1
|
Minhaz AT, Orge FH, Wilson DL, Bayat M. Assessment of intraocular foreign body using high resolution 3D ultrasound imaging. Sci Rep 2024; 14:12011. [PMID: 38796466 PMCID: PMC11128014 DOI: 10.1038/s41598-024-62362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ocular trauma often involves intraocular foreign bodies (IOFBs) that pose challenges in accurate diagnosis due to their size, shape, and material composition. In this study, we proposed a novel whole-eye 3D ophthalmic ultrasound B-scan (3D-UBS) system for automating image acquisition and improved 3D visualization, thereby improving sensitivity for detecting IOFBs. 3D-UBS utilizes 14 MHz Clarius L20 probe, a motorized translation stage, and a surgical microscope for precise placement and movement. The system's 3D point spread function (PSF) is 0.377 × 0.550 × 0.894 mm3 characterized by the full-width at half-maximum intensity values in the axial, lateral and elevation directions. Digital phantom and ex vivo ocular models were prepared using four types of IOFBs (i.e., plastic, wood, metal, and glass). Ex vivo models were imaged with both 3D-UBS and clinical computed tomography (CT). Image preprocessing was performed on 3D-UBS images to remove uneven illumination and speckle noise. Multiplanar reformatting in 3D-UBS provides optimal plane selection after acquisition, reducing the need for a trained ultrasonographer. 3D-UBS outperforms CT in contrast for wood and plastic, with mean contrast improvement of 2.43 and 1.84 times, respectively. 3D-UBS was able to identify wood and plastic IOFBs larger than 250 µm and 300 in diameter, respectively. CT, with its wider PSF, was only able to detect wood and plastic IOFBs larger than 600 and 550 µm, respectively. Although contrast was higher in CT for metal and glass IOFBs, 3D-UBS provided sufficient contrast to identify those. 3D-UBS provides an easy-to-use, non-expert imaging approach for identifying small IOFBs of different materials and related ocular injuries at the point of care.
Collapse
Affiliation(s)
- Ahmed Tahseen Minhaz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Faruk H Orge
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatric Ophthalmology and Adult Strabismus, University Hospitals, Cleveland, OH, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Mahdi Bayat
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Rosen DP, Nayak R, Wang Y, Gendin D, Larson NB, Fazzio RT, Oberai AA, Hall TJ, Barbone PE, Alizad A, Fatemi M. A Force-Matched Approach to Large-Strain Nonlinearity in Elasticity Imaging for Breast Lesion Characterization. IEEE Trans Biomed Eng 2024; 71:367-374. [PMID: 37590110 PMCID: PMC10843664 DOI: 10.1109/tbme.2023.3305986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Ultrasound elasticity imaging is a class of ultrasound techniques with applications that include the detection of malignancy in breast lesions. Although elasticity imaging traditionally assumes linear elasticity, the large strain elastic response of soft tissue is known to be nonlinear. This study evaluates the nonlinear response of breast lesions for the characterization of malignancy using force measurement and force-controlled compression during ultrasound imaging. METHODS 54 patients were recruited for this study. A custom force-instrumented compression device was used to apply a controlled force during ultrasound imaging. Motion tracking derived strain was averaged over lesion or background ROIs and matched with compression force. The resulting force-matched strain was used for subsequent analysis and curve fitting. RESULTS Greater median differences between malignant and benign lesions were observed at higher compressional forces (p-value < 0.05 for compressional forces of 2-6N). Of three candidate functions, a power law function produced the best fit to the force-matched strain. A statistically significant difference in the scaling parameter of the power function between malignant and benign lesions was observed (p-value = 0.025). CONCLUSIONS We observed a greater separation in average lesion strain between malignant and benign lesions at large compression forces and demonstrated the characterization of this nonlinear effect using a power law model. Using this model, we were able to differentiate between malignant and benign breast lesions. SIGNIFICANCE With further development, the proposed method to utilize the nonlinear elastic response of breast tissue has the potential for improving non-invasive lesion characterization for potential malignancy.
Collapse
|
3
|
Sai H, Xu Z, Xia C, Wang L, Zhang J. Lightweight Force-Controlled Device for Freehand Ultrasound Acquisition. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:944-960. [PMID: 37028093 DOI: 10.1109/tuffc.2023.3252015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study investigates a force-controlled auxiliary device for freehand ultrasound (US) examinations. The designed device allows sonographers to maintain a steady target pressure on the US probe, thereby improving the US image quality and reproducibility. The use of a screw motor to power the device and a Raspberry Pi as the system controller results in a lightweight and portable device, while a screen enhances user-interactivity. Using gravity compensation, error compensation, an adaptive proportional-integral-derivative algorithm, and low-pass signal filtering, the designed device provides highly accurate force control. Several experiments using the developed device, including clinical trials relating to the jugular and superficial femoral veins, validate its utility in ensuring the desired pressure in response to varying environments and prolonged US examinations, enabling low or high pressures to be maintained and lowering the threshold of clinical experience. Moreover, the experimental results show that the designed device effectively relieves the stress on the sonographer's hand joints during US examinations and enables rapid assessment of the tissue elasticity characteristics. With automatic pressure tracking between probe and patient, the proposed device offers potentially significant benefits for the reproducibility and stability of US images and the health of sonographers.
Collapse
|
4
|
Effects of Loading and Boundary Conditions on the Performance of Ultrasound Compressional Viscoelastography: A Computational Simulation Study to Guide Experimental Design. MATERIALS 2021; 14:ma14102590. [PMID: 34065764 PMCID: PMC8156541 DOI: 10.3390/ma14102590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023]
Abstract
Most biomaterials and tissues are viscoelastic; thus, evaluating viscoelastic properties is important for numerous biomedical applications. Compressional viscoelastography is an ultrasound imaging technique used for measuring the viscoelastic properties of biomaterials and tissues. It analyzes the creep behavior of a material under an external mechanical compression. The aim of this study is to use finite element analysis to investigate how loading conditions (the distribution of the applied compressional pressure on the surface of the sample) and boundary conditions (the fixation method used to stabilize the sample) can affect the measurement accuracy of compressional viscoelastography. The results show that loading and boundary conditions in computational simulations of compressional viscoelastography can severely affect the measurement accuracy of the viscoelastic properties of materials. The measurement can only be accurate if the compressional pressure is exerted on the entire top surface of the sample, as well as if the bottom of the sample is fixed only along the vertical direction. These findings imply that, in an experimental validation study, the phantom design should take into account that the surface area of the pressure plate must be equal to or larger than that of the top surface of the sample, and the sample should be placed directly on the testing platform without any fixation (such as a sample container). The findings indicate that when applying compressional viscoelastography to real tissues in vivo, consideration should be given to the representative loading and boundary conditions. The findings of the present simulation study will provide a reference for experimental phantom designs regarding loading and boundary conditions, as well as guidance towards validating the experimental results of compressional viscoelastography.
Collapse
|
5
|
Gendin DI, Nayak R, Wang Y, Bayat M, Fazzio RT, Oberai AA, Hall TJ, Barbone PE, Alizad A, Fatemi M. Repeatability of Linear and Nonlinear Elastic Modulus Maps From Repeat Scans in the Breast. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:748-757. [PMID: 33151880 PMCID: PMC11017922 DOI: 10.1109/tmi.2020.3036032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Compression elastography allows the precise measurement of large deformations of soft tissue in vivo. From an image sequence showing tissue undergoing large deformation, an inverse problem for both the linear and nonlinear elastic moduli distributions can be solved. As part of a larger clinical study to evaluate nonlinear elastic modulus maps (NEMs) in breast cancer, we evaluate the repeatability of linear and nonlinear modulus maps from repeat measurements. Within the cohort of subjects scanned to date, 20 had repeat scans. These repeated scans were processed to evaluate NEM repeatability. In vivo data were acquired by a custom-built, digitally controlled, uniaxial compression device with force feedback from the pressure-plate. RF-data were acquired using plane-wave imaging, at a frame-rate of 200 Hz, with a ramp-and-hold compressive force of 8N, applied at 8N/sec. A 2D block-matching algorithm was used to obtain sample-level displacement fields which were then tracked at subsample resolution using 2D cross correlation. Linear and nonlinear elasticity parameters in a modified Veronda-Westmann model of tissue elasticity were estimated using an iterative optimization method. For the repeated scans, B-mode images, strain images, and linear and nonlinear elastic modulus maps are measured and compared. Results indicate that when images are acquired in the same region of tissue and sufficiently high strain is used to recover nonlinearity parameters, then the reconstructed modulus maps are consistent.
Collapse
|
6
|
Bayat M, Nabavizadeh A, Nayak R, Webb JM, Gregory AV, Meixner DD, Fazzio RT, Insana MF, Alizad A, Fatemi M. Multi-parameter Sub-Hertz Analysis of Viscoelasticity With a Quality Metric for Differentiation of Breast Masses. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3393-3403. [PMID: 32917470 PMCID: PMC7606763 DOI: 10.1016/j.ultrasmedbio.2020.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 05/10/2023]
Abstract
We applied sub-Hertz analysis of viscoelasticity (SAVE) to differentiate breast masses in pre-biopsy patients. Tissue response during external ramp-and-hold stress was ultrasonically detected. Displacements were used to acquire tissue viscoelastic parameters. The fast instantaneous response and slow creep-like deformations were modeled as the response of a linear standard solid from which viscoelastic parameters were estimated. These parameters were used in a multi-variable classification framework to differentiate malignant from benign masses identified by pathology. When employing all viscoelasticity parameters, SAVE resulted in 71.43% accuracy in differentiating lesions. When combined with ultrasound features and lesion size, accuracy was 82.24%. Adding a quality metric based on uniaxial motion increased the accuracy to 81.25%. When all three were combined with SAVE, accuracy was 91.3%. These results confirm the utility of SAVE as a robust ultrasound-based diagnostic tool for non-invasive differentiation of breast masses when used as stand-alone biomarkers or in conjunction with ultrasonic features.
Collapse
Affiliation(s)
- Mahdi Bayat
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Alireza Nabavizadeh
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Rohit Nayak
- Department of Radiology, Mayo Clinic College Medicine and Science, Rochester, MN, USA
| | - Jeremy M Webb
- Department of Radiology, Mayo Clinic College Medicine and Science, Rochester, MN, USA
| | - Adriana V Gregory
- Department of Radiology, Mayo Clinic College Medicine and Science, Rochester, MN, USA
| | - Duane D Meixner
- Department of Radiology, Mayo Clinic College Medicine and Science, Rochester, MN, USA
| | - Robert T Fazzio
- Department of Radiology, Mayo Clinic College Medicine and Science, Rochester, MN, USA
| | - Michael F Insana
- Department of Bioengineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College Medicine and Science, Rochester, MN, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
7
|
Nabavizadeh A, Bayat M, Kumar V, Gregory A, Webb J, Alizad A, Fatemi M. Viscoelastic biomarker for differentiation of benign and malignant breast lesion in ultra- low frequency range. Sci Rep 2019; 9:5737. [PMID: 30952880 PMCID: PMC6450913 DOI: 10.1038/s41598-019-41885-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Benign and malignant tumors differ in the viscoelastic properties of their cellular microenvironments and in their spatiotemporal response to very low frequency stimuli. These differences can introduce a unique viscoelastic biomarker in differentiation of benign and malignant tumors. This biomarker may reduce the number of unnecessary biopsies in breast patients. Although different methods have been developed so far for this purpose, none of them have focused on in vivo and in situ assessment of local viscoelastic properties in the ultra-low (sub-Hertz) frequency range. Here we introduce a new, noninvasive model-free method called Loss Angle Mapping (LAM). We assessed the performance results on 156 breast patients. The method was further improved by detection of out-of-plane motion using motion compensation cross correlation method (MCCC). 45 patients met this MCCC criterion and were considered for data analysis. Among this population, we found 77.8% sensitivity and 96.3% specificity (p < 0.0001) in discriminating between benign and malignant tumors using logistic regression method regarding the pre known information about the BIRADS number and size. The accuracy and area under the ROC curve, AUC, was 88.9% and 0.94, respectively. This method opens new avenues to investigate the mechanobiology behavior of different tissues in a frequency range that has not yet been explored in any in vivo patient studies.
Collapse
Affiliation(s)
- Alireza Nabavizadeh
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Biomedical Informatics and Computational Biology, University of Minnesota Rochester, Rochester, Minnesota, USA
| | - Mahdi Bayat
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Viksit Kumar
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Adriana Gregory
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jeremy Webb
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| |
Collapse
|
8
|
Islam MT, Reddy JN, Righetti R. An analytical poroelastic model of a non-homogeneous medium under creep compression for ultrasound poroelastography applications - Part I. J Biomech Eng 2018; 141:2686530. [PMID: 30029267 DOI: 10.1115/1.4040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/08/2022]
Abstract
An analytical theory for the unconfined creep behavior of a cylindrical inclusion (simulating a soft tissue tumor) embedded in a cylindrical background sample (simulating normal tissue) is presented and analyzed in this paper. Both the inclusion and the background are considered as fluid-filled, porous materials, each of them being characterized by a set of mechanical properties. Specifically, in this paper, the inclusion is considered to be less permeable than the background. The cylindrical sample is compressed using a constant pressure within two frictionless plates and is allowed to expand in an unconfined way along the radial direction. Analytical expressions for the effective Poisson's ratio (EPR) and fluid pressure inside and outside the inclusion are derived and analyzed. The theoretical results are validated using finite element models (FEM). Statistical analysis shows excellent agreement between the results obtained from the developed model and the results from FEM. Thus the developed theoretical model can be used in medical imaging modalities such as ultrasound poroelastography to extract the mechanical parameters of tissues and/or to better understand the impact of the different mechanical parameters on the estimated displacements, strains, stresses and fluid pressure inside a tumor and in the surrounding tissue.
Collapse
Affiliation(s)
- Md Tauhidul Islam
- Graduate Research Assistant, Ultrasound and Elasticity Imaging Laboratory, Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA-77840
| | - J N Reddy
- Professor, Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA-77840
| | - Raffaella Righetti
- Associate Professor, Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA-77840
| |
Collapse
|
9
|
Zhang H, Zhang Q, Ruan L, Duan J, Wan M, Insana MF, Zhang H, Zhang Q, Ruan L, Duan J, Wan M, Insana MF. Modeling Ramp-hold Indentation Measurements based on Kelvin-Voigt Fractional Derivative Model. MEASUREMENT SCIENCE & TECHNOLOGY 2018; 29:035701. [PMID: 30250357 PMCID: PMC6150487 DOI: 10.1088/1361-6501/aa9daf] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt Fractional Derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an Atomic Force Microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R2 > 0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3 - 1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.
Collapse
Affiliation(s)
- HongMei Zhang
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - QingZhe Zhang
- Key Laboratory for Highway Construction Technique and Equipment of Ministry of Education of China, Chang’an University, Xi’an, China,710064
| | - LiTao Ruan
- The Department of Ultrasound Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China, 710061
| | - JunBo Duan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - MingXi Wan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - Michael F. Insana
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana IL, 61801, USA
| | - HongMei Zhang
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - QingZhe Zhang
- Key Laboratory for Highway Construction Technique and Equipment of Ministry of Education of China, Chang’an University, Xi’an, China,710064
| | - LiTao Ruan
- The Department of Ultrasound Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China, 710061
| | - JunBo Duan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - MingXi Wan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - Michael F. Insana
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana IL, 61801, USA
| |
Collapse
|
10
|
Bayat M, Nabavizadeh A, Kumar V, Gregory A, Insana M, Alizad A, Fatemi M. Automated In Vivo Sub-Hertz Analysis of Viscoelasticity (SAVE) for Evaluation of Breast Lesions. IEEE Trans Biomed Eng 2017; 65:2237-2247. [PMID: 29989938 DOI: 10.1109/tbme.2017.2787679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We present an automated method for acquiring images and contrast parameters based on mechanical properties of breast lesions and surrounding tissue at load frequencies less than 1 Hz. The method called sub-Hertz analysis of viscoelasticity (SAVE) uses a compression device integrated with ultrasound imaging to perform in vivo ramp-and-hold uniaxial creep-like test on human breast in vivo. It models the internal deformations of tissues under constant surface stress as a linear viscoelastic response. We first discuss different aspects of our unique measurement approach and the expected variability of the viscoelastic parameters estimated based on a simplified one-dimensional reconstruction model. Finite-element numerical analysis is used to justify the advantages of using imaging contrast over viscoelasticity values. We then present the results of SAVE applied to a group of patients with breast masses undergoing biopsy.
Collapse
|