1
|
Kim W, Tuppen CA, Alrashdan F, Singer A, Weirnick R, Robinson JT. Magnetoelectrics enables large power delivery to mm-sized wireless bioelectronics. JOURNAL OF APPLIED PHYSICS 2023; 134:094103. [PMID: 37692260 PMCID: PMC10484622 DOI: 10.1063/5.0156015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
To maximize the capabilities of minimally invasive implantable bioelectronic devices, we must deliver large amounts of power to small implants; however, as devices are made smaller, it becomes more difficult to transfer large amounts of power without a wired connection. Indeed, recent work has explored creative wireless power transfer (WPT) approaches to maximize power density [the amount of power transferred divided by receiver footprint area (length × width)]. Here, we analyzed a model for WPT using magnetoelectric (ME) materials that convert an alternating magnetic field into an alternating voltage. With this model, we identify the parameters that impact WPT efficiency and optimize the power density. We find that improvements in adhesion between the laminated ME layers, clamping, and selection of material thicknesses lead to a power density of 3.1 mW/mm2, which is over four times larger than previously reported for mm-sized wireless bioelectronic implants at a depth of 1 cm or more in tissue. This improved power density allows us to deliver 31 and 56 mW to 10 and 27-mm2 ME receivers, respectively. This total power delivery is over five times larger than similarly sized bioelectronic devices powered by radiofrequency electromagnetic waves, inductive coupling, ultrasound, light, capacitive coupling, or previously reported magnetoelectrics. This increased power density opens the door to more power-intensive bioelectronic applications that have previously been inaccessible using mm-sized battery-free devices.
Collapse
Affiliation(s)
- Wonjune Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - C. Anne Tuppen
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Amanda Singer
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Rachel Weirnick
- Pratt School of Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
2
|
Kim W, Tuppen CA, Alrashdan F, Singer A, Weirnick R, Robinson JT. Magnetoelectrics Enables Large Power Delivery to mm-Sized Wireless Bioelectronics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555944. [PMID: 37732216 PMCID: PMC10508743 DOI: 10.1101/2023.09.01.555944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
To maximize the capabilities of minimally invasive implantable bioelectronic devices, we must deliver large amounts of power to small implants; however, as devices are made smaller, it becomes more difficult to transfer large amounts of power without a wired connection. Indeed, recent work has explored creative wireless power transfer (WPT) approaches to maximize power density (the amount of power transferred divided by receiver footprint area (length × width)). Here, we analyzed a model for WPT using magnetoelectric (ME) materials that convert an alternating magnetic field into an alternating voltage. With this model, we identify the parameters that impact WPT efficiency and optimize the power density. We find that improvements in adhesion between the laminated ME layers, clamping, and selection of material thicknesses lead to a power density of 3.1 mW/mm 2 , which is over 4 times larger than previously reported for mm-sized wireless bioelectronic implants at a depth of 1 cm or more in tissue. This improved power density allows us to deliver 31 mW and 56 mW to 10-mm 2 and 27-mm 2 ME receivers, respectively. This total power delivery is over 5 times larger than similarly sized bioelectronic devices powered by radiofrequency electromagnetic waves, inductive coupling, ultrasound, light, capacitive coupling, or previously reported magnetoelectrics. This increased power density opens the door to more power-intensive bioelectronic applications that have previously been inaccessible using mm-sized battery-free devices.
Collapse
|
3
|
Zhao L, Annayev M, Oralkan O, Jia Y. An Ultrasonic Energy Harvesting IC Providing Adjustable Bias Voltage for Pre-Charged CMUT. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:842-851. [PMID: 35671313 DOI: 10.1109/tbcas.2022.3178581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasonic wireless power transmission (WPT) using pre-charged capacitive micromachined ultrasonic transducers (CMUT) is drawing great attention due to the easy integration of CMUT with CMOS techniques. Here, we present an integrated circuit (IC) that interfaces with a pre-charged CMUT device for ultrasonic energy harvesting. We implemented an adaptive high voltage charge pump (HVCP) in the proposed IC, which features low power, overvoltage stress (OVS) robustness, and a wide output range. The ultrasonic energy harvesting IC is fabricated in the 180 nm HV BCD process and occupies a 2 × 2.5 mm2 silicon area. The adaptive HVCP offers a 2× - 12× voltage conversion ratio (VCR), thereby providing a wide bias voltage range of 4 V-44 V for the pre-charged CMUT. Moreover, a VCR tunning finite state machine (FSM) implemented in the proposed IC can dynamically adjust the VCR to stabilize the HVCP output (i.e., the pre-charged CMUT bias voltage) to a target voltage in a closed-loop manner. Such a closed-loop control mechanism improves the tolerance of the proposed IC to the received power variation caused by misalignments, amount of transmitted power change, and/or load variation. Besides, the proposed ultrasonic energy harvesting IC has an average power consumption of 35 μW-554 μW corresponding to the HVCP output from 4 V-44 V. The CMUT device with a local surface acoustic intensity of 3.78 mW/mm2, which is well below the FDA limit for power flux (7.2 mW/mm2), can deliver sufficient power to the IC.
Collapse
|
4
|
Chang Y, Jang J, Cho J, Lee J, Son Y, Park S, Kim C. Seamless Capacitive Body Channel Wireless Power Transmission Toward Freely Moving Multiple Animals in an Animal Cage. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:714-725. [PMID: 35976817 DOI: 10.1109/tbcas.2022.3199455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unstable wireless power transmission toward multiple living animals in an animal cage is one of the significant barriers to performing long-term and real-time neural monitoring in preclinical research. Here, seamless capacitive body channel (SCB) wireless power transmission (WPT) along with power management integrated circuit (PMIC) is designed using a standard 65 nm CMOS process. The SCB WPT enables stable wireless power transmission toward multiple 35 mm×20 mm×2 mm sized receivers (RXs) attached to freely moving animals in a 600 mm×600 mm×120 mm sized animal cage. By utilizing fringe-field capacitance and a body channel for wireless power link between the cage and RXs, the maximum difference in all measured power efficiencies in diverse scenarios is only 6.66 % with a 20 mW load. Even with a 90 ° RX rotation against the cage, power efficiency marks 17.76 %. Furthermore, an in-vivo experiment conducted with three untethered rats demonstrates the capability of continuous long-term power delivery in practical situations.
Collapse
|
5
|
Alignment-Free Wireless Charging of Smart Garments with Embroidered Coils. SENSORS 2021; 21:s21217372. [PMID: 34770679 PMCID: PMC8588031 DOI: 10.3390/s21217372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022]
Abstract
Wireless power transfer (WPT) technologies have been adopted by many products. The capability of charging multiple devices and the design flexibility of charging coils make WPT a good solution for charging smart garments. The use of an embroidered receiver (RX) coil makes the smart garment more breathable and comfortable than using a flexible printed circuit board (FPCB). In order to charge smart garments as part of normal daily routines, two types of wireless-charging systems operating at 400 kHz have been designed. The one-to-one hanger system is desired to have a constant charging current despite misalignment so that users do not need to pay much attention when they hang the garment. For the one-to-multiple-drawer system, the power delivery ability must not change with multiple garments. Additionally, the system should be able to charge folded garments in most of the folding scenarios. This paper analyses the two WPT systems for charging smart garments and provides design approaches to meet the abovementioned goals. The wireless-charging hanger is able to charge a smart garment over a coupling variance kmaxkmin=2 with only 21% charging current variation. The wireless-charging drawer is able to charge a smart garment with at least 20 mA under most folding scenarios and three garments with stable power delivery ability.
Collapse
|
6
|
Li J, Liu X, Mao W, Chen T, Yu H. Advances in Neural Recording and Stimulation Integrated Circuits. Front Neurosci 2021; 15:663204. [PMID: 34421507 PMCID: PMC8377741 DOI: 10.3389/fnins.2021.663204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
In the past few decades, driven by the increasing demands in the biomedical field aiming to cure neurological diseases and improve the quality of daily lives of the patients, researchers began to take advantage of the semiconductor technology to develop miniaturized and power-efficient chips for implantable applications. The emergence of the integrated circuits for neural prosthesis improves the treatment process of epilepsy, hearing loss, retinal damage, and other neurological diseases, which brings benefits to many patients. However, considering the safety and accuracy in the neural prosthesis process, there are many research directions. In the process of chip design, designers need to carefully analyze various parameters, and investigate different design techniques. This article presents the advances in neural recording and stimulation integrated circuits, including (1) a brief introduction of the basics of neural prosthesis circuits and the repair process in the bionic neural link, (2) a systematic introduction of the basic architecture and the latest technology of neural recording and stimulation integrated circuits, (3) a summary of the key issues of neural recording and stimulation integrated circuits, and (4) a discussion about the considerations of neural recording and stimulation circuit architecture selection and a discussion of future trends. The overview would help the designers to understand the latest performances in many aspects and to meet the design requirements better.
Collapse
Affiliation(s)
- Juzhe Li
- College of Microelectronics, Beijing University of Technology, Beijing, China
| | - Xu Liu
- College of Microelectronics, Beijing University of Technology, Beijing, China
| | - Wei Mao
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
| | - Tao Chen
- Advanced Photonics Institute, Beijing University of Technology, Beijing, China
| | - Hao Yu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Han G, Liu Y, Li Q, Xing Z, Zhang Z. A 6.78-MHz distance-insensitive wireless power transfer system with a dual-coupled L-type matching network. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:054705. [PMID: 34243234 DOI: 10.1063/5.0044619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
A 6.78-MHz wireless power transfer (WPT) system can achieve a long transmission distance, which is based on magnetically coupled resonant technology. Due to its high quality factor coils, the system performance is greatly affected by position displacement. In this paper, a weakly coupled and distance-insensitive WPT system with a dual-coupled L-type matching network was proposed. To improve displacement tolerance, the proposed system used a dual mutual inductance matching network, which did not require feedback to change capacitance or inductance dynamically. To remain lightweight, printed multi-coils without ferrites were used. To obtain a higher efficiency over a weakly coupled distance, a series of parameters were optimized, i.e., the optimal dimension, the matching distance, and the real center. To verify the output performance in X/Y/Z-axis displacements, a prototype with a maximum output power of 50 W was created, and a DC-DC efficiency of 75%-81% was achieved in a Z-axis displacement of ±15 mm and in an X/Y-axis displacement of ±20 mm.
Collapse
Affiliation(s)
- Gao Han
- School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China
| | - Yanming Liu
- School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China
| | - Qian Li
- School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China
| | - Zikang Xing
- School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China
| | - Zheng Zhang
- School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China
| |
Collapse
|
8
|
Cai L, Gutruf P. Soft, Wireless and subdermally implantable recording and neuromodulation tools. J Neural Eng 2021; 18. [PMID: 33607646 DOI: 10.1088/1741-2552/abe805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Progress in understanding neuronal interaction and circuit behavior of the central and peripheral nervous system strongly relies on the advancement of tools that record and stimulate with high fidelity and specificity. Currently, devices used in exploratory research predominantly utilize cables or tethers to provide pathways for power supply, data communication, stimulus delivery and recording, which constrains the scope and use of such devices. In particular, the tethered connection, mechanical mismatch to surrounding soft tissues and bones frustrate the interface leading to irritation and limitation of motion of the subject, which in the case of fundamental and preclinical studies, impacts naturalistic behaviors of animals and precludes the use in experiments involving social interaction and ethologically relevant three-dimensional environments, limiting the use of current tools to mostly rodents and exclude species such as birds and fish. This review explores the current state-of-the-art in wireless, subdermally implantable tools that quantitively expand capabilities in analysis and perturbation of the central and peripheral nervous system by removing tethers and externalized features of implantable neuromodulation and recording tools. Specifically, the review explores power harvesting strategies, wireless communication schemes, and soft materials and mechanics that enable the creation of such devices and discuss their capabilities in the context of freely-behaving subjects. Highlights of this class of devices includes wireless battery-free and fully implantable operation with capabilities in cell specific recording, multimodal neural stimulation and electrical, optogenetic and pharmacological neuromodulation capabilities. We conclude with discussion on translation of such technologies which promises routes towards broad dissemination.
Collapse
Affiliation(s)
- Le Cai
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| | - Philipp Gutruf
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| |
Collapse
|
9
|
Jia Y, Guler U, Lai YP, Gong Y, Weber A, Li W, Ghovanloo M. A Trimodal Wireless Implantable Neural Interface System-on-Chip. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1207-1217. [PMID: 33180731 PMCID: PMC7814662 DOI: 10.1109/tbcas.2020.3037452] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A wireless and battery-less trimodal neural interface system-on-chip (SoC), capable of 16-ch neural recording, 8-ch electrical stimulation, and 16-ch optical stimulation, all integrated on a 5 × 3 mm2 chip fabricated in 0.35-μm standard CMOS process. The trimodal SoC is designed to be inductively powered and communicated. The downlink data telemetry utilizes on-off keying pulse-position modulation (OOK-PPM) of the power carrier to deliver configuration and control commands at 50 kbps. The analog front-end (AFE) provides adjustable mid-band gain of 55-70 dB, low/high cut-off frequencies of 1-100 Hz/10 kHz, and input-referred noise of 3.46 μVrms within 1 Hz-50 kHz band. AFE outputs of every two-channel are digitized by a 50 kS/s 10-bit SAR-ADC, and multiplexed together to form a 6.78 Mbps data stream to be sent out by OOK modulating a 434 MHz RF carrier through a power amplifier (PA) and 6 cm monopole antenna, which form the uplink data telemetry. Optical stimulation has a switched-capacitor based stimulation (SCS) architecture, which can sequentially charge four storage capacitor banks up to 4 V and discharge them in selected μLEDs at instantaneous current levels of up to 24.8 mA on demand. Electrical stimulation is supported by four independently driven stimulating sites at 5-bit controllable current levels in ±(25-775) μA range, while active/passive charge balancing circuits ensure safety. In vivo testing was conducted on four anesthetized rats to verify the functionality of the trimodal SoC.
Collapse
|
10
|
A mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device. MICROMACHINES 2020; 11:mi11060621. [PMID: 32630557 PMCID: PMC7345121 DOI: 10.3390/mi11060621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Towards a distributed neural interface, consisting of multiple miniaturized implants, for interfacing with large-scale neuronal ensembles over large brain areas, this paper presents a mm-sized free-floating wirelessly-powered implantable opto-electro stimulation (FF-WIOS2) device equipped with 16-ch optical and 4-ch electrical stimulation for reconfigurable neuromodulation. The FF-WIOS2 is wirelessly powered and controlled through a 3-coil inductive link at 60 MHz. The FF-WIOS2 receives stimulation parameters via on-off keying (OOK) while sending its rectified voltage information to an external headstage for closed-loop power control (CLPC) via load-shift-keying (LSK). The FF-WIOS2 system-on-chip (SoC), fabricated in a 0.35-µm standard CMOS process, employs switched-capacitor-based stimulation (SCS) architecture to provide large instantaneous current needed for surpassing the optical stimulation threshold. The SCS charger charges an off-chip capacitor up to 5 V at 37% efficiency. At the onset of stimulation, the capacitor delivers charge with peak current in 1.7–12 mA range to a micro-LED (µLED) array for optical stimulation or 100–700 μA range to a micro-electrode array (MEA) for biphasic electrical stimulation. Active and passive charge balancing circuits are activated in electrical stimulation mode to ensure stimulation safety. In vivo experiments conducted on three anesthetized rats verified the efficacy of the two stimulation mechanisms. The proposed FF-WIOS2 is potentially a reconfigurable tool for performing untethered neuromodulation.
Collapse
|
11
|
Khan SR, Pavuluri SK, Cummins G, Desmulliez MPY. Wireless Power Transfer Techniques for Implantable Medical Devices: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3487. [PMID: 32575663 PMCID: PMC7349694 DOI: 10.3390/s20123487] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/01/2022]
Abstract
Wireless power transfer (WPT) systems have become increasingly suitable solutions for the electrical powering of advanced multifunctional micro-electronic devices such as those found in current biomedical implants. The design and implementation of high power transfer efficiency WPT systems are, however, challenging. The size of the WPT system, the separation distance between the outside environment and location of the implanted medical device inside the body, the operating frequency and tissue safety due to power dissipation are key parameters to consider in the design of WPT systems. This article provides a systematic review of the wide range of WPT systems that have been investigated over the last two decades to improve overall system performance. The various strategies implemented to transfer wireless power in implantable medical devices (IMDs) were reviewed, which includes capacitive coupling, inductive coupling, magnetic resonance coupling and, more recently, acoustic and optical powering methods. The strengths and limitations of all these techniques are benchmarked against each other and particular emphasis is placed on comparing the implanted receiver size, the WPT distance, power transfer efficiency and tissue safety presented by the resulting systems. Necessary improvements and trends of each WPT techniques are also indicated per specific IMD.
Collapse
Affiliation(s)
- Sadeque Reza Khan
- Institute of Sensors, Signals, and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (S.K.P.); (M.P.Y.D.)
| | - Sumanth Kumar Pavuluri
- Institute of Sensors, Signals, and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (S.K.P.); (M.P.Y.D.)
| | - Gerard Cummins
- School of Engineering, University of Birmingham, Birmingham B15 2TT, UK;
| | - Marc P. Y. Desmulliez
- Institute of Sensors, Signals, and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (S.K.P.); (M.P.Y.D.)
| |
Collapse
|
12
|
Mirbozorgi SA, Jia Y, Zhang P, Ghovanloo M. Toward a High-Throughput Wireless Smart Arena for Behavioral Experiments on Small Animals. IEEE Trans Biomed Eng 2019; 67:2359-2369. [PMID: 31870973 DOI: 10.1109/tbme.2019.2961297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This work presents a high-throughput and scalable wirelessly-powered smart arena for behavioral experiments made of multiple EnerCage Homecage (HC) systems, operating in parallel in a way that they can fit in standard racks that are commonly used in animal facilities. The proposed system, which is referred to as the multi-EnerCage-HC (mEHC), increases the volume of data that can be collected from more animal subjects, while lowering the cost and duration of experiments as well as stress-induced bias by minimizing the involvement of human operators. Thus improving the quality, reproducibility, and statistical power of experiment outcomes, while saving precious lab space. The system is equipped with an auto-tuning mechanism to compensate for the resonance frequency shifts caused by the dynamic nature of the mutual inductance between adjacent homecages. A functional prototype of the mEHC system has been implemented with 7 units and analyzed for theoretical design considerations that would minimize the effects of interference and resonance frequency bifurcation. Experiment results demonstrate robust wireless power and data transmissions capabilities of this system within the noisy lab environment.
Collapse
|
13
|
Jia Y, Lee B, Kong F, Zeng Z, Connolly M, Mahmoudi B, Ghovanloo M. A Software-Defined Radio Receiver for Wireless Recording From Freely Behaving Animals. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1645-1654. [PMID: 31647447 PMCID: PMC6990704 DOI: 10.1109/tbcas.2019.2949233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To eliminate tethering effects on the small animals' behavior during electrophysiology experiments, such as neural interfacing, a robust and wideband wireless data link is needed for communicating with the implanted sensing elements without blind spots. We present a software-defined radio (SDR) based scalable data acquisition system, which can be programmed to provide coverage over standard-sized or customized experimental arenas. The incoming RF signal with the highest power among SDRs is selected in real-time to prevent data loss in the presence of spatial and angular misalignments between the transmitter (Tx) and receiver (Rx) antennas. A 32-channel wireless neural recording system-on-a-chip (SoC), known as WINeRS-8, is embedded in a headstage and transmits digitalized raw neural signals, which are sampled at 25 kHz/ch, at 9 Mbps via on-off keying (OOK) of a 434 MHz RF carrier. Measurement results show that the dual-SDR Rx system reduces the packet loss down to 0.12%, on average, by eliminating the blind spots caused by the moving Tx directionality. The system operation is verified in vivo on a freely behaving rat and compared with a commercial hardwired system.
Collapse
|
14
|
Khan SR, Desmulliez MPY. Towards a Miniaturized 3D Receiver WPT System for Capsule Endoscopy. MICROMACHINES 2019; 10:mi10080545. [PMID: 31426541 PMCID: PMC6724057 DOI: 10.3390/mi10080545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
The optimization, manufacturing, and performance characterization of a miniaturized 3D receiver (RX)-based wireless power transfer (WPT) system fed by a multi-transmitter (multi-TX) array is presented in this study for applications in capsule endoscopy (CE). The 200 mm outer diameter, 35 μm thick printed spiral TX coils of 2.8 g weight, is manufactured on a flexible substrate to enable bendability and portability of the transmitters by the patients. The 8.9 mm diameter—4.8 mm long, miniaturized 3D RX—includes a 4 mm diameter ferrite road to increase power transfer efficiency (PTE) and is dimensionally compatible for insertion into current endoscopic capsules. The multi-TX is activated using a custom-made high-efficiency dual class-E power amplifier operated in subnominal condition. A resulting link and system PTE of 1% and 0.7%, respectively, inside a phantom tissue is demonstrated for the proposed 3D WPT system. The specific absorption rate (SAR) is simulated using the HFSSTM software (15.0) at 0.66 W/kg at 1 MHz operation frequency, which is below the IEEE guidelines for tissue safety. The maximum variation in temperature was also measured as 1.9 °C for the typical duration of the capsule’s travel in the gastrointestinal tract to demonstrate the patients’ tissues safety.
Collapse
Affiliation(s)
- Sadeque Reza Khan
- Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK.
| | - Marc P Y Desmulliez
- Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| |
Collapse
|
15
|
Jia Y, Mirbozorgi SA, Zhang P, Inan OT, Li W, Ghovanloo M. A Dual-Band Wireless Power Transmission System for Evaluating mm-Sized Implants. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:595-607. [PMID: 31071052 PMCID: PMC6728165 DOI: 10.1109/tbcas.2019.2915649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Distributed neural interfaces made of many mm-sized implantable medical devices (IMDs) are poised to play a key role in future brain-computer interfaces because of less damage to the surrounding tissue. Evaluating them wirelessly at preclinical stage (e.g., in a rodent model), however, is a major challenge due to weak coupling and significant losses, resulting in limited power delivery to the IMD within a nominal experimental arena, like a homecage, without surpassing the specific absorption rate limit. To address this problem, we present a dual-band EnerCage system with two multi-coil inductive links, which first deliver power at 13.56 MHz from the EnerCage (46 × 24 × 20 cm3) to a headstage (18 × 18 × 15 mm3, 4.8 g) that is carried by the animal via a 4-coil inductive link. Then, a 60 MHz 3-coil inductive link from the headstage powers up the small IMD (2.5 × 2.5 × 1.5 mm3, 15 mg), which in this case is a free floating, wirelessly powered, implantable optical stimulator (FF-WIOS). The power transfer efficiency and power delivered to the load (PDL) from EnerCage to the headstage at 7 cm height were 14.9%-22.7% and 122 mW; and from headstage to FF-WIOS at 5 mm depth were 18% and 2.7 mW, respectively. Bidirectional data connectivity between EnerCage-headstage was established via bluetooth low energy. Between headstage and FF-WIOS, on-off keying and load-shift-keying were used for downlink and uplink data, respectively. Moreover, a closed-loop power controller stabilized PDL to both the headstage and the FF-WIOS against misalignments.
Collapse
|
16
|
Jia Y, Mirbozorgi SA, Lee B, Khan W, Madi F, Inan OT, Weber A, Li W, Ghovanloo M. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:608-618. [PMID: 31135371 PMCID: PMC6707363 DOI: 10.1109/tbcas.2019.2918761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.
Collapse
|
17
|
Lee B, Jia Y, Mirbozorgi SA, Connolly M, Tong X, Zeng Z, Mahmoudi B, Ghovanloo M. An Inductively-Powered Wireless Neural Recording and Stimulation System for Freely-Behaving Animals. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:413-424. [PMID: 30624226 PMCID: PMC6510586 DOI: 10.1109/tbcas.2019.2891303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An inductively-powered wireless integrated neural recording and stimulation (WINeRS-8) system-on-a-chip (SoC) that is compatible with the EnerCage-HC2 for wireless/battery-less operation has been presented for neuroscience experiments on freely behaving animals. WINeRS-8 includes a 32-ch recording analog front end, a 4-ch current-controlled stimulator, and a 434 MHz on - off keying data link to an external software- defined radio wideband receiver (Rx). The headstage also has a bluetooth low energy link for controlling the SoC. WINeRS-8/EnerCage-HC2 systems form a bidirectional wireless and battery-less neural interface within a standard homecage, which can support longitudinal experiments in an enriched environment. Both systems were verified in vivo on rat animal model, and the recorded signals were compared with hardwired and battery-powered recording results. Realtime stimulation and recording verified the system's potential for bidirectional neural interfacing within the homecage, while continuously delivering 35 mW to the hybrid WINeRS-8 headstage over an unlimited period.
Collapse
Affiliation(s)
- Byunghun Lee
- School of Electrical Engineering, Incheon National University, South Korea ()
| | - Yaoyao Jia
- GT- Bionics lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA ()
| | - S. Abdollah Mirbozorgi
- GT- Bionics lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA ()
| | - Mark Connolly
- Department of Physiology, Emory University, Atlanta, GA 30329, USA
| | - Xingyuan Tong
- School of Electronics Engineering, Xi’an University of Posts and Telecommunications, Xi’an, 710121, China
| | | | - Babak Mahmoudi
- Department of Physiology, Emory University, Atlanta, GA 30329, USA
| | - Maysam Ghovanloo
- GT- Bionics lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA ()
| |
Collapse
|
18
|
Evaluation of Specific Absorption Rate in Three-Layered Tissue Model at 13.56 MHz and 40.68 MHz for Inductively Powered Biomedical Implants. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents an optimized 3-coil inductive wireless power transfer (WPT) system at 13.56 MHz and 40.68 MHz to show and compare the specific absorption rate (SAR) effects on human tissue. This work also substantiates the effects of perfect alignment, lateral and/or angular misalignments on the power transfer efficiency (PTE) of the proposed WPT system. Additionally, the impacts of different tissue composition, input power and coil shape on the SAR are analyzed. The distance between the external and implantable coils is 10 mm. The results have been verified through simulations and measurements. The simulated results show that the SAR of the system at 40.68 MHz had crossed the limit designated by the Federal Communications Commission and hence, it is unsafe and causes tissue damage. Measurement results of the system in air medium show that the optimized printed circuit board coils at 13.56 MHz achieved a PTE of 41.7% whereas PTE waned to 18.2% and 15.4% at 10 mm of lateral misalignment and 60° of angular misalignment respectively. The PTE of a combination of 10 mm lateral misalignment and 60° angular misalignment is 21%. To analyze in a real-environment, a boneless pork sample with 10 mm of thickness is placed as a medium between the external and implantable coils. At perfect alignment, the PTE through pork sample is 30.8%. A RF power generator operating at 13.56 MHz provides 1 W input power to the external coil and the power delivered to load through the air and tissue mediums are 347 mW and 266 mW respectively.
Collapse
|
19
|
Jia Y, Khan W, Lee B, Fan B, Madi F, Weber A, Li W, Ghovanloo M. Wireless opto-electro neural interface for experiments with small freely behaving animals. J Neural Eng 2018; 15:046032. [PMID: 29799437 PMCID: PMC6091646 DOI: 10.1088/1741-2552/aac810] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We have developed a wireless opto-electro interface (WOENI) device, which combines electrocorticogram (ECoG) recording and optical stimulation for bi-directional neuromodulation on small, freely behaving animals, such as rodents. APPROACH The device is comprised of two components, a detachable headstage and an implantable polyimide-based substrate. The headstage establishes a bluetooth low energy (BLE) bi-directional data communication with an external custom-designed USB dongle for receiving user commands and optogenetic stimulation patterns, and sending digitalized ECoG data. MAIN RESULTS The functionality and stability of the device were evaluated in vivo on freely behaving rats. When the animal received optical stimulation on the primary visual cortex (V1) and visual stimulation via eyes, spontaneous changes in ECoG signals were recorded from both left and right V1 during four consecutive experiments with 7 d intervals over a time span of 21 d following device implantation. Immunostained tissue analyses showed results consistent with ECoG analyses, validating the efficacy of optical stimulation to upregulate the activity of cortical neurons expressing ChR2. SIGNIFICANCE The proposed WOENI device is potentially a versatile tool in the studies that involve long-term optogenetic neuromodulation.
Collapse
Affiliation(s)
- Yaoyao Jia
- GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee B, Koripalli MK, Jia Y, Acosta J, Sendi MSE, Choi Y, Ghovanloo M. An Implantable Peripheral Nerve Recording and Stimulation System for Experiments on Freely Moving Animal Subjects. Sci Rep 2018; 8:6115. [PMID: 29666407 PMCID: PMC5904113 DOI: 10.1038/s41598-018-24465-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/26/2018] [Indexed: 01/24/2023] Open
Abstract
A new study with rat sciatic nerve model for peripheral nerve interfacing is presented using a fully-implanted inductively-powered recording and stimulation system in a wirelessly-powered standard homecage that allows animal subjects move freely within the homecage. The Wireless Implantable Neural Recording and Stimulation (WINeRS) system offers 32-channel peripheral nerve recording and 4-channel current-controlled stimulation capabilities in a 3 × 1.5 × 0.5 cm3 package. A bi-directional data link is established by on-off keying pulse-position modulation (OOK-PPM) in near field for narrow-band downlink and 433 MHz OOK for wideband uplink. An external wideband receiver is designed by adopting a commercial software defined radio (SDR) for a robust wideband data acquisition on a PC. The WINeRS-8 prototypes in two forms of battery-powered headstage and wirelessly-powered implant are validated in vivo, and compared with a commercial system. In the animal study, evoked compound action potentials were recorded to verify the stimulation and recording capabilities of the WINeRS-8 system with 32-ch penetrating and 4-ch cuff electrodes on the sciatic nerve of awake freely-behaving rats. Compared to the conventional battery-powered system, WINeRS can be used in closed-loop recording and stimulation experiments over extended periods without adding the burden of carrying batteries on the animal subject or interrupting the experiment.
Collapse
Affiliation(s)
- Byunghun Lee
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA.,Incheon National University, Department of Electrical Engineering, Incheon, 22012, South Korea
| | - Mukhesh K Koripalli
- University of Texas, Rio Grande Valley, Department of Electrical Engineering, Edinburg, 78539, USA
| | - Yaoyao Jia
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA
| | - Joshua Acosta
- University of Texas, Rio Grande Valley, Department of Electrical Engineering, Edinburg, 78539, USA
| | - M S E Sendi
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA
| | - Yoonsu Choi
- University of Texas, Rio Grande Valley, Department of Electrical Engineering, Edinburg, 78539, USA
| | - Maysam Ghovanloo
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA.
| |
Collapse
|
21
|
Wang Z, Mirbozorgi SA, Ghovanloo M. An automated behavior analysis system for freely moving rodents using depth image. Med Biol Eng Comput 2018; 56:1807-1821. [PMID: 29560548 DOI: 10.1007/s11517-018-1816-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/08/2018] [Indexed: 11/26/2022]
Abstract
A rodent behavior analysis system is presented, capable of automated tracking, pose estimation, and recognition of nine behaviors in freely moving animals. The system tracks three key points on the rodent body (nose, center of body, and base of tail) to estimate its pose and head rotation angle in real time. A support vector machine (SVM)-based model, including label optimization steps, is trained to classify on a frame-by-frame basis: resting, walking, bending, grooming, sniffing, rearing supported, rearing unsupported, micro-movements, and "other" behaviors. Compared to conventional red-green-blue (RGB) camera-based methods, the proposed system operates on 3D depth images provided by the Kinect infrared (IR) camera, enabling stable performance regardless of lighting conditions and animal color contrast with the background. This is particularly beneficial for monitoring nocturnal animals' behavior. 3D features are designed to be extracted directly from the depth stream and combined with contour-based 2D features to further improve recognition accuracies. The system is validated on three freely behaving rats for 168 min in total. The behavior recognition model achieved a cross-validation accuracy of 86.8% on the rat used for training and accuracies of 82.1 and 83% on the other two "testing" rats. The automated head angle estimation aided by behavior recognition resulted in 0.76 correlation with human expert annotation. Graphical abstract Top view of a rat freely behaving in a standard homecage, captured by Kinect-v2 sensors. The depth image is used for constructing a 3D topography of the animal for pose estimation, behavior recognition, and head angle calculation. Results of the processed data are displayed on the user interface in various forms.
Collapse
Affiliation(s)
- Zheyuan Wang
- GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| | - S Abdollah Mirbozorgi
- GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| | - Maysam Ghovanloo
- GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA.
| |
Collapse
|