1
|
Pande SD, Kalyani P, Nagendram S, Alluhaidan AS, Babu GH, Ahammad SH, Pandey VK, Sridevi G, Kumar A, Bonyah E. Comparative analysis of the DCNN and HFCNN Based Computerized detection of liver cancer. BMC Med Imaging 2025; 25:37. [PMID: 39901085 PMCID: PMC11792691 DOI: 10.1186/s12880-025-01578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Liver cancer detection is critically important in the discipline of biomedical image testing and diagnosis. Researchers have explored numerous machine learning (ML) techniques and deep learning (DL) approaches aimed at the automated recognition of liver disease by analysing computed tomography (CT) images. This study compares two frameworks, Deep Convolutional Neural Network (DCNN) and Hierarchical Fusion Convolutional Neural Networks (HFCNN), to assess their effectiveness in liver cancer segmentation. The contribution includes enhancing the edges and textures of CT images through filtering to achieve precise liver segmentation. Additionally, an existing DL framework was employed for liver cancer detection and segmentation. The strengths of this paper include a clear emphasis on the criticality of liver cancer detection in biomedical imaging and diagnostics. It also highlights the challenges associated with CT image detection and segmentation and provides a comprehensive summary of recent literature. However, certain difficulties arise during the detection process in CT images due to overlapping structures, such as bile ducts, blood vessels, image noise, textural changes, size and location variations, and inherent heterogeneity. These factors may lead to segmentation errors and subsequently different analyses. This research analysis compares two advanced methodologies, DCNN and HFCNN, for liver cancer detection. The evaluation of DCNN and HFCNN in liver cancer detection is conducted using multiple performance metrics, including precision, F1-score, recall, and accuracy. This comprehensive assessment provides a detailed evaluation of these models' effectiveness compared to other state-of-the-art methods in identifying liver cancer.
Collapse
Affiliation(s)
| | - Pala Kalyani
- Department of ECE, Vardhaman college of Engineering, Hyderabad, India
| | - S Nagendram
- Department of AI, KKR & KSR Institute of Technology & Sciences, Guntur, India
| | - Ala Saleh Alluhaidan
- Department of Information Systems, College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - G Harish Babu
- Department of ECE, CVR College of Engineering, Hyderabad, India
| | - Sk Hasane Ahammad
- Department of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, 522302, India
| | - Vivek Kumar Pandey
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - G Sridevi
- Department of Computer Science and Engineering, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
- Refrigeration &Air-condition Department, Technical Engineering College, The Islamic University, Najaf, Iraq
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Ebenezer Bonyah
- Department of Mathematics Education, Akenten Appiah Menka University of Skills Training and Entrepreneurial Development, Kumasi, Ghana.
| |
Collapse
|
2
|
Sun L, Jiang L, Wang M, Wang Z, Xin Y. A Multi-Scale Liver Tumor Segmentation Method Based on Residual and Hybrid Attention Enhanced Network with Contextual Integration. SENSORS (BASEL, SWITZERLAND) 2024; 24:5845. [PMID: 39275756 PMCID: PMC11398141 DOI: 10.3390/s24175845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/16/2024]
Abstract
Liver cancer is one of the malignancies with high mortality rates worldwide, and its timely detection and accurate diagnosis are crucial for improving patient prognosis. To address the limitations of traditional image segmentation techniques and the U-Net network in capturing fine image features, this study proposes an improved model based on the U-Net architecture, named RHEU-Net. By replacing traditional convolution modules in the encoder and decoder with improved residual modules, the network's feature extraction capabilities and gradient stability are enhanced. A Hybrid Gated Attention (HGA) module is integrated before the skip connections, enabling the parallel processing of channel and spatial attentions, optimizing the feature fusion strategy, and effectively replenishing image details. A Multi-Scale Feature Enhancement (MSFE) layer is introduced at the bottleneck, utilizing multi-scale feature extraction technology to further enhance the expression of receptive fields and contextual information, improving the overall feature representation effect. Testing on the LiTS2017 dataset demonstrated that RHEU-Net achieved Dice scores of 95.72% for liver segmentation and 70.19% for tumor segmentation. These results validate the effectiveness of RHEU-Net and underscore its potential for clinical application.
Collapse
Affiliation(s)
- Liyan Sun
- College of Computer Science and Technology, Changchun University, No. 6543, Satellite Road, Changchun 130022, China
| | - Linqing Jiang
- College of Computer Science and Technology, Changchun University, No. 6543, Satellite Road, Changchun 130022, China
| | - Mingcong Wang
- College of Computer Science and Technology, Changchun University, No. 6543, Satellite Road, Changchun 130022, China
| | - Zhenyan Wang
- College of Computer Science and Technology, Changchun University, No. 6543, Satellite Road, Changchun 130022, China
| | - Yi Xin
- College of Computer Science and Technology, Changchun University, No. 6543, Satellite Road, Changchun 130022, China
| |
Collapse
|
3
|
Wei D, Jiang Y, Zhou X, Wu D, Feng X. A Review of Advancements and Challenges in Liver Segmentation. J Imaging 2024; 10:202. [PMID: 39194991 DOI: 10.3390/jimaging10080202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Liver segmentation technologies play vital roles in clinical diagnosis, disease monitoring, and surgical planning due to the complex anatomical structure and physiological functions of the liver. This paper provides a comprehensive review of the developments, challenges, and future directions in liver segmentation technology. We systematically analyzed high-quality research published between 2014 and 2024, focusing on liver segmentation methods, public datasets, and evaluation metrics. This review highlights the transition from manual to semi-automatic and fully automatic segmentation methods, describes the capabilities and limitations of available technologies, and provides future outlooks.
Collapse
Affiliation(s)
- Di Wei
- Department of Radiology, The Eighth Affiliated Hospital of The Sun Yat-sen University, No. 3025, Middle Shennan Road, Shenzhen 518033, China
| | - Yundan Jiang
- Department of Radiology, The Eighth Affiliated Hospital of The Sun Yat-sen University, No. 3025, Middle Shennan Road, Shenzhen 518033, China
| | - Xuhui Zhou
- Department of Radiology, The Eighth Affiliated Hospital of The Sun Yat-sen University, No. 3025, Middle Shennan Road, Shenzhen 518033, China
| | - Di Wu
- Department of Radiology, The Eighth Affiliated Hospital of The Sun Yat-sen University, No. 3025, Middle Shennan Road, Shenzhen 518033, China
| | - Xiaorong Feng
- Department of Radiology, The Eighth Affiliated Hospital of The Sun Yat-sen University, No. 3025, Middle Shennan Road, Shenzhen 518033, China
| |
Collapse
|
4
|
Liu H, Yang J, Jiang C, He S, Fu Y, Zhang S, Hu X, Fang J, Ji W. S2DA-Net: Spatial and spectral-learning double-branch aggregation network for liver tumor segmentation in CT images. Comput Biol Med 2024; 174:108400. [PMID: 38613888 DOI: 10.1016/j.compbiomed.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Accurate liver tumor segmentation is crucial for aiding radiologists in hepatocellular carcinoma evaluation and surgical planning. While convolutional neural networks (CNNs) have been successful in medical image segmentation, they face challenges in capturing long-term dependencies among pixels. On the other hand, Transformer-based models demand a high number of parameters and involve significant computational costs. To address these issues, we propose the Spatial and Spectral-learning Double-branched Aggregation Network (S2DA-Net) for liver tumor segmentation. S2DA-Net consists of a double-branched encoder and a decoder with a Group Multi-Head Cross-Attention Aggregation (GMCA) module, Two branches in the encoder consist of a Fourier Spectral-learning Multi-scale Fusion (FSMF) branch and a Multi-axis Aggregation Hadamard Attention (MAHA) branch. The FSMF branch employs a Fourier-based network to learn amplitude and phase information, capturing richer features and detailed information without introducing an excessive number of parameters. The FSMF branch utilizes a Fourier-based network to capture amplitude and phase information, enriching features without introducing excessive parameters. The MAHA branch incorporates spatial information, enhancing discriminative features while minimizing computational costs. In the decoding path, a GMCA module extracts local information and establishes long-term dependencies, improving localization capabilities by amalgamating features from diverse branches. Experimental results on the public LiTS2017 liver tumor datasets show that the proposed segmentation model achieves significant improvements compared to the state-of-the-art methods, obtaining dice per case (DPC) 69.4 % and global dice (DG) 80.0 % for liver tumor segmentation on the LiTS2017 dataset. Meanwhile, the pre-trained model based on the LiTS2017 datasets obtain, DPC 73.4 % and an DG 82.2 % on the 3DIRCADb dataset.
Collapse
Affiliation(s)
- Huaxiang Liu
- Department Radiology of Taizhou Hospital, Zhejiang University, Taizhou, 318000, Zhejiang, China; Institute of Intelligent Information Processing, Taizhou University, Taizhou, 318000, Zhejiang, China; Key Laboratory of Evidence-based Radiology of Taizhou, Taizhou, 317000, Zhejiang, China
| | - Jie Yang
- School of Geophysics and Measurement and Control Technology, East China University of Technology, Nanchang, 330013, China
| | - Chao Jiang
- School of Geophysics and Measurement and Control Technology, East China University of Technology, Nanchang, 330013, China
| | - Sailing He
- Department Radiology of Taizhou Hospital, Zhejiang University, Taizhou, 318000, Zhejiang, China
| | - Youyao Fu
- Institute of Intelligent Information Processing, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Shiqing Zhang
- Institute of Intelligent Information Processing, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xudong Hu
- Key Laboratory of Evidence-based Radiology of Taizhou, Taizhou, 317000, Zhejiang, China
| | - Jiangxiong Fang
- Institute of Intelligent Information Processing, Taizhou University, Taizhou, 318000, Zhejiang, China.
| | - Wenbin Ji
- Department Radiology of Taizhou Hospital, Zhejiang University, Taizhou, 318000, Zhejiang, China; Key Laboratory of Evidence-based Radiology of Taizhou, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
5
|
Song Z, Wu H, Chen W, Slowik A. Improving automatic segmentation of liver tumor images using a deep learning model. Heliyon 2024; 10:e28538. [PMID: 38571625 PMCID: PMC10988037 DOI: 10.1016/j.heliyon.2024.e28538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Liver tumors are one of the most aggressive malignancies in the human body. Computer-aided technology and liver interventional surgery are effective in the prediction, identification and management of liver neoplasms. One of the important processes is to accurately grasp the morphological structure of the liver and liver blood vessels. However, accurate identification and segmentation of hepatic blood vessels in CT images poses a formidable challenge. Manually locating and segmenting liver vessels in CT images is time-consuming and impractical. There is an imperative clinical requirement for a precise and effective algorithm to segment liver vessels. In response to this demand, the current paper advocates a liver vessel segmentation approach that employs an enhanced 3D fully convolutional neural network V-Net. The network model improves the basic network structure according to the characteristics of liver vessels. First, a pyramidal convolution block is introduced between the encoder and decoder of the network to improve the network localization ability. Then, multi-resolution deep supervision is introduced in the network, resulting in more robust segmentation. Finally, by fusing feature maps of different resolutions, the overall segmentation result is predicted. Evaluation experiments on public datasets demonstrate that our improved scheme can increase the segmentation ability of existing network models for liver vessels. Compared with the existing work, the experimental outcomes demonstrate that the technique presented in this manuscript has attained superior performance on the Dice Coefficient index, which can promote the treatment of liver tumors.
Collapse
Affiliation(s)
- Zhendong Song
- School of Mechanical and Electrical Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Huiming Wu
- School of Mechanical and Electrical Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Wei Chen
- School of Mechanical and Electrical Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Adam Slowik
- Koszalin University of Technology, Koszalin, Poland
| |
Collapse
|
6
|
Ling Y, Wang Y, Liu Q, Yu J, Xu L, Zhang X, Liang P, Kong D. EPolar-UNet: An edge-attending polar UNet for automatic medical image segmentation with small datasets. Med Phys 2024; 51:1702-1713. [PMID: 38299370 DOI: 10.1002/mp.16957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Medical image segmentation is one of the most key steps in computer-aided clinical diagnosis, geometric characterization, measurement, image registration, and so forth. Convolutional neural networks especially UNet and its variants have been successfully used in many medical image segmentation tasks. However, the results are limited by the deficiency in extracting high resolution edge information because of the design of the skip connections in UNet and the need for large available datasets. PURPOSE In this paper, we proposed an edge-attending polar UNet (EPolar-UNet), which was trained on the polar coordinate system instead of classic Cartesian coordinate system with an edge-attending construction in skip connection path. METHODS EPolar-UNet extracted the location information from an eight-stacked hourglass network as the pole for polar transformation and extracted the boundary cues from an edge-attending UNet, which consisted of a deconvolution layer and a subtraction operation. RESULTS We evaluated the performance of EPolar-UNet across three imaging modalities for different segmentation tasks: CVC-ClinicDB dataset for polyp, ISIC-2018 dataset for skin lesion, and our private ultrasound dataset for liver tumor segmentation. Our proposed model outperformed state-of-the-art models on all three datasets and needed only 30%-60% of training data compared with the benchmark UNet model to achieve similar performances for medical image segmentation tasks. CONCLUSIONS We proposed an end-to-end EPolar-UNet for automatic medical image segmentation and showed good performance on small datasets, which was critical in the field of medical image segmentation.
Collapse
Affiliation(s)
- Yating Ling
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Yuling Wang
- Department of Interventional Ultrasound, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Liu
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Yu
- Department of Interventional Ultrasound, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Xu
- Zhejiang Qiushi Institute for Mathematical Medicine, Hangzhou, China
| | - Xiaoqian Zhang
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Liang
- Department of Interventional Ultrasound, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dexing Kong
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Horkaew P, Chansangrat J, Keeratibharat N, Le DC. Recent advances in computerized imaging and its vital roles in liver disease diagnosis, preoperative planning, and interventional liver surgery: A review. World J Gastrointest Surg 2023; 15:2382-2397. [PMID: 38111769 PMCID: PMC10725533 DOI: 10.4240/wjgs.v15.i11.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
The earliest and most accurate detection of the pathological manifestations of hepatic diseases ensures effective treatments and thus positive prognostic outcomes. In clinical settings, screening and determining the extent of a pathology are prominent factors in preparing remedial agents and administering appropriate therapeutic procedures. Moreover, in a patient undergoing liver resection, a realistic preoperative simulation of the subject-specific anatomy and physiology also plays a vital part in conducting initial assessments, making surgical decisions during the procedure, and anticipating postoperative results. Conventionally, various medical imaging modalities, e.g., computed tomography, magnetic resonance imaging, and positron emission tomography, have been employed to assist in these tasks. In fact, several standardized procedures, such as lesion detection and liver segmentation, are also incorporated into prominent commercial software packages. Thus far, most integrated software as a medical device typically involves tedious interactions from the physician, such as manual delineation and empirical adjustments, as per a given patient. With the rapid progress in digital health approaches, especially medical image analysis, a wide range of computer algorithms have been proposed to facilitate those procedures. They include pattern recognition of a liver, its periphery, and lesion, as well as pre- and postoperative simulations. Prior to clinical adoption, however, software must conform to regulatory requirements set by the governing agency, for instance, valid clinical association and analytical and clinical validation. Therefore, this paper provides a detailed account and discussion of the state-of-the-art methods for liver image analyses, visualization, and simulation in the literature. Emphasis is placed upon their concepts, algorithmic classifications, merits, limitations, clinical considerations, and future research trends.
Collapse
Affiliation(s)
- Paramate Horkaew
- School of Computer Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jirapa Chansangrat
- School of Radiology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nattawut Keeratibharat
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Doan Cong Le
- Faculty of Information Technology, An Giang University, Vietnam National University (Ho Chi Minh City), An Giang 90000, Vietnam
| |
Collapse
|
8
|
Xu X, Chen Y, Wu J, Lu J, Ye Y, Huang Y, Dou X, Li K, Wang G, Zhang S, Gong W. A novel one-to-multiple unsupervised domain adaptation framework for abdominal organ segmentation. Med Image Anal 2023; 88:102873. [PMID: 37421932 DOI: 10.1016/j.media.2023.102873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/24/2023] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
Abdominal multi-organ segmentation in multi-sequence magnetic resonance images (MRI) is of great significance in many clinical scenarios, e.g., MRI-oriented pre-operative treatment planning. Labeling multiple organs on a single MR sequence is a time-consuming and labor-intensive task, let alone manual labeling on multiple MR sequences. Training a model by one sequence and generalizing it to other domains is one way to reduce the burden of manual annotation, but the existence of domain gap often leads to poor generalization performance of such methods. Image translation-based unsupervised domain adaptation (UDA) is a common way to address this domain gap issue. However, existing methods focus less on keeping anatomical consistency and are limited by one-to-one domain adaptation, leading to low efficiency for adapting a model to multiple target domains. This work proposes a unified framework called OMUDA for one-to-multiple unsupervised domain-adaptive segmentation, where disentanglement between content and style is used to efficiently translate a source domain image into multiple target domains. Moreover, generator refactoring and style constraint are conducted in OMUDA for better maintaining cross-modality structural consistency and reducing domain aliasing. The average Dice Similarity Coefficients (DSCs) of OMUDA for multiple sequences and organs on the in-house test set, the AMOS22 dataset and the CHAOS dataset are 85.51%, 82.66% and 91.38%, respectively, which are slightly lower than those of CycleGAN(85.66% and 83.40%) in the first two data sets and slightly higher than CycleGAN(91.36%) in the last dataset. But compared with CycleGAN, OMUDA reduces floating-point calculations by about 87 percent in the training phase and about 30 percent in the inference stage respectively. The quantitative results in both segmentation performance and training efficiency demonstrate the usability of OMUDA in some practical scenes, such as the initial phase of product development.
Collapse
Affiliation(s)
- Xiaowei Xu
- SenseTime Research, Shanghai, China; School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yinan Chen
- SenseTime Research, Shanghai, China; School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jianghao Wu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiangshan Lu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | | | | | - Xin Dou
- SenseBrain Technology, Princeton, NJ 08540, USA
| | - Kang Li
- Shanghai Artificial Intelligence Laboratory, Shanghai, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China
| | - Guotai Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Shaoting Zhang
- SenseTime Research, Shanghai, China; School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
| |
Collapse
|
9
|
Wu S, Yu H, Li C, Zheng R, Xia X, Wang C, Wang H. A Coarse-to-Fine Fusion Network for Small Liver Tumor Detection and Segmentation: A Real-World Study. Diagnostics (Basel) 2023; 13:2504. [PMID: 37568868 PMCID: PMC10417427 DOI: 10.3390/diagnostics13152504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Liver tumor semantic segmentation is a crucial task in medical image analysis that requires multiple MRI modalities. This paper proposes a novel coarse-to-fine fusion segmentation approach to detect and segment small liver tumors of various sizes. To enhance the segmentation accuracy of small liver tumors, the method incorporates a detection module and a CSR (convolution-SE-residual) module, which includes a convolution block, an SE (squeeze and excitation) module, and a residual module for fine segmentation. The proposed method demonstrates superior performance compared to conventional single-stage end-to-end networks. A private liver MRI dataset comprising 218 patients with a total of 3605 tumors, including 3273 tumors smaller than 3.0 cm, were collected for the proposed method. There are five types of liver tumors identified in this dataset: hepatocellular carcinoma (HCC); metastases of the liver; cholangiocarcinoma (ICC); hepatic cyst; and liver hemangioma. The results indicate that the proposed method outperforms the single segmentation networks 3D UNet and nnU-Net as well as the fusion networks of 3D UNet and nnU-Net with nnDetection. The proposed architecture was evaluated on a test set of 44 images, with an average Dice similarity coefficient (DSC) and recall of 86.9% and 86.7%, respectively, which is a 1% improvement compared to the comparison method. More importantly, compared to existing methods, our proposed approach demonstrates state-of-the-art performance in segmenting small objects with sizes smaller than 10 mm, achieving a Dice score of 85.3% and a malignancy detection rate of 87.5%.
Collapse
Affiliation(s)
- Shu Wu
- Zhiyu Software Information Co., Ltd., Shanghai 200030, China
| | - Hang Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Cuiping Li
- Zhiyu Software Information Co., Ltd., Shanghai 200030, China
| | - Rencheng Zheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Xueqin Xia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Human Phenome Institute, Fudan University, Shanghai 200433, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
| |
Collapse
|
10
|
Ansari MY, Abdalla A, Ansari MY, Ansari MI, Malluhi B, Mohanty S, Mishra S, Singh SS, Abinahed J, Al-Ansari A, Balakrishnan S, Dakua SP. Practical utility of liver segmentation methods in clinical surgeries and interventions. BMC Med Imaging 2022; 22:97. [PMID: 35610600 PMCID: PMC9128093 DOI: 10.1186/s12880-022-00825-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical imaging (e.g., magnetic resonance imaging and computed tomography) is a crucial adjunct for clinicians, aiding in the diagnosis of diseases and planning of appropriate interventions. This is especially true in malignant conditions such as hepatocellular carcinoma (HCC), where image segmentation (such as accurate delineation of liver and tumor) is the preliminary step taken by the clinicians to optimize diagnosis, staging, and treatment planning and intervention (e.g., transplantation, surgical resection, radiotherapy, PVE, embolization, etc). Thus, segmentation methods could potentially impact the diagnosis and treatment outcomes. This paper comprehensively reviews the literature (during the year 2012-2021) for relevant segmentation methods and proposes a broad categorization based on their clinical utility (i.e., surgical and radiological interventions) in HCC. The categorization is based on the parameters such as precision, accuracy, and automation.
Collapse
|
11
|
Tonini V, Vigutto G, Donati R. Liver surgery for colorectal metastasis: New paths and new goals with the help of artificial intelligence. Artif Intell Gastroenterol 2022; 3:28-35. [DOI: 10.35712/aig.v3.i2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common neoplasia with an high risk to metastatic spread. Improving medical and surgical treatment is moving along with improving the precision of diagnosis and patient's assessment, the latter two aided more and more with the use of artificial intelligence (AI). The management of colorectal liver metastasis is multidisciplinary, and surgery is the main option. After the diagnosis, a surgical assessment of the patient is fundamental. Reaching a R0 resection with a proper remnant liver volume can be done using new techniques involving also artificial intelligence. Considering the recent application of artificial intelligence as a valid substitute for liver biopsy in chronic liver diseases, several authors tried to apply similar techniques to pre-operative imaging of liver metastasis. Radiomics showed good results in identifying structural changes in a unhealthy liver and in evaluating the prognosis after a liver resection. Recently deep learning has been successfully applied in estimating the remnant liver volume before surgery. Moreover AI techniques can help surgeons to perform an early diagnosis of neoplastic relapse or a better differentiation between a colorectal metastasis and a benign lesion. AI could be applied also in the histopathological diagnostic tool. Although AI implementation is still partially automatized, it appears faster and more precise than the usual diagnostic tools and, in the short future, could become the new gold standard in liver surgery.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical and Surgical Sciences, Sant' Orsola Hospital University of Bologna, Bologna 40138, Italy
| | - Gabriele Vigutto
- Department of Medical and Surgical Sciences, St Orsola Hospital, University of Bologna, Bologna 40138, Italy
| | - Riccardo Donati
- Department of Electrical, Electronic and Information Engineering ”Guglielmo Marconi” (DEI), University of Bologna, Bologna 40138, Italy
| |
Collapse
|
12
|
WU QIAN, CHEN QI, YU YONGJIAN, FAN LIANGJUN. 3D FULLY CONVOLUTIONAL NETWORK FOR THORAX MULTI-ORGANS SEMANTIC SEGMENTATION. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Automatically delineating Organs-at-Risks (OARs) on computed tomography (CT) has the benefit of both reducing the time and improving the quality of radiotherapy (RT) planning. A 3D convolutional deep learning framework for multi-organs segmentation is proposed in this work; moreover, for the small volume OARs, a robust 3D squeeze-and-excitation (SE) feature extraction mechanism and a new Dice loss function are incorporated in the traditional 3D U-Net. We collected 60 thorax CT images set with annotations and expanded to 260 patients by the augmented method of randomly rotating [Formula: see text]6 degrees with a 1/3 probability and adding Gaussian noise. The objective is to segment five important organs: esophagus, spinal cord, heart, and bilateral lungs. Compared with 3D U-Net, 3D-2D U-Net proposed in our work increases the Dice similarity coefficient by 5% on average for the heart and bilateral lungs, and 3D Small Volume U-Net can further increase the Dice similarity coefficient to above 80% for the spinal cord. The experiment results demonstrate that the proposed model can improve the delineation accuracy of OARs from CT images.
Collapse
Affiliation(s)
- QIAN WU
- School of Humanistic Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - QI CHEN
- School of Humanistic Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - YONGJIAN YU
- School of Humanistic Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - LIANGJUN FAN
- School of Humanistic Medicine, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
13
|
Chen Y, Hu F, Wang Y, Zheng C. Hybrid-attention densely connected U-Net with GAP for extracting livers from CT volumes. Med Phys 2022; 49:1015-1033. [PMID: 35015305 DOI: 10.1002/mp.15435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Liver segmentation is an important step in the clinical treatment of liver cancer, and accurate and automatic liver segmentation methods are extremely important. U-Net has been used as the benchmark for many medical segmentation networks, but it cannot fully utilize low-resolution information and global contextual information. To solve these problems, we propose a new network architecture named the hybrid-attention densely connected U-Net (HDU-Net). METHODS The proposed HDU-Net has three main changes relative to U-Net, as follows: (1) It uses a densely connected structure and dilated convolution to achieve feature reuse and avoid information loss. (2) A global average pooling block is proposed to further augment the receptive field and improve the segmentation accuracy of the network for small or disconnected liver regions. (3) By combining the spatial attention and channel attention mechanisms, a hybrid attention structure is proposed to replace the skip connection component to filter and integrate low-resolution information. RESULTS Experiments conducted on the LITS2017, 3Dircadb and Sliver07 datasets show that the proposed model can segment the liver accurately and effectively. Dice scores reach 96.5%, 96.18%, and 97.57% on these datasets, respectively, constituting results that are superior to many previously proposed methods. CONCLUSIONS The experimental liver segmentation results have demonstrated that our proposed network provides improved segmentation performance in comparison with other networks. The experimental results without postprocessing confirmed that our network solves the oversegmentation and undersegmentation problems to some extent. The proposed model is effective, robust, and efficient in terms of liver segmentation without requiring extensive training time or a very large dataset.
Collapse
Affiliation(s)
- Ying Chen
- School of Software, Nanchang Hangkong University, Nanchang, China
| | - Fei Hu
- School of Software, Nanchang Hangkong University, Nanchang, China
| | - Yerong Wang
- School of Software, Nanchang Hangkong University, Nanchang, China
| | - Cheng Zheng
- School of Software, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|
14
|
Lei T, Wang R, Zhang Y, Wan Y, Liu C, Nandi AK. DefED-Net: Deformable Encoder-Decoder Network for Liver and Liver Tumor Segmentation. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3059780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Gong Z, Guo C, Guo W, Zhao D, Tan W, Zhou W, Zhang G. A hybrid approach based on deep learning and level set formulation for liver segmentation in CT images. J Appl Clin Med Phys 2021; 23:e13482. [PMID: 34873831 PMCID: PMC8803306 DOI: 10.1002/acm2.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 11/14/2022] Open
Abstract
Accurate liver segmentation is essential for radiation therapy planning of hepatocellular carcinoma and absorbed dose calculation. However, liver segmentation is a challenging task due to the anatomical variability in both shape and size and the low contrast between liver and its surrounding organs. Thus we propose a convolutional neural network (CNN) for automated liver segmentation. In our method, fractional differential enhancement is firstly applied for preprocessing. Subsequently, an initial liver segmentation is obtained by using a CNN. Finally, accurate liver segmentation is achieved by the evolution of an active contour model. Experimental results show that the proposed method outperforms existing methods. One hundred fifty CT scans are evaluated for the experiment. For liver segmentation, Dice of 95.8%, true positive rate of 95.1%, positive predictive value of 93.2%, and volume difference of 7% are calculated. In addition, the values of these evaluation measures show that the proposed method is able to provide a precise and robust segmentation estimate, which can also assist the manual liver segmentation task.
Collapse
Affiliation(s)
- Zhaoxuan Gong
- School of Computer, Shenyang Aerospace University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Cui Guo
- School of Computer, Shenyang Aerospace University, Shenyang, China
| | - Wei Guo
- School of Computer, Shenyang Aerospace University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Dazhe Zhao
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Wei Zhou
- School of Computer, Shenyang Aerospace University, Shenyang, China
| | - Guodong Zhang
- School of Computer, Shenyang Aerospace University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| |
Collapse
|
16
|
Seo H, Yu L, Ren H, Li X, Shen L, Xing L. Deep Neural Network With Consistency Regularization of Multi-Output Channels for Improved Tumor Detection and Delineation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3369-3378. [PMID: 34048339 PMCID: PMC8692166 DOI: 10.1109/tmi.2021.3084748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Deep learning is becoming an indispensable tool for imaging applications, such as image segmentation, classification, and detection. In this work, we reformulate a standard deep learning problem into a new neural network architecture with multi-output channels, which reflects different facets of the objective, and apply the deep neural network to improve the performance of image segmentation. By adding one or more interrelated auxiliary-output channels, we impose an effective consistency regularization for the main task of pixelated classification (i.e., image segmentation). Specifically, multi-output-channel consistency regularization is realized by residual learning via additive paths that connect main-output channel and auxiliary-output channels in the network. The method is evaluated on the detection and delineation of lung and liver tumors with public data. The results clearly show that multi-output-channel consistency implemented by residual learning improves the standard deep neural network. The proposed framework is quite broad and should find widespread applications in various deep learning problems.
Collapse
|
17
|
Chi J, Han X, Wu C, Wang H, Ji P. X-Net: Multi-branch UNet-like network for liver and tumor segmentation from 3D abdominal CT scans. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Wantanajittikul K, Saiviroonporn P, Saekho S, Krittayaphong R, Viprakasit V. An automated liver segmentation in liver iron concentration map using fuzzy c-means clustering combined with anatomical landmark data. BMC Med Imaging 2021; 21:138. [PMID: 34583631 PMCID: PMC8477544 DOI: 10.1186/s12880-021-00669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/15/2021] [Indexed: 11/14/2022] Open
Abstract
Background To estimate median liver iron concentration (LIC) calculated from magnetic resonance imaging, excluded vessels of the liver parenchyma region were defined manually. Previous works proposed the automated method for excluding vessels from the liver region. However, only user-defined liver region remained a manual process. Therefore, this work aimed to develop an automated liver region segmentation technique to automate the whole process of median LIC calculation. Methods 553 MR examinations from 471 thalassemia major patients were used in this study. LIC maps (in mg/g dry weight) were calculated and used as the input of segmentation procedures. Anatomical landmark data were detected and used to restrict ROI. After that, the liver region was segmented using fuzzy c-means clustering and reduced segmentation errors by morphological processes. According to the clinical application, erosion with a suitable size of the structuring element was applied to reduce the segmented liver region to avoid uncertainty around the edge of the liver. The segmentation results were evaluated by comparing with manual segmentation performed by a board-certified radiologist. Results The proposed method was able to produce a good grade output in approximately 81% of all data. Approximately 11% of all data required an easy modification step. The rest of the output, approximately 8%, was an unsuccessful grade and required manual intervention by a user. For the evaluation matrices, percent dice similarity coefficient (%DSC) was in the range 86–92, percent Jaccard index (%JC) was 78–86, and Hausdorff distance (H) was 14–28 mm, respectively. In this study, percent false positive (%FP) and percent false negative (%FN) were applied to evaluate under- and over-segmentation that other evaluation matrices could not handle. The average of operation times could be reduced from 10 s per case using traditional method, to 1.5 s per case using our proposed method. Conclusion The experimental results showed that the proposed method provided an effective automated liver segmentation technique, which can be applied clinically for automated median LIC calculation in thalassemia major patients.
Collapse
Affiliation(s)
- Kittichai Wantanajittikul
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pairash Saiviroonporn
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Suwit Saekho
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Rungroj Krittayaphong
- Division of Cardiology, Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vip Viprakasit
- Haematology/Oncology Division, Department of Pediatrics and Thalassemia Center, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Le DC, Chansangrat J, Keeratibharat N, Horkaew P. Symmetric Reconstruction of Functional Liver Segments and Cross-Individual Correspondence of Hepatectomy. Diagnostics (Basel) 2021; 11:852. [PMID: 34068516 PMCID: PMC8151903 DOI: 10.3390/diagnostics11050852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/02/2023] Open
Abstract
Accurate localization and analyses of functional liver segments are crucial in devising various surgical procedures, including hepatectomy. To this end, they require the extraction of a liver from computed tomography, and then the identification of resection correspondence between individuals. The first part is usually impeded by inherent deficiencies, as present in medical images, and vast anatomical variations across subjects. While the model-based approach is found viable to tackle both issues, it is often undermined by an inadequate number of labeled samples, to capture all plausible variations. To address segmentation problems by balancing between accuracy, resource consumption, and data availability, this paper presents an efficient method for liver segmentation based on a graph-cut algorithm. One of its main novelties is the incorporation of a feature preserving a metric for boundary separation. Intuitive anatomical constraints are imposed to ensure valid extraction. The second part involves the symmetric conformal parameterization of the extracted liver surface onto a genus-0 domain. Provided with a few landmarks specified on two livers, we demonstrated that, by using a modified Beltrami differential, not only could they be non-rigidly registered, but also the hepatectomy on one liver could be envisioned on another. The merits of the proposed scheme were elucidated by both visual and numerical assessments on a standard MICCAI SLIVER07 dataset.
Collapse
Affiliation(s)
- Doan Cong Le
- School of Computer Engineering, Suranaree University of Technology, Suranaree, Nakhon Ratchasima 30000, Thailand;
| | - Jirapa Chansangrat
- School of Radiology, Suranaree University of Technology, Suranaree, Nakhon Ratchasima 30000, Thailand;
| | - Nattawut Keeratibharat
- School of Surgery, Suranaree University of Technology, Suranaree, Nakhon Ratchasima 30000, Thailand;
| | - Paramate Horkaew
- School of Computer Engineering, Suranaree University of Technology, Suranaree, Nakhon Ratchasima 30000, Thailand;
| |
Collapse
|
20
|
Le DC, Chinnasarn K, Chansangrat J, Keeratibharat N, Horkaew P. Semi-automatic liver segmentation based on probabilistic models and anatomical constraints. Sci Rep 2021; 11:6106. [PMID: 33731736 PMCID: PMC7969941 DOI: 10.1038/s41598-021-85436-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Segmenting a liver and its peripherals from abdominal computed tomography is a crucial step toward computer aided diagnosis and therapeutic intervention. Despite the recent advances in computing methods, faithfully segmenting the liver has remained a challenging task, due to indefinite boundary, intensity inhomogeneity, and anatomical variations across subjects. In this paper, a semi-automatic segmentation method based on multivariable normal distribution of liver tissues and graph-cut sub-division is presented. Although it is not fully automated, the method minimally involves human interactions. Specifically, it consists of three main stages. Firstly, a subject specific probabilistic model was built from an interior patch, surrounding a seed point specified by the user. Secondly, an iterative assignment of pixel labels was applied to gradually update the probabilistic map of the tissues based on spatio-contextual information. Finally, the graph-cut model was optimized to extract the 3D liver from the image. During post-processing, overly segmented nodal regions due to fuzzy tissue separation were removed, maintaining its correct anatomy by using robust bottleneck detection with adjacent contour constraint. The proposed system was implemented and validated on the MICCAI SLIVER07 dataset. The experimental results were benchmarked against the state-of-the-art methods, based on major clinically relevant metrics. Both visual and numerical assessments reported herein indicated that the proposed system could improve the accuracy and reliability of asymptomatic liver segmentation.
Collapse
Affiliation(s)
- Doan Cong Le
- School of Computer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Krisana Chinnasarn
- Department of Computer Science, Faculty of Informatics, Burapha University, Chon Buri, Thailand
| | - Jirapa Chansangrat
- School of Radiology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nattawut Keeratibharat
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Paramate Horkaew
- School of Computer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
21
|
Winther H, Hundt C, Ringe KI, Wacker FK, Schmidt B, Jürgens J, Haimerl M, Beyer LP, Stroszczynski C, Wiggermann P, Verloh N. A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI. ROFO-FORTSCHR RONTG 2020; 193:305-314. [PMID: 32882724 DOI: 10.1055/a-1238-2887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To create a fully automated, reliable, and fast segmentation tool for Gd-EOB-DTPA-enhanced MRI scans using deep learning. MATERIALS AND METHODS Datasets of Gd-EOB-DTPA-enhanced liver MR images of 100 patients were assembled. Ground truth segmentation of the hepatobiliary phase images was performed manually. Automatic image segmentation was achieved with a deep convolutional neural network. RESULTS Our neural network achieves an intraclass correlation coefficient (ICC) of 0.987, a Sørensen-Dice coefficient of 96.7 ± 1.9 % (mean ± std), an overlap of 92 ± 3.5 %, and a Hausdorff distance of 24.9 ± 14.7 mm compared with two expert readers who corresponded to an ICC of 0.973, a Sørensen-Dice coefficient of 95.2 ± 2.8 %, and an overlap of 90.9 ± 4.9 %. A second human reader achieved a Sørensen-Dice coefficient of 95 % on a subset of the test set. CONCLUSION Our study introduces a fully automated liver volumetry scheme for Gd-EOB-DTPA-enhanced MR imaging. The neural network achieves competitive concordance with the ground truth regarding ICC, Sørensen-Dice, and overlap compared with manual segmentation. The neural network performs the task in just 60 seconds. KEY POINTS · The proposed neural network helps to segment the liver accurately, providing detailed information about patient-specific liver anatomy and volume.. · With the help of a deep learning-based neural network, fully automatic segmentation of the liver on MRI scans can be performed in seconds.. · A fully automatic segmentation scheme makes liver segmentation on MRI a valuable tool for treatment planning.. CITATION FORMAT · Winther H, Hundt C, Ringe KI et al. A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI. Fortschr Röntgenstr 2021; 193: 305 - 314.
Collapse
Affiliation(s)
- Hinrich Winther
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Christian Hundt
- Institute for Computer Science, Johannes Gutenberg University, Mainz, Germany
| | - Kristina Imeen Ringe
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Frank K Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Bertil Schmidt
- Institute for Computer Science, Johannes Gutenberg University, Mainz, Germany
| | - Julian Jürgens
- Department of Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Philipp Beyer
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | | | - Philipp Wiggermann
- Department of Radiology and Nuclear Medicine, Hospital Braunschweig, Germany
| | - Niklas Verloh
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Krishan A, Mittal D. Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering. ACTA ACUST UNITED AC 2020; 65:301-313. [PMID: 31747373 DOI: 10.1515/bmt-2018-0175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/19/2019] [Indexed: 11/15/2022]
Abstract
Our proposed research technique intends to provide an effective liver magnetic resonance imaging (MRI) and computed tomography (CT) scan image classification which would play a significant role in medical dataset especially in feature selection and classification. There are a number of existing research works classifying the liver tumor disease. Early detection of liver tumor will help the patients to get cured rapidly. Our proposed research focuses on the classification of medical images with respect to the classification technique artificial neural network (ANN) to classify an image as normal or abnormal. In the pre-processing step, the input image is selected from the database and adaptive median filtering is used for noise removal. For better enhancement, histogram equalization (HE) is done in the noise-removed images. In the pre-processed images, the texture feature such as gray-level co-occurrence matrix (GLCM) and statistical features are extracted. From the extensive feature set, optimal features are selected using the optimal kernel K-means (OKK-means) clustering algorithm along with the oppositional firefly algorithm (OFA). The proposed method obtained 97.5% accuracy in the classification when compared to the existing method.
Collapse
Affiliation(s)
- Abhay Krishan
- Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology, Patiala, 147004 Punjab, India
| | - Deepti Mittal
- Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
23
|
Wi W, Park SM, Shin BS. Computed Tomography-Based Preoperative Simulation System for Pedicle Screw Fixation in Spinal Surgery. J Korean Med Sci 2020; 35:e125. [PMID: 32383365 PMCID: PMC7211513 DOI: 10.3346/jkms.2020.35.e125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/01/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A preoperative planning system facilitates improving surgical outcomes that depend on the experience of the surgeons, thanks to real-time interaction between the system and surgeons. It visualizes intermediate surgical planning results to help surgeons discuss the planning. The purpose of this study was to demonstrate the use of a newly-developed preoperative planning system for surgeons less experienced in pedicle-screw fixation in spinal surgery, especially on patients with anatomical variations. METHODS The marching cubes algorithm, a typical surface extraction technique, was applied to computed tomography (CT) images of vertebrae to enable three-dimensional (3D) reconstruction of a spinal mesh. Real-time processing of such data is difficult, as the surface mesh extracted from high-resolution CT data is rough, and the size of the mesh is large. To mitigate these factors, Laplacian smoothing was applied, followed by application of a quadric error metric-based mesh simplification to reduce the mesh size for the level-of-detail (LOD) image. Taubin smoothing was applied to smooth out the rough surface. On a multiplanar reconstruction (MPR) cross-sectional image or a 3D model view, the insertion position and orientation of the pedicle screw were manipulated using a mouse. The results after insertion were then visualized in each image. RESULTS The system was used for pre-planning pedicle-screw fixation in spinal surgery. Using any pointing device such as a mouse, surgeons can manipulate the position and angle of the screws. The pedicle screws were easy to manipulate intuitively on the MPR images, and the accuracy of screw fixation was confirmed on a trajectory view and 3D images. After surgery, CT scans were performed again, and the CT images were checked to ensure that the screws were inserted properly. CONCLUSION The preoperative planning system allows surgeons and students who are not familiar with pedicle-screw fixation to safely undertake surgery following preoperative planning. It also provides opportunities for screw-fixation training and simulation.
Collapse
Affiliation(s)
- Woochan Wi
- Department of Computer Engineering, Inha University, Incheon, Korea
| | - Sang Min Park
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Byung Seok Shin
- Department of Computer Engineering, Inha University, Incheon, Korea.
| |
Collapse
|
24
|
Seo H, Huang C, Bassenne M, Xiao R, Xing L. Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1316-1325. [PMID: 31634827 PMCID: PMC8095064 DOI: 10.1109/tmi.2019.2948320] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Segmentation of livers and liver tumors is one of the most important steps in radiation therapy of hepatocellular carcinoma. The segmentation task is often done manually, making it tedious, labor intensive, and subject to intra-/inter- operator variations. While various algorithms for delineating organ-at-risks (OARs) and tumor targets have been proposed, automatic segmentation of livers and liver tumors remains intractable due to their low tissue contrast with respect to the surrounding organs and their deformable shape in CT images. The U-Net has gained increasing popularity recently for image analysis tasks and has shown promising results. Conventional U-Net architectures, however, suffer from three major drawbacks. First, skip connections allow for the duplicated transfer of low resolution information in feature maps to improve efficiency in learning, but this often leads to blurring of extracted image features. Secondly, high level features extracted by the network often do not contain enough high resolution edge information of the input, leading to greater uncertainty where high resolution edge dominantly affects the network's decisions such as liver and liver-tumor segmentation. Thirdly, it is generally difficult to optimize the number of pooling operations in order to extract high level global features, since the number of pooling operations used depends on the object size. To cope with these problems, we added a residual path with deconvolution and activation operations to the skip connection of the U-Net to avoid duplication of low resolution information of features. In the case of small object inputs, features in the skip connection are not incorporated with features in the residual path. Furthermore, the proposed architecture has additional convolution layers in the skip connection in order to extract high level global features of small object inputs as well as high level features of high resolution edge information of large object inputs. Efficacy of the modified U-Net (mU-Net) was demonstrated using the public dataset of Liver tumor segmentation (LiTS) challenge 2017. For liver-tumor segmentation, Dice similarity coefficient (DSC) of 89.72 %, volume of error (VOE) of 21.93 %, and relative volume difference (RVD) of - 0.49 % were obtained. For liver segmentation, DSC of 98.51 %, VOE of 3.07 %, and RVD of 0.26 % were calculated. For the public 3D Image Reconstruction for Comparison of Algorithm Database (3Dircadb), DSCs were 96.01 % for the liver and 68.14 % for liver-tumor segmentations, respectively. The proposed mU-Net outperformed existing state-of-art networks.
Collapse
|
25
|
Jansen MJA, Kuijf HJ, Niekel M, Veldhuis WB, Wessels FJ, Viergever MA, Pluim JPW. Liver segmentation and metastases detection in MR images using convolutional neural networks. J Med Imaging (Bellingham) 2019; 6:044003. [PMID: 31620549 DOI: 10.1117/1.jmi.6.4.044003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Primary tumors have a high likelihood of developing metastases in the liver, and early detection of these metastases is crucial for patient outcome. We propose a method based on convolutional neural networks to detect liver metastases. First, the liver is automatically segmented using the six phases of abdominal dynamic contrast-enhanced (DCE) MR images. Next, DCE-MR and diffusion weighted MR images are used for metastases detection within the liver mask. The liver segmentations have a median Dice similarity coefficient of 0.95 compared with manual annotations. The metastases detection method has a sensitivity of 99.8% with a median of two false positives per image. The combination of the two MR sequences in a dual pathway network is proven valuable for the detection of liver metastases. In conclusion, a high quality liver segmentation can be obtained in which we can successfully detect liver metastases.
Collapse
Affiliation(s)
- Mariëlle J A Jansen
- UMC Utrecht and Utrecht University, Image Sciences Institute Utrecht, The Netherlands
| | - Hugo J Kuijf
- UMC Utrecht and Utrecht University, Image Sciences Institute Utrecht, The Netherlands
| | - Maarten Niekel
- UMC Utrecht, Department of Radiology Utrecht, The Netherlands
| | | | - Frank J Wessels
- UMC Utrecht, Department of Radiology Utrecht, The Netherlands
| | - Max A Viergever
- UMC Utrecht and Utrecht University, Image Sciences Institute Utrecht, The Netherlands
| | - Josien P W Pluim
- UMC Utrecht and Utrecht University, Image Sciences Institute Utrecht, The Netherlands
| |
Collapse
|
26
|
Lebre MA, Vacavant A, Grand-Brochier M, Rositi H, Strand R, Rosier H, Abergel A, Chabrot P, Magnin B. A robust multi-variability model based liver segmentation algorithm for CT-scan and MRI modalities. Comput Med Imaging Graph 2019; 76:101635. [PMID: 31301489 DOI: 10.1016/j.compmedimag.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/08/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
Developing methods to segment the liver in medical images, study and analyze it remains a significant challenge. The shape of the liver can vary considerably from one patient to another, and adjacent organs are visualized in medical images with similar intensities, making the boundaries of the liver ambiguous. Consequently, automatic or semi-automatic segmentation of liver is a difficult task. Moreover, scanning systems and magnetic resonance imaging have different settings and parameters. Thus the images obtained differ from one machine to another. In this article, we propose an automatic model-based segmentation that allows building a faithful 3-D representation of the liver, with a mean Dice value equal to 90.3% on CT and MRI datasets. We compare our algorithm with a semi-automatic method and with other approaches according to the state of the art. Our method works with different data sources, we use a large quantity of CT and MRI images from machines in various hospitals and multiple DICOM images available from public challenges. Finally, for evaluation of liver segmentation approaches in state of the art, robustness is not adequacy addressed with a precise definition. Another originality of this article is the introduction of a novel measure of robustness, which takes into account the liver variability at different scales.
Collapse
Affiliation(s)
- Marie-Ange Lebre
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - Antoine Vacavant
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Manuel Grand-Brochier
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Hugo Rositi
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Robin Strand
- Centre for Image Analysis, Uppsala University, Sweden
| | - Hubert Rosier
- Centre Hospitalier Émile Roux, Le Puy-en-Velay, France
| | - Armand Abergel
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Pascal Chabrot
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Benoît Magnin
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
27
|
Vorontsov E, Cerny M, Régnier P, Di Jorio L, Pal CJ, Lapointe R, Vandenbroucke-Menu F, Turcotte S, Kadoury S, Tang A. Deep Learning for Automated Segmentation of Liver Lesions at CT in Patients with Colorectal Cancer Liver Metastases. Radiol Artif Intell 2019; 1:180014. [PMID: 33937787 DOI: 10.1148/ryai.2019180014] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Purpose To evaluate the performance, agreement, and efficiency of a fully convolutional network (FCN) for liver lesion detection and segmentation at CT examinations in patients with colorectal liver metastases (CLMs). Materials and Methods This retrospective study evaluated an automated method using an FCN that was trained, validated, and tested with 115, 15, and 26 contrast material-enhanced CT examinations containing 261, 22, and 105 lesions, respectively. Manual detection and segmentation by a radiologist was the reference standard. Performance of fully automated and user-corrected segmentations was compared with that of manual segmentations. The interuser agreement and interaction time of manual and user-corrected segmentations were assessed. Analyses included sensitivity and positive predictive value of detection, segmentation accuracy, Cohen κ, Bland-Altman analyses, and analysis of variance. Results In the test cohort, for lesion size smaller than 10 mm (n = 30), 10-20 mm (n = 35), and larger than 20 mm (n = 40), the detection sensitivity of the automated method was 10%, 71%, and 85%; positive predictive value was 25%, 83%, and 94%; Dice similarity coefficient was 0.14, 0.53, and 0.68; maximum symmetric surface distance was 5.2, 6.0, and 10.4 mm; and average symmetric surface distance was 2.7, 1.7, and 2.8 mm, respectively. For manual and user-corrected segmentation, κ values were 0.42 (95% confidence interval: 0.24, 0.63) and 0.52 (95% confidence interval: 0.36, 0.72); normalized interreader agreement for lesion volume was -0.10 ± 0.07 (95% confidence interval) and -0.10 ± 0.08; and mean interaction time was 7.7 minutes ± 2.4 (standard deviation) and 4.8 minutes ± 2.1 (P < .001), respectively. Conclusion Automated detection and segmentation of CLM by using deep learning with convolutional neural networks, when manually corrected, improved efficiency but did not substantially change agreement on volumetric measurements.© RSNA, 2019Supplemental material is available for this article.
Collapse
Affiliation(s)
- Eugene Vorontsov
- Department of Radiology (M.C., A.T.) and Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Division (R.L., F.V., S.T.), Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; Montreal Institute for Learning Algorithms (MILA), Montréal, Canada (E.V., C.J.P.); École Polytechnique, Montréal, Canada (E.V., C.J.P., S.K.); Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada (M.C., P.R., S.T., S.K., A.T.); and Imagia Cybernetics, Montréal, Canada (L.D.J.)
| | - Milena Cerny
- Department of Radiology (M.C., A.T.) and Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Division (R.L., F.V., S.T.), Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; Montreal Institute for Learning Algorithms (MILA), Montréal, Canada (E.V., C.J.P.); École Polytechnique, Montréal, Canada (E.V., C.J.P., S.K.); Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada (M.C., P.R., S.T., S.K., A.T.); and Imagia Cybernetics, Montréal, Canada (L.D.J.)
| | - Philippe Régnier
- Department of Radiology (M.C., A.T.) and Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Division (R.L., F.V., S.T.), Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; Montreal Institute for Learning Algorithms (MILA), Montréal, Canada (E.V., C.J.P.); École Polytechnique, Montréal, Canada (E.V., C.J.P., S.K.); Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada (M.C., P.R., S.T., S.K., A.T.); and Imagia Cybernetics, Montréal, Canada (L.D.J.)
| | - Lisa Di Jorio
- Department of Radiology (M.C., A.T.) and Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Division (R.L., F.V., S.T.), Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; Montreal Institute for Learning Algorithms (MILA), Montréal, Canada (E.V., C.J.P.); École Polytechnique, Montréal, Canada (E.V., C.J.P., S.K.); Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada (M.C., P.R., S.T., S.K., A.T.); and Imagia Cybernetics, Montréal, Canada (L.D.J.)
| | - Christopher J Pal
- Department of Radiology (M.C., A.T.) and Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Division (R.L., F.V., S.T.), Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; Montreal Institute for Learning Algorithms (MILA), Montréal, Canada (E.V., C.J.P.); École Polytechnique, Montréal, Canada (E.V., C.J.P., S.K.); Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada (M.C., P.R., S.T., S.K., A.T.); and Imagia Cybernetics, Montréal, Canada (L.D.J.)
| | - Réal Lapointe
- Department of Radiology (M.C., A.T.) and Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Division (R.L., F.V., S.T.), Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; Montreal Institute for Learning Algorithms (MILA), Montréal, Canada (E.V., C.J.P.); École Polytechnique, Montréal, Canada (E.V., C.J.P., S.K.); Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada (M.C., P.R., S.T., S.K., A.T.); and Imagia Cybernetics, Montréal, Canada (L.D.J.)
| | - Franck Vandenbroucke-Menu
- Department of Radiology (M.C., A.T.) and Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Division (R.L., F.V., S.T.), Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; Montreal Institute for Learning Algorithms (MILA), Montréal, Canada (E.V., C.J.P.); École Polytechnique, Montréal, Canada (E.V., C.J.P., S.K.); Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada (M.C., P.R., S.T., S.K., A.T.); and Imagia Cybernetics, Montréal, Canada (L.D.J.)
| | - Simon Turcotte
- Department of Radiology (M.C., A.T.) and Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Division (R.L., F.V., S.T.), Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; Montreal Institute for Learning Algorithms (MILA), Montréal, Canada (E.V., C.J.P.); École Polytechnique, Montréal, Canada (E.V., C.J.P., S.K.); Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada (M.C., P.R., S.T., S.K., A.T.); and Imagia Cybernetics, Montréal, Canada (L.D.J.)
| | - Samuel Kadoury
- Department of Radiology (M.C., A.T.) and Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Division (R.L., F.V., S.T.), Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; Montreal Institute for Learning Algorithms (MILA), Montréal, Canada (E.V., C.J.P.); École Polytechnique, Montréal, Canada (E.V., C.J.P., S.K.); Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada (M.C., P.R., S.T., S.K., A.T.); and Imagia Cybernetics, Montréal, Canada (L.D.J.)
| | - An Tang
- Department of Radiology (M.C., A.T.) and Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Division (R.L., F.V., S.T.), Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2; Montreal Institute for Learning Algorithms (MILA), Montréal, Canada (E.V., C.J.P.); École Polytechnique, Montréal, Canada (E.V., C.J.P., S.K.); Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada (M.C., P.R., S.T., S.K., A.T.); and Imagia Cybernetics, Montréal, Canada (L.D.J.)
| |
Collapse
|
28
|
Li D, Zhong W, Deh KM, Nguyen TD, Prince MR, Wang Y, Spincemaille P. Discontinuity Preserving Liver MR Registration with 3D Active Contour Motion Segmentation. IEEE Trans Biomed Eng 2018; 66:10.1109/TBME.2018.2880733. [PMID: 30418878 PMCID: PMC6565504 DOI: 10.1109/tbme.2018.2880733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The sliding motion of the liver during respiration violates the homogeneous motion smoothness assumption in conventional non-rigid image registration and commonly results in compromised registration accuracy. This paper presents a novel approach, registration with 3D active contour motion segmentation (RAMS), to improve registration accuracy with discontinuity-aware motion regularization. METHODS A Markov random field-based discrete optimization with dense displacement sampling and self-similarity context metric is used for registration, while a graph cuts-based 3D active contour approach is applied to segment the sliding interface. In the first registration pass, a mask-free L1 regularization on an image-derived minimum spanning tree is performed to allow motion discontinuity. Based on the motion field estimates, a coarse segmentation finds the motion boundaries. Next, based on MR signal intensity, a fine segmentation aligns the motion boundaries with anatomical boundaries. In the second registration pass, smoothness constraints across the segmented sliding interface are removed by masked regularization on a minimum spanning forest and masked interpolation of the motion field. RESULTS For in vivo breath-hold abdominal MRI data, the motion masks calculated by RAMS are highly consistent with manual segmentations in terms of Dice similarity and bidirectional local distance measure. These automatically obtained masks are shown to substantially improve registration accuracy for both the proposed discrete registration as well as conventional continuous non-rigid algorithms. CONCLUSION/SIGNIFICANCE The presented results demonstrated the feasibility of automated segmentation of the respiratory sliding motion interface in liver MR images and the effectiveness of using the derived motion masks to preserve motion discontinuity.
Collapse
Affiliation(s)
- Dongxiao Li
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenxiong Zhong
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kofi M. Deh
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA., Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
29
|
Registration-Based Organ Positioning and Joint Segmentation Method for Liver and Tumor Segmentation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8536854. [PMID: 30345308 PMCID: PMC6174803 DOI: 10.1155/2018/8536854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/18/2018] [Accepted: 09/02/2018] [Indexed: 11/26/2022]
Abstract
The automated segmentation of liver and tumor from CT images is of great importance in medical diagnoses and clinical treatment. However, accurate and automatic segmentation of liver and tumor is generally complicated due to the complex anatomical structures and low contrast. This paper proposes a registration-based organ positioning (ROP) and joint segmentation method for liver and tumor segmentation from CT images. First, a ROP method is developed to obtain liver's bounding box accurately and efficiently. Second, a joint segmentation method based on fuzzy c-means (FCM) and extreme learning machine (ELM) is designed to perform coarse liver segmentation. Third, the coarse segmentation is regarded as the initial contour of active contour model (ACM) to refine liver boundary by considering the topological information. Finally, tumor segmentation is performed using another ELM. Experiments on two datasets demonstrate the performance advantages of our proposed method compared with other related works.
Collapse
|
30
|
A Unified Level Set Framework Combining Hybrid Algorithms for Liver and Liver Tumor Segmentation in CT Images. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3815346. [PMID: 30159326 PMCID: PMC6106976 DOI: 10.1155/2018/3815346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/03/2022]
Abstract
Accurate and reliable segmentation of liver tissue and liver tumor is essential for the follow-up of hepatic diagnosis. In this paper, we present a method for liver segmentation and a method for liver tumor segmentation. The two methods are grounded on a novel unified level set method (LSM), which incorporates both region information and edge information to evolve the contour. This level set framework is more resistant to edge leakage than the single-information driven LSMs for liver segmentation and surpasses many other models for liver tumor segmentation. Specifically, for liver segmentation, a hybrid image preprocessing scheme is used first to convert an input CT image into a binary image. Then with manual setting of a few seed points on the obtained binary image, the following region-growing is performed to extract a rough liver region with no leakage. The unified LSM is proposed at last to refine the segmentation result. For liver tumor segmentation, a local intensity clustering based LSM coupled with hidden Markov random field and expectation-maximization (HMRF-EM) algorithm is applied to construct an enhanced edge indicator for the unified LSM. With this development, expected segmentation results can be obtained via the unified LSM, even for complex tumors. The two methods were evaluated with various datasets containing a local hospital dataset, the public datasets SLIVER07, 3Dircadb, and MIDAS via five measures. The proposed liver segmentation method outperformed other previous semiautomatic methods on the SLIVER07 dataset and required less interaction. The proposed liver tumor segmentation method was also competitive with other state-of-the-art methods in both accuracy and efficiency on the 3Dircadb database. Our methods are evaluated to be accurate and efficient, which allows their adoptions in clinical practice.
Collapse
|
31
|
Lu X, Xie Q, Zha Y, Wang D. Fully automatic liver segmentation combining multi-dimensional graph cut with shape information in 3D CT images. Sci Rep 2018; 8:10700. [PMID: 30013150 PMCID: PMC6048104 DOI: 10.1038/s41598-018-28787-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/22/2018] [Indexed: 11/09/2022] Open
Abstract
Liver segmentation is an essential procedure in computer-assisted surgery, radiotherapy, and volume measurement. It is still a challenging task to extract liver tissue from 3D CT images owing to nearby organs with similar intensities. In this paper, an automatic approach integrating multi-dimensional features into graph cut refinement is developed and validated. Multi-atlas segmentation is utilized to estimate the coarse shape of liver on the target image. The unsigned distance field based on initial shape is then calculated throughout the whole image, which aims at automatic graph construction during refinement procedure. Finally, multi-dimensional features and shape constraints are embedded into graph cut framework. The optimal liver region can be precisely detected with a minimal cost. The proposed technique is evaluated on 40 CT scans, obtained from two public databases Sliver07 and 3Dircadb1. The dataset Sliver07 is considered as the training set for parameter learning. On the dataset 3Dircadb1, the average of volume overlap is up to 94%. The experiment results indicate that the proposed method has ability to reach the desired boundary of liver and has potential value for clinical application.
Collapse
Affiliation(s)
- Xuesong Lu
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Qinlan Xie
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Yunfei Zha
- Department of Radiology, Remin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Defeng Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China. .,School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China. .,Research Centre for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Qin W, Wu J, Han F, Yuan Y, Zhao W, Ibragimov B, Gu J, Xing L. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation. Phys Med Biol 2018; 63:095017. [PMID: 29633960 PMCID: PMC5983385 DOI: 10.1088/1361-6560/aabd19] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Segmentation of liver in abdominal computed tomography (CT) is an important step for radiation therapy planning of hepatocellular carcinoma. Practically, a fully automatic segmentation of liver remains challenging because of low soft tissue contrast between liver and its surrounding organs, and its highly deformable shape. The purpose of this work is to develop a novel superpixel-based and boundary sensitive convolutional neural network (SBBS-CNN) pipeline for automated liver segmentation. The entire CT images were first partitioned into superpixel regions, where nearby pixels with similar CT number were aggregated. Secondly, we converted the conventional binary segmentation into a multinomial classification by labeling the superpixels into three classes: interior liver, liver boundary, and non-liver background. By doing this, the boundary region of the liver was explicitly identified and highlighted for the subsequent classification. Thirdly, we computed an entropy-based saliency map for each CT volume, and leveraged this map to guide the sampling of image patches over the superpixels. In this way, more patches were extracted from informative regions (e.g. the liver boundary with irregular changes) and fewer patches were extracted from homogeneous regions. Finally, deep CNN pipeline was built and trained to predict the probability map of the liver boundary. We tested the proposed algorithm in a cohort of 100 patients. With 10-fold cross validation, the SBBS-CNN achieved mean Dice similarity coefficients of 97.31 ± 0.36% and average symmetric surface distance of 1.77 ± 0.49 mm. Moreover, it showed superior performance in comparison with state-of-art methods, including U-Net, pixel-based CNN, active contour, level-sets and graph-cut algorithms. SBBS-CNN provides an accurate and effective tool for automated liver segmentation. It is also envisioned that the proposed framework is directly applicable in other medical image segmentation scenarios.
Collapse
Affiliation(s)
- Wenjian Qin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China. Medical Physics Division in the Department of Radiation Oncology, Stanford University, Palo Alto, CA 94305, United States of America. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dura E, Domingo J, Göçeri E, Martí-Bonmatí L. A method for liver segmentation in perfusion MR images using probabilistic atlases and viscous reconstruction. Pattern Anal Appl 2017. [DOI: 10.1007/s10044-017-0666-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|