stimulate the CA3 magnetically and excitatory post synaptic potential (EPSP) measurements will be made from the CA1. The threshold for μMS as a function of stimulation frequency of the current driving the µcoil will be demonstrated. Finally, the optimal stimulation frequency of the current driving the μcoil to minimize power will be estimated. APPROACH A biocompatible prototype, MagPen was built, and customized such that it is easy to adjust the orientation of the μcoil over the hippocampal tissue in an in vitro setting. Finite element modeling (FEM) of the μcoil was performed to estimate the spatial profiles of the magnetic flux density (in T) and the induced electric fields (in V/m). The induced electric field profiles generated at different values of current applied to the µcoil whether can elicit a neuron response was validated by numerical modeling. The modeling settings were replicated in experiments on rat hippocampal neurons. MAIN RESULTS The preferred orientation of MagPen over the Schaffer Collateral fibers was demonstrated such that they elicit a neuron response. The recorded EPSPs from CA1 due to μMS at CA3 were validated by applying tetrodotoxin (TTX). Finally, it was interpreted through numerical analysis that increasing frequency of the current driving the μcoil, led to a decrease in the current amplitude threshold for μMS. SIGNIFICANCE This work reports that μMS can be used to evoke population EPSPs in the CA1 of hippocampus. It demonstrates the strength-frequency curve for µMS and its unique features related to orientation dependence of the µcoils, spatial selectivity and distance dependence. Finally, the challenges related to µMS experiments were studied including ways to overcome them.
Collapse
Affiliation(s)
- Renata Saha
- Electrical and Computer Engineering, University of Minnesota Twin Cities, 200 Union Street SE, Kenneth Keller Hall, Rm 6-147D, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Sadegh Faramarzi
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Nils Hasselmo Hall,, 312 Church St SE,, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Robert Bloom
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall, Minneapolis, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Onri J Benally
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, 200 Union Street SE,, Kenneth Keller Hall, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Kai Wu
- Electrical and Computer Engineering, University of Minnesota Twin Cities, 200 Union Street SE, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Arturo di Girolamo
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, 200 Union Street SE, Kenneth Keller Hall, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Denis Tonini
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, 200 Union Street SE,, Kenneth Keller Hall, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Susan A Keirstead
- Department of Integrative Biology & Physiology, University of Minnesota Twin Cities, Stem Cell Institute, LRB/MTRF 2873B (Campus Delivery Code), 2001 6th St SE, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota Twin Cities, LRB/MTRF 2873J (Campus Delivery Code), 2001 6th St SE, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Theoden Netoff
- Department of Biomedical Engineering, University of Minnesota Twin Cities, 312 Church Street SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, 200 Union Street SE, Kenneth Keller Hall, Minneapolis, Minnesota, 55455, UNITED STATES
| |
Collapse
|
10
|
Acharya AR, Vandekerckhove B, Larsen LE, Delbeke J, Wadman WJ, Vonck K, Carette E, Meurs A, Vanfleteren J, Boon P, Missinne J, Raedt R. In vivoblue light illumination for optogenetic inhibition: effect on local temperature and excitability of the rat hippocampus. J Neural Eng 2021; 18. [PMID: 34951406 DOI: 10.1088/1741-2552/ac3ef4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
Objective.The blue light-activated inhibitory opsin, stGtACR2, is gaining prominence as a neuromodulatory tool due its ability to shunt-inhibit neurons and is being frequently used inin vivoexperimentation. However, experiments involving stGtACR2 use longer durations of blue light pulses, which inadvertently heat up the local brain tissue and confound experimental results. Therefore, the heating effects of illumination parameters used forin vivooptogenetic inhibition must be evaluated.Approach.To assess blue light (473 nm)-induced heating of the brain, we used a computational model as well as direct temperature measurements using a fiber Bragg grating (FBG). The effects of different light power densities (LPDs) and pulse durations on evoked potentials (EP) recorded from dentate gyrus were assessed. For opsin-negative rats, LPDs between 127 and 636 mW mm-2and pulse durations between 20 and 5120 ms were tested while for stGtACR2 expressing rats, LPD of 127 mW mm-2and pulse durations between 20 and 640 ms were tested.Main results.Increasing LPDs and pulse durations logarithmically increased the peak temperature and significantly decreased the population spike (PS) amplitude and latencies of EPs. For a pulse duration of 5120 ms, the tissue temperature increased by 0.6 °C-3.4 °C. All tested LPDs decreased the PS amplitude in opsin-negative rats, but 127 mW mm-2had comparatively minimal effects and a significant effect of increasing light pulse duration was seen from 320 ms and beyond. This corresponded with an average temperature increase of 0.2 °C-1.1 °C at the recorded site. Compared to opsin-negative rats, illumination in stGtACR2-expressing rats resulted in much greater inhibition of EPs.Significance.Our study demonstrates that light-induced heating of the brain can be accurately measuredin vivousing FBG sensors. Such light-induced heating alone can affect neuronal excitability. Useful neuromodulation by the activation of stGtACR2 is still possible while minimizing thermal effects.
Collapse
Affiliation(s)
- Anirudh R Acharya
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Bram Vandekerckhove
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium
| | - Lars Emil Larsen
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Jean Delbeke
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Wytse J Wadman
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Kristl Vonck
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Evelien Carette
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Alfred Meurs
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Jan Vanfleteren
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium
| | - Paul Boon
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Jeroen Missinne
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium
| | - Robrecht Raedt
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Wang PT, Camacho E, Wang M, Li Y, Shaw SJ, Armacost M, Gong H, Kramer D, Lee B, Andersen RA, Liu CY, Heydari P, Nenadic Z, Do AH. A benchtop system to assess the feasibility of a fully independent and implantable brain-machine interface. J Neural Eng 2019; 16:066043. [PMID: 31585451 DOI: 10.1088/1741-2552/ab4b0c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE State-of-the-art invasive brain-machine interfaces (BMIs) have shown significant promise, but rely on external electronics and wired connections between the brain and these external components. This configuration presents health risks and limits practical use. These limitations can be addressed by designing a fully implantable BMI similar to existing FDA-approved implantable devices. Here, a prototype BMI system whose size and power consumption are comparable to those of fully implantable medical devices was designed and implemented, and its performance was tested at the benchtop and bedside. APPROACH A prototype of a fully implantable BMI system was designed and implemented as a miniaturized embedded system. This benchtop analogue was tested in its ability to acquire signals, train a decoder, perform online decoding, wirelessly control external devices, and operate independently on battery. Furthermore, performance metrics such as power consumption were benchmarked. MAIN RESULTS An analogue of a fully implantable BMI was fabricated with a miniaturized form factor. A patient undergoing epilepsy surgery evaluation with an electrocorticogram (ECoG) grid implanted over the primary motor cortex was recruited to operate the system. Seven online runs were performed with an average binary state decoding accuracy of 87.0% (lag optimized, or 85.0% at fixed latency). The system was powered by a wirelessly rechargeable battery, consumed ∼150 mW, and operated for >60 h on a single battery cycle. SIGNIFICANCE The BMI analogue achieved immediate and accurate decoding of ECoG signals underlying hand movements. A wirelessly rechargeable battery and other supporting functions allowed the system to function independently. In addition to the small footprint and acceptable power and heat dissipation, these results suggest that fully implantable BMI systems are feasible.
Collapse
Affiliation(s)
- Po T Wang
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bernardo R, Rodrigues A, Soares Dos Santos MP, Carneiro P, Lopes A, Sequeira Amaral J, Sequeira Amaral V, Morais R. Novel magnetic stimulation methodology for low-current implantable medical devices. Med Eng Phys 2019; 73:77-84. [PMID: 31477429 DOI: 10.1016/j.medengphy.2019.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/10/2019] [Accepted: 07/28/2019] [Indexed: 12/15/2022]
Abstract
Recent studies highlight the ability of inductive architectures to deliver therapeutic magnetic stimuli to target tissues and to be embedded into small-scale intracorporeal medical devices. However, to date, current micro-scale biomagnetic devices require very high electric current excitations (usually exceeding 1 A) to ensure the delivery of efficient magnetic flux densities. This is a critical problem as advanced implantable devices demand self-powering, stand-alone and long-term operation. This work provides, for the first time, a novel small-scale magnetic stimulation system that requires up to 50-fold lower electric current excitations than required by relevant biomagnetic technology recently proposed. Computational models were developed to analyse the magnetic stimuli distributions and densities delivered to cellular tissues during in vitro experiments, such that the feasibility of this novel stimulator can be firstly evaluated on cell culture tests. The results demonstrate that this new stimulative technology is able to deliver osteogenic stimuli (0.1-7 mT range) by current excitations in the 0.06-4.3 mA range. Moreover, it allows coil designs with heights lower than 1 mm without significant loss of magnetic stimuli capability. Finally, suitable core diameters and stimulator-stimulator distances allow to define heterogeneity or quasi-homogeneity stimuli distributions. These results support the design of high-sophisticated biomagnetic devices for a wide range of therapeutic applications.
Collapse
Affiliation(s)
- Rodrigo Bernardo
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - André Rodrigues
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Marco P Soares Dos Santos
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal; Centre for Mechanical Technology and Automation (TEMA), University of Aveiro, Aveiro, Portugal; Associated Laboratory for Energy, Transports and Aeronautics (LAETA), Portugal.
| | - Pedro Carneiro
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - António Lopes
- Department of Physics, University of Aveiro, Aveiro, Portugal; Aveiro Institute of Materials, Aveiro, Portugal
| | - João Sequeira Amaral
- Department of Physics, University of Aveiro, Aveiro, Portugal; Aveiro Institute of Materials, Aveiro, Portugal
| | - Vítor Sequeira Amaral
- Department of Physics, University of Aveiro, Aveiro, Portugal; Aveiro Institute of Materials, Aveiro, Portugal
| | - Raul Morais
- University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| |
Collapse
|
13
|
Park HJ, Kang H, Jo J, Chung E, Kim S. Planar coil-based contact-mode magnetic stimulation: synaptic responses in hippocampal slices and thermal considerations. Sci Rep 2018; 8:13423. [PMID: 30194395 PMCID: PMC6128857 DOI: 10.1038/s41598-018-31536-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
Implantable magnetic stimulation is an emerging type of neuromodulation using coils that are small enough to be implanted in the brain. A major advantage of this method is that stimulation performance could be sustained even though the coil is encapsulated by gliosis due to foreign body reactions. Magnetic fields can induce indirect electric fields and currents in neurons. Compared to transcranial magnetic stimulation, the coil size used in implantable magnetic stimulation can be greatly reduced. However, the size reduction is accompanied by an increase in coil resistance. Hence, the coil could potentially damage neurons from the excess heat generated. Therefore, it is necessary to study the stimulation performance and possible thermal damage by implantable magnetic stimulation. Here, we devised contact-mode magnetic stimulation (CMS), wherein magnetic stimulation was applied to hippocampal slices through a customized planar-type coil underneath the slice in the contact mode. With acute hippocampal slices, we investigated the synaptic responses to examine the field excitatory postsynaptic responses of CMS and the temperature rise during CMS. A long-lasting synaptic depression was exhibited in the CA1 stratum radiatum after CMS, while the temperature remained in a safe range so as not to seriously affect the neural responses.
Collapse
Affiliation(s)
- Hee-Jin Park
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heekyung Kang
- Department of Biomedical Science and Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jihoon Jo
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Euiheon Chung
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
14
|
Minusa S, Osanai H, Tateno T. Micromagnetic Stimulation of the Mouse Auditory Cortex In Vivo Using an Implantable Solenoid System. IEEE Trans Biomed Eng 2018; 65:1301-1310. [DOI: 10.1109/tbme.2017.2748136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Park HJ, Kang HK, Wang M, Jo J, Chung E, Kim S. A pilot study of planar coil based magnetic stimulation using acute hippocampal slice in mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1118-1121. [PMID: 29060071 DOI: 10.1109/embc.2017.8037025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Micromagnetic stimulation using small-sized implantable coils has recently been studied. The main advantage of this method is that it can provide sustainable stimulation performance even if a fibrotic encapsulation layer is formed around the implanted coil by inflammation response, because indirectly induced currents are used to induce neural responses. In previous research, we optimized the geometrical and control parameters used in implantable magnetic stimulation. Based on those results, we fabricated the planar coil and studied the LTP effect in the hippocampal slice by two different magnetic stimulation protocols using the quadripulse stimulation (QPS) pattern. We found that direct magnetic stimulation (DMS) induced insignificant LTP effect and priming magnetic stimulation (PMS) occluded LTP effect after tetanic stimulation, when QPS patterned magnetic stimulation with 1 A current pulse was applied to the planar coil.
Collapse
|
16
|
Shin Y, Yoo M, Kim HS, Nam SK, Kim HI, Lee SK, Kim S, Kwon HS. Characterization of fiber-optic light delivery and light-induced temperature changes in a rodent brain for precise optogenetic neuromodulation. BIOMEDICAL OPTICS EXPRESS 2016; 7:4450-4471. [PMID: 27895987 PMCID: PMC5119587 DOI: 10.1364/boe.7.004450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Understanding light intensity and temperature increase is of considerable importance in designing or performing in vivo optogenetic experiments. Our study describes the optimal light power at target depth in the rodent brain that would maximize activation of light-gated ion channels while minimizing temperature increase. Monte Carlo (MC) simulations of light delivery were used to provide a guideline for suitable light power at a target depth. In addition, MC simulations with the Pennes bio-heat model using data obtained from measurements with a temperature-measuring cannula having 12.3 mV/°C of thermoelectric sensitivity enabled us to predict tissue heating of 0.116 °C/mW on average at target depth of 563 μm and specifically, a maximum mean plateau temperature increase of 0.25 °C/mW at 100 μm depth for 473 nm light. Our study will help to improve the design and performance of optogenetic experiments while avoiding potential over- and under-illumination.
Collapse
Affiliation(s)
- Younghoon Shin
- Department of Biomedical Science and Engineering, and Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju 61005, South Korea
| | - Minsu Yoo
- Graduate Program in Computational Neuroscience, University of Chicago, Chicago, Illinois 60637, USA
| | - Hyung-Sun Kim
- Korea Institute of Toxicology (KIT), 141 Gajeong-Ro, Yuseong-Gu, Daejon 34114, South Korea
| | - Sung-Ki Nam
- Department of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju 61005, South Korea
| | - Hyoung-Ihl Kim
- Department of Biomedical Science and Engineering, and Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju 61005, South Korea
| | - Sun-Kyu Lee
- Department of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju 61005, South Korea
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, and Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju 61005, South Korea
- Department of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju 61005, South Korea
| |
Collapse
|