1
|
Mayorca-Torres D, León-Salas AJ, Peluffo-Ordoñez DH. Systematic review of computational techniques, dataset utilization, and feature extraction in electrocardiographic imaging. Med Biol Eng Comput 2025:10.1007/s11517-024-03264-z. [PMID: 39779645 DOI: 10.1007/s11517-024-03264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to analyze computational techniques in ECG imaging (ECGI) reconstruction, focusing on dataset identification, problem-solving, and feature extraction. We employed a PRISMA approach to review studies from Scopus and Web of Science, applying Cochrane principles to assess risk of bias. The selection was limited to English peer-reviewed papers published from 2010 to 2023, excluding studies that lacked computational technique descriptions. From 99 reviewed papers, trends show a preference for traditional methods like the boundary element and Tikhonov methods, alongside a rising use of advanced technologies including hybrid techniques and deep learning. These advancements have enhanced cardiac diagnosis and treatment precision. Our findings underscore the need for robust data utilization and innovative computational integration in ECGI, highlighting promising areas for future research and advances. This shift toward tailored cardiac care suggests significant progress in diagnostic and treatment methods.
Collapse
Affiliation(s)
- Dagoberto Mayorca-Torres
- Department of Software Systems and Programming Languages, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain.
- Faculty of Engineering, Universidad Mariana, Cl 18 34 - 104, Pasto, 52001, Colombia.
| | - Alejandro J León-Salas
- Department of Software Systems and Programming Languages, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain
| | - Diego H Peluffo-Ordoñez
- Faculty of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto, 520001, Colombia
- College of Computing, Mohammed VI Polytechnic University, Lot 660, Ben Guerir, 43150, Morocco
- SDAS Research Group, Ben Guerir, 43150, Morocco
| |
Collapse
|
2
|
Trayanova NA, Lyon A, Shade J, Heijman J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiol Rev 2024; 104:1265-1333. [PMID: 38153307 PMCID: PMC11381036 DOI: 10.1152/physrev.00017.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julie Shade
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Riaz Gondal MU, Atta Mehdi H, Khenhrani RR, Kumari N, Ali MF, Kumar S, Faraz M, Malik J. Role of Machine Learning and Artificial Intelligence in Arrhythmias and Electrophysiology. Cardiol Rev 2024:00045415-990000000-00270. [PMID: 38761137 DOI: 10.1097/crd.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Machine learning (ML), a subset of artificial intelligence (AI) centered on machines learning from extensive datasets, stands at the forefront of a technological revolution shaping various facets of society. Cardiovascular medicine has emerged as a key domain for ML applications, with considerable efforts to integrate these innovations into routine clinical practice. Within cardiac electrophysiology, ML applications, especially in the automated interpretation of electrocardiograms, have garnered substantial attention in existing literature. However, less recognized are the diverse applications of ML in cardiac electrophysiology and arrhythmias, spanning basic science research on arrhythmia mechanisms, both experimental and computational, as well as contributions to enhanced techniques for mapping cardiac electrical function and translational research related to arrhythmia management. This comprehensive review delves into various ML applications within the scope of this journal, organized into 3 parts. The first section provides a fundamental understanding of general ML principles and methodologies, serving as a foundational resource for readers interested in exploring ML applications in arrhythmia research. The second part offers an in-depth review of studies in arrhythmia and electrophysiology that leverage ML methodologies, showcasing the broad potential of ML approaches. Each subject is thoroughly outlined, accompanied by a review of notable ML research advancements. Finally, the review delves into the primary challenges and future perspectives surrounding ML-driven cardiac electrophysiology and arrhythmias research.
Collapse
Affiliation(s)
| | - Hassan Atta Mehdi
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Raja Ram Khenhrani
- Department of Medicine, Internal Medicine Fellow, Shaheed Mohtarma Benazir Bhutto Medical College and Lyari General Hospital, Karachi, Pakistan
| | - Neha Kumari
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Muhammad Faizan Ali
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Sooraj Kumar
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan; and
| | - Maria Faraz
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Rawalpindi, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Rawalpindi, Pakistan
| |
Collapse
|
4
|
Pilia N, Schuler S, Rees M, Moik G, Potyagaylo D, Dössel O, Loewe A. Non-invasive localization of the ventricular excitation origin without patient-specific geometries using deep learning. Artif Intell Med 2023; 143:102619. [PMID: 37673581 DOI: 10.1016/j.artmed.2023.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 09/08/2023]
Abstract
Cardiovascular diseases account for 17 million deaths per year worldwide. Of these, 25% are categorized as sudden cardiac death, which can be related to ventricular tachycardia (VT). This type of arrhythmia can be caused by focal activation sources outside the sinus node. Catheter ablation of these foci is a curative treatment in order to inactivate the abnormal triggering activity. However, the localization procedure is usually time-consuming and requires an invasive procedure in the catheter lab. To facilitate and expedite the treatment, we present two novel localization support techniques based on convolutional neural networks (CNNs) that address these clinical needs. In contrast to existing methods, our approaches were designed to be independent of the patient-specific geometry and directly applicable to surface ECG signals, while also delivering a binary transmural position. Moreover, one of the method's outputs can be interpreted as several ranked solutions. The CNNs were trained on a dataset containing only simulated data and evaluated both on simulated test data and clinical data. On a novel large and open simulated dataset, the median test error was below 3 mm. The median localization error on the unseen clinical data ranged from 32 mm to 41 mm without optimizing the pre-processing and CNN to the clinical data. Interpreting the output of one of the approaches as ranked solutions, the best median error of the top-3 solutions decreased to 20 mm on the clinical data. The transmural position was correctly detected in up to 82% of all clinical cases. These results demonstrate a proof of principle to utilize CNNs to localize the activation source without the intrinsic need for patient-specific geometrical information. Furthermore, providing multiple solutions can assist physicians in identifying the true activation source amongst more than one possible location. With further optimization to clinical data, these methods have high potential to accelerate clinical interventions, replace certain steps within these procedures and consequently reduce procedural risk and improve VT patient outcomes.
Collapse
Affiliation(s)
- Nicolas Pilia
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Steffen Schuler
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Maike Rees
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gerald Moik
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
5
|
Jiang X, Toloubidokhti M, Bergquist J, Zenger B, Good WW, MacLeod RS, Wang L. Improving Generalization by Learning Geometry-Dependent and Physics-Based Reconstruction of Image Sequences. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:403-415. [PMID: 36306312 PMCID: PMC10079565 DOI: 10.1109/tmi.2022.3218170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deep neural networks have shown promise in image reconstruction tasks, although often on the premise of large amounts of training data. In this paper, we present a new approach to exploit the geometry and physics underlying electrocardiographic imaging (ECGI) to learn efficiently with a relatively small dataset. We first introduce a non-Euclidean encoding-decoding network that allows us to describe the unknown and measurement variables over their respective geometrical domains. We then explicitly model the geometry-dependent physics in between the two domains via a bipartite graph over their graphical embeddings. We applied the resulting network to reconstruct electrical activity on the heart surface from body-surface potentials. In a series of generalization tasks with increasing difficulty, we demonstrated the improved ability of the network to generalize across geometrical changes underlying the data using less than 10% of training data and fewer variations of training geometry in comparison to its Euclidean alternatives. In both simulation and real-data experiments, we further demonstrated its ability to be quickly fine-tuned to new geometry using a modest amount of data.
Collapse
|
6
|
Bergquist J, Rupp L, Zenger B, Brundage J, Busatto A, MacLeod RS. Body Surface Potential Mapping: Contemporary Applications and Future Perspectives. HEARTS 2021; 2:514-542. [PMID: 35665072 PMCID: PMC9164986 DOI: 10.3390/hearts2040040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Body surface potential mapping (BSPM) is a noninvasive modality to assess cardiac bioelectric activity with a rich history of practical applications for both research and clinical investigation. BSPM provides comprehensive acquisition of bioelectric signals across the entire thorax, allowing for more complex and extensive analysis than the standard electrocardiogram (ECG). Despite its advantages, BSPM is not a common clinical tool. BSPM does, however, serve as a valuable research tool and as an input for other modes of analysis such as electrocardiographic imaging and, more recently, machine learning and artificial intelligence. In this report, we examine contemporary uses of BSPM, and provide an assessment of its future prospects in both clinical and research environments. We assess the state of the art of BSPM implementations and explore modern applications of advanced modeling and statistical analysis of BSPM data. We predict that BSPM will continue to be a valuable research tool, and will find clinical utility at the intersection of computational modeling approaches and artificial intelligence.
Collapse
Affiliation(s)
- Jake Bergquist
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lindsay Rupp
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian Zenger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - James Brundage
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Busatto
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rob S. MacLeod
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Zaman MS, Dhamala J, Bajracharya P, Sapp JL, Horácek BM, Wu KC, Trayanova NA, Wang L. Fast Posterior Estimation of Cardiac Electrophysiological Model Parameters via Bayesian Active Learning. Front Physiol 2021; 12:740306. [PMID: 34759835 PMCID: PMC8573318 DOI: 10.3389/fphys.2021.740306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Probabilistic estimation of cardiac electrophysiological model parameters serves an important step toward model personalization and uncertain quantification. The expensive computation associated with these model simulations, however, makes direct Markov Chain Monte Carlo (MCMC) sampling of the posterior probability density function (pdf) of model parameters computationally intensive. Approximated posterior pdfs resulting from replacing the simulation model with a computationally efficient surrogate, on the other hand, have seen limited accuracy. In this study, we present a Bayesian active learning method to directly approximate the posterior pdf function of cardiac model parameters, in which we intelligently select training points to query the simulation model in order to learn the posterior pdf using a small number of samples. We integrate a generative model into Bayesian active learning to allow approximating posterior pdf of high-dimensional model parameters at the resolution of the cardiac mesh. We further introduce new acquisition functions to focus the selection of training points on better approximating the shape rather than the modes of the posterior pdf of interest. We evaluated the presented method in estimating tissue excitability in a 3D cardiac electrophysiological model in a range of synthetic and real-data experiments. We demonstrated its improved accuracy in approximating the posterior pdf compared to Bayesian active learning using regular acquisition functions, and substantially reduced computational cost in comparison to existing standard or accelerated MCMC sampling.
Collapse
Affiliation(s)
- Md Shakil Zaman
- Rochester Institute of Technology, Rochester, NY, United States
| | - Jwala Dhamala
- Rochester Institute of Technology, Rochester, NY, United States
| | | | - John L Sapp
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - B Milan Horácek
- Department of Electrical and Computer Engineering, Halifax, NS, Canada
| | - Katherine C Wu
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Linwei Wang
- Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
8
|
Sung E, Etoz S, Zhang Y, Trayanova NA. Whole-heart ventricular arrhythmia modeling moving forward: Mechanistic insights and translational applications. BIOPHYSICS REVIEWS 2021; 2:031304. [PMID: 36281224 PMCID: PMC9588428 DOI: 10.1063/5.0058050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Ventricular arrhythmias are the primary cause of sudden cardiac death and one of the leading causes of mortality worldwide. Whole-heart computational modeling offers a unique approach for studying ventricular arrhythmias, offering vast potential for developing both a mechanistic understanding of ventricular arrhythmias and clinical applications for treatment. In this review, the fundamentals of whole-heart ventricular modeling and current methods of personalizing models using clinical data are presented. From this foundation, the authors summarize recent advances in whole-heart ventricular arrhythmia modeling. Efforts in gaining mechanistic insights into ventricular arrhythmias are discussed, in addition to other applications of models such as the assessment of novel therapeutics. The review emphasizes the unique benefits of computational modeling that allow for insights that are not obtainable by contemporary experimental or clinical means. Additionally, the clinical impact of modeling is explored, demonstrating how patient care is influenced by the information gained from ventricular arrhythmia models. The authors conclude with future perspectives about the direction of whole-heart ventricular arrhythmia modeling, outlining how advances in neural network methodologies hold the potential to reduce computational expense and permit for efficient whole-heart modeling.
Collapse
Affiliation(s)
- Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sevde Etoz
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yingnan Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Author to whom correspondence should be addressed: . Tel.: 410-516-4375
| |
Collapse
|
9
|
Brundage JN, Suliafu V, Bergquist JA, Zenger B, Rupp LC, Wang B, MacLeod R. Myocardial Ischemia Detection Using Body Surface Potential Mappings and Machine Learning. COMPUTING IN CARDIOLOGY 2021; 48:10.23919/cinc53138.2021.9662808. [PMID: 35464104 PMCID: PMC9026610 DOI: 10.23919/cinc53138.2021.9662808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent improvements in detecting acute myocardial ischemia via noninvasive body surface recordings have been driven by modern machine learning. While extensive research has been done using single and 12 lead ECGs, almost no models have incorporated body surface potential mappings. We created two contrasting machine learning models, logistic regression and XGBoost Classifier, and trained them on experimentally acquired body surface mappings with ground truth ischemia measurements recorded from within the heart. These models achieved a mean accuracy of 96.46% and 97.63%, as well as a mean AUC of 0.9927 and 0.9972 for the Logistic Regression and XGBoost classifiers, respectively. The anatomical location and relative contribution of each electrode were visualized and ranked. Then, new models were trained using data from only the top 12, 8, and 3 electrodes. These models trained on only a subset of the electrodes still exhibited relatively high accuracy and AUC, although at much faster training times.
Collapse
Affiliation(s)
- James N Brundage
- School of Medicine, University of Utah, SLC, UT, USA
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
| | - Vai Suliafu
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
| | - Jake A Bergquist
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| | - Brian Zenger
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| | - Lindsay C Rupp
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| | - Bao Wang
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
- Department of Mathematics, University of Utah, SLC, UT, USA
| | - Rob MacLeod
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| |
Collapse
|
10
|
Peng T, Malik A, Bear LR, Trew ML. Impulse Data Model For Solving The Inverse Problem of Electrocardiography. IEEE J Biomed Health Inform 2021; 26:1353-1361. [PMID: 34428164 DOI: 10.1109/jbhi.2021.3106645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To develop, train and test neural networks for predicting heart surface potentials (HSPs) from body surface potentials (BSPs). The method re-frames traditional inverse problems of electrocardiograpy into regression problems, constraining the solution space by decomposing signals with multidimensional Gaussian impulse basis functions. METHODS Impulse HSPs were generated with single Gaussian basis functions at discrete heart surface locations and projected to corresponding BSPs using a volume conductor torso model. Both BSP (inputs) and HSP (outputs) were mapped to regular 2D surface meshes and used to train a neural network. Predictive capabilities of the network were tested with unseen synthetic and experimental data. RESULTS A dense full connected single hidden layer neural network was trained to map body surface impulses to heart surface Gaussian basis functions for reconstructing HSP. Synthetic pulses moving across the heart surface were predicted from the neural network with root mean squared error of 9.1 +/ 1.4%. Predicted signals were robust to noise up to 20 dB and errors due to displacement and rotation of the heart within the torso were bounded and predictable. A shift of the heart 40 mm toward the spine resulted in a 4% increase in signal feature localization error. The set of training impulse function data could be reduced and prediction error remained bounded. Recorded HSPs from in-vitro pig hearts were reliably decomposed using space-time Gaussian basis functions. Activation times calculated from predicted HSPs for left-ventricular pacing had a mean absolute error of 10.4 +/ 11.4 ms. Other pacing scenarios were analyzed with similar success. CONCLUSION Impulses from Gaussian basis functions are potentially an effective and robust way to train simple neural network data models for reconstructing HSPs from decomposed BSPs. SIGNIFICANCE The HSPs predicted by the neural network can be used to generate activation maps that non-invasively identify features of cardiac electrical dysfunction and can guide subsequent treatment options.
Collapse
|
11
|
Pezzuto S, Prinzen FW, Potse M, Maffessanti F, Regoli F, Caputo ML, Conte G, Krause R, Auricchio A. Reconstruction of three-dimensional biventricular activation based on the 12-lead electrocardiogram via patient-specific modelling. Europace 2021; 23:640-647. [PMID: 33241411 PMCID: PMC8025079 DOI: 10.1093/europace/euaa330] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
Aims Non-invasive imaging of electrical activation requires high-density body surface potential mapping. The nine electrodes of the 12-lead electrocardiogram (ECG) are insufficient for a reliable reconstruction with standard inverse methods. Patient-specific modelling may offer an alternative route to physiologically constraint the reconstruction. The aim of the study was to assess the feasibility of reconstructing the fully 3D electrical activation map of the ventricles from the 12-lead ECG and cardiovascular magnetic resonance (CMR). Methods and results Ventricular activation was estimated by iteratively optimizing the parameters (conduction velocity and sites of earliest activation) of a patient-specific model to fit the simulated to the recorded ECG. Chest and cardiac anatomy of 11 patients (QRS duration 126–180 ms, documented scar in two) were segmented from CMR images. Scar presence was assessed by magnetic resonance (MR) contrast enhancement. Activation sequences were modelled with a physiologically based propagation model and ECGs with lead field theory. Validation was performed by comparing reconstructed activation maps with those acquired by invasive electroanatomical mapping of coronary sinus/veins (CS) and right ventricular (RV) and left ventricular (LV) endocardium. The QRS complex was correctly reproduced by the model (Pearson’s correlation r = 0.923). Reconstructions accurately located the earliest and latest activated LV regions (median barycentre distance 8.2 mm, IQR 8.8 mm). Correlation of simulated with recorded activation time was very good at LV endocardium (r = 0.83) and good at CS (r = 0.68) and RV endocardium (r = 0.58). Conclusion Non-invasive assessment of biventricular 3D activation using the 12-lead ECG and MR imaging is feasible. Potential applications include patient-specific modelling and pre-/per-procedural evaluation of ventricular activation.
Collapse
Affiliation(s)
- Simone Pezzuto
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland
| | - Frits W Prinzen
- Department of Physiology, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Mark Potse
- University of Bordeaux, IMB, UMR 5251, Talence, France.,CARMEN Research Team, Inria Bordeaux - Sud-Ouest, Talence, France.,IHU Liryc, Fondation Bordeaux Université, Pessac, France
| | - Francesco Maffessanti
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland
| | - François Regoli
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland.,Division of Cardiology, Fondazione Cardiocentro Ticino, Lugano, Switzerland
| | - Maria Luce Caputo
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland.,Division of Cardiology, Fondazione Cardiocentro Ticino, Lugano, Switzerland
| | - Giulio Conte
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland.,Division of Cardiology, Fondazione Cardiocentro Ticino, Lugano, Switzerland
| | - Rolf Krause
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland
| | - Angelo Auricchio
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland.,Division of Cardiology, Fondazione Cardiocentro Ticino, Lugano, Switzerland
| |
Collapse
|
12
|
Bacoyannis T, Ly B, Cedilnik N, Cochet H, Sermesant M. Deep learning formulation of electrocardiographic imaging integrating image and signal information with data-driven regularization. Europace 2021; 23:i55-i62. [PMID: 33751073 DOI: 10.1093/europace/euaa391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS Electrocardiographic imaging (ECGI) is a promising tool to map the electrical activity of the heart non-invasively using body surface potentials (BSP). However, it is still challenging due to the mathematically ill-posed nature of the inverse problem to solve. Novel approaches leveraging progress in artificial intelligence could alleviate these difficulties. METHODS AND RESULTS We propose a deep learning (DL) formulation of ECGI in order to learn the statistical relation between BSP and cardiac activation. The presented method is based on Conditional Variational AutoEncoders using deep generative neural networks. To quantify the accuracy of this method, we simulated activation maps and BSP data on six cardiac anatomies.We evaluated our model by training it on five different cardiac anatomies (5000 activation maps) and by testing it on a new patient anatomy over 200 activation maps. Due to the probabilistic property of our method, we predicted 10 distinct activation maps for each BSP data. The proposed method is able to generate volumetric activation maps with a good accuracy on the simulated data: the mean absolute error is 9.40 ms with 2.16 ms standard deviation on this testing set. CONCLUSION The proposed formulation of ECGI enables to naturally include imaging information in the estimation of cardiac electrical activity from BSP. It naturally takes into account all the spatio-temporal correlations present in the data. We believe these features can help improve ECGI results.
Collapse
Affiliation(s)
- Tania Bacoyannis
- Inria, Université Côte d'Azur, Epione team, Sophia Antipolis, France
| | - Buntheng Ly
- Inria, Université Côte d'Azur, Epione team, Sophia Antipolis, France
| | - Nicolas Cedilnik
- Inria, Université Côte d'Azur, Epione team, Sophia Antipolis, France.,IHU Liryc, University of Bordeaux, Bordeaux, France
| | | | - Maxime Sermesant
- Inria, Université Côte d'Azur, Epione team, Sophia Antipolis, France.,IHU Liryc, University of Bordeaux, Bordeaux, France
| |
Collapse
|
13
|
Vincent KP, Forsch N, Govil S, Joblon JM, Omens JH, Perry JC, McCulloch AD. Atlas-based methods for efficient characterization of patient-specific ventricular activation patterns. Europace 2021; 23:i88-i95. [PMID: 33751079 DOI: 10.1093/europace/euaa397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 11/15/2022] Open
Abstract
AIMS Ventricular activation patterns can aid clinical decision-making directly by providing spatial information on cardiac electrical activation or indirectly through derived clinical indices. The aim of this work was to derive an atlas of the major modes of variation of ventricular activation from model-predicted 3D bi-ventricular activation time distributions and to relate these modes to corresponding vectorcardiograms (VCGs). We investigated how the resulting dimensionality reduction can improve and accelerate the estimation of activation patterns from surface electrogram measurements. METHODS AND RESULTS Atlases of activation time (AT) and VCGs were derived using principal component analysis on a dataset of simulated electrophysiology simulations computed on eight patient-specific bi-ventricular geometries. The atlases provided significant dimensionality reduction, and the modes of variation in the two atlases described similar features. Utility of the atlases was assessed by resolving clinical waveforms against them and the VCG atlas was able to accurately reconstruct the patient VCGs with fewer than 10 modes. A sensitivity analysis between the two atlases was performed by calculating a compact Jacobian. Finally, VCGs generated by varying AT atlas modes were compared with clinical VCGs to estimate patient-specific activation maps, and the resulting errors between the clinical and atlas-based VCGs were less than those from more computationally expensive method. CONCLUSION Atlases of activation and VCGs represent a new method of identifying and relating the features of these high-dimensional signals that capture the major sources of variation between patients and may aid in identifying novel clinical indices of arrhythmia risk or therapeutic outcome.
Collapse
Affiliation(s)
- Kevin P Vincent
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Nickolas Forsch
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Sachin Govil
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Jake M Joblon
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jeffrey H Omens
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - James C Perry
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Rady Children's Hospital, San Diego, CA, USA
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Grandits T, Effland A, Pock T, Krause R, Plank G, Pezzuto S. GEASI: Geodesic-based earliest activation sites identification in cardiac models. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3505. [PMID: 34170082 PMCID: PMC8459297 DOI: 10.1002/cnm.3505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 05/18/2023]
Abstract
The identification of the initial ventricular activation sequence is a critical step for the correct personalization of patient-specific cardiac models. In healthy conditions, the Purkinje network is the main source of the electrical activation, but under pathological conditions the so-called earliest activation sites (EASs) are possibly sparser and more localized. Yet, their number, location and timing may not be easily inferred from remote recordings, such as the epicardial activation or the 12-lead electrocardiogram (ECG), due to the underlying complexity of the model. In this work, we introduce GEASI (Geodesic-based Earliest Activation Sites Identification) as a novel approach to simultaneously identify all EASs. To this end, we start from the anisotropic eikonal equation modeling cardiac electrical activation and exploit its Hamilton-Jacobi formulation to minimize a given objective function, for example, the quadratic mismatch to given activation measurements. This versatile approach can be extended to estimate the number of activation sites by means of the topological gradient, or fitting a given ECG. We conducted various experiments in 2D and 3D for in-silico models and an in-vivo intracardiac recording collected from a patient undergoing cardiac resynchronization therapy. The results demonstrate the clinical applicability of GEASI for potential future personalized models and clinical intervention.
Collapse
Affiliation(s)
- Thomas Grandits
- Institute of Computer Graphics and VisionTU GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Alexander Effland
- Institute of Computer Graphics and VisionTU GrazGrazAustria
- Silicon Austria Labs (TU Graz SAL DES Lab)GrazAustria
- Institute for Applied MathematicsUniversity of BonnBonnGermany
| | - Thomas Pock
- Institute of Computer Graphics and VisionTU GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Rolf Krause
- Center for Computational Medicine in Cardiology, Euler InstituteUniversità della Svizzera ItalianaLuganoSwitzerland
| | - Gernot Plank
- BioTechMed‐GrazGrazAustria
- Gottfried Schatz Research Center—Division of BiophysicsMedical University of GrazGrazAustria
| | - Simone Pezzuto
- Center for Computational Medicine in Cardiology, Euler InstituteUniversità della Svizzera ItalianaLuganoSwitzerland
| |
Collapse
|
15
|
Sermesant M, Delingette H, Cochet H, Jaïs P, Ayache N. Applications of artificial intelligence in cardiovascular imaging. Nat Rev Cardiol 2021; 18:600-609. [PMID: 33712806 DOI: 10.1038/s41569-021-00527-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
Research into artificial intelligence (AI) has made tremendous progress over the past decade. In particular, the AI-powered analysis of images and signals has reached human-level performance in many applications owing to the efficiency of modern machine learning methods, in particular deep learning using convolutional neural networks. Research into the application of AI to medical imaging is now very active, especially in the field of cardiovascular imaging because of the challenges associated with acquiring and analysing images of this dynamic organ. In this Review, we discuss the clinical questions in cardiovascular imaging that AI can be used to address and the principal methodological AI approaches that have been developed to solve the related image analysis problems. Some approaches are purely data-driven and rely mainly on statistical associations, whereas others integrate anatomical and physiological information through additional statistical, geometric and biophysical models of the human heart. In a structured manner, we provide representative examples of each of these approaches, with particular attention to the underlying computational imaging challenges. Finally, we discuss the remaining limitations of AI approaches in cardiovascular imaging (such as generalizability and explainability) and how they can be overcome.
Collapse
Affiliation(s)
| | | | - Hubert Cochet
- IHU Liryc, CHU Bordeaux, Université Bordeaux, Inserm 1045, Pessac, France
| | - Pierre Jaïs
- IHU Liryc, CHU Bordeaux, Université Bordeaux, Inserm 1045, Pessac, France
| | | |
Collapse
|
16
|
Nejadeh M, Bayat P, Kheirkhah J, Moladoust H. Predicting the response to cardiac resynchronization therapy (CRT) using the deep learning approach. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Abstract
Machine learning (ML), a branch of artificial intelligence, where machines learn from big data, is at the crest of a technological wave of change sweeping society. Cardiovascular medicine is at the forefront of many ML applications, and there is a significant effort to bring them into mainstream clinical practice. In the field of cardiac electrophysiology, ML applications have also seen a rapid growth and popularity, particularly the use of ML in the automatic interpretation of ECGs, which has been extensively covered in the literature. Much lesser known are the other aspects of ML application in cardiac electrophysiology and arrhythmias, such as those in basic science research on arrhythmia mechanisms, both experimental and computational; in the development of better techniques for mapping of cardiac electrical function; and in translational research related to arrhythmia management. In the current review, we examine comprehensively such ML applications as they match the scope of this journal. The current review is organized in 3 parts. The first provides an overview of general ML principles and methodologies that will afford readers of the necessary information on the subject, serving as the foundation for inviting further ML applications in arrhythmia research. The basic information we provide can serve as a guide on how one might design and conduct an ML study. The second part is a review of arrhythmia and electrophysiology studies in which ML has been utilized, highlighting the broad potential of ML approaches. For each subject, we outline comprehensively the general topics, while reviewing some of the research advances utilizing ML under the subject. Finally, we discuss the main challenges and the perspectives for ML-driven cardiac electrophysiology and arrhythmia research.
Collapse
Affiliation(s)
- Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, USA 21205
| | - Dan M. Popescu
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
| | - Julie K. Shade
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
| |
Collapse
|
18
|
Abstract
Machine learning has been heavily researched and widely used in many disciplines. However, achieving high accuracy requires a large amount of data that is sometimes difficult, expensive, or impractical to obtain. Integrating human knowledge into machine learning can significantly reduce data requirement, increase reliability and robustness of machine learning, and build explainable machine learning systems. This allows leveraging the vast amount of human knowledge and capability of machine learning to achieve functions and performance not available before and will facilitate the interaction between human beings and machine learning systems, making machine learning decisions understandable to humans. This paper gives an overview of the knowledge and its representations that can be integrated into machine learning and the methodology. We cover the fundamentals, current status, and recent progress of the methods, with a focus on popular and new topics. The perspectives on future directions are also discussed.
Collapse
Affiliation(s)
- Changyu Deng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xunbi Ji
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colton Rainey
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianyu Zhang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Lu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Niederer SA, Aboelkassem Y, Cantwell CD, Corrado C, Coveney S, Cherry EM, Delhaas T, Fenton FH, Panfilov AV, Pathmanathan P, Plank G, Riabiz M, Roney CH, dos Santos RW, Wang L. Creation and application of virtual patient cohorts of heart models. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190558. [PMID: 32448064 PMCID: PMC7287335 DOI: 10.1098/rsta.2019.0558] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 05/21/2023]
Abstract
Patient-specific cardiac models are now being used to guide therapies. The increased use of patient-specific cardiac simulations in clinical care will give rise to the development of virtual cohorts of cardiac models. These cohorts will allow cardiac simulations to capture and quantify inter-patient variability. However, the development of virtual cohorts of cardiac models will require the transformation of cardiac modelling from small numbers of bespoke models to robust and rapid workflows that can create large numbers of models. In this review, we describe the state of the art in virtual cohorts of cardiac models, the process of creating virtual cohorts of cardiac models, and how to generate the individual cohort member models, followed by a discussion of the potential and future applications of virtual cohorts of cardiac models. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
| | | | | | | | | | - E. M. Cherry
- Georgia Institute of Technology, Atlanta, GA, USA
| | - T. Delhaas
- Maastricht University, Maastricht, the Netherlands
| | - F. H. Fenton
- Georgia Institute of Technology, Atlanta, GA, USA
| | - A. V. Panfilov
- Ghent University, Gent, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia
| | - P. Pathmanathan
- Center for Devices and Radiological Health, U.S. Food and Administration, Rockville, MD, USA
| | - G. Plank
- Medical University of Graz, Graz, Austria
| | | | | | | | - L. Wang
- Rochester Institute of Technology, La JollaRochester, NY, USA
| |
Collapse
|
20
|
Vercauteren T, Unberath M, Padoy N, Navab N. CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer Assisted Interventions. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:198-214. [PMID: 31920208 PMCID: PMC6952279 DOI: 10.1109/jproc.2019.2946993] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 10/04/2019] [Indexed: 05/10/2023]
Abstract
Data-driven computational approaches have evolved to enable extraction of information from medical images with a reliability, accuracy and speed which is already transforming their interpretation and exploitation in clinical practice. While similar benefits are longed for in the field of interventional imaging, this ambition is challenged by a much higher heterogeneity. Clinical workflows within interventional suites and operating theatres are extremely complex and typically rely on poorly integrated intra-operative devices, sensors, and support infrastructures. Taking stock of some of the most exciting developments in machine learning and artificial intelligence for computer assisted interventions, we highlight the crucial need to take context and human factors into account in order to address these challenges. Contextual artificial intelligence for computer assisted intervention, or CAI4CAI, arises as an emerging opportunity feeding into the broader field of surgical data science. Central challenges being addressed in CAI4CAI include how to integrate the ensemble of prior knowledge and instantaneous sensory information from experts, sensors and actuators; how to create and communicate a faithful and actionable shared representation of the surgery among a mixed human-AI actor team; how to design interventional systems and associated cognitive shared control schemes for online uncertainty-aware collaborative decision making ultimately producing more precise and reliable interventions.
Collapse
Affiliation(s)
- Tom Vercauteren
- School of Biomedical Engineering & Imaging SciencesKing’s College LondonLondonWC2R 2LSU.K.
| | - Mathias Unberath
- Department of Computer ScienceJohns Hopkins UniversityBaltimoreMD21218USA
| | - Nicolas Padoy
- ICube institute, CNRS, IHU Strasbourg, University of Strasbourg67081StrasbourgFrance
| | - Nassir Navab
- Fakultät für InformatikTechnische Universität München80333MunichGermany
| |
Collapse
|
21
|
Gyawali PK, Horacek BM, Sapp JL, Wang L. Sequential Factorized Autoencoder for Localizing the Origin of Ventricular Activation From 12-Lead Electrocardiograms. IEEE Trans Biomed Eng 2019; 67:1505-1516. [PMID: 31494539 DOI: 10.1109/tbme.2019.2939138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This work presents a novel approach to handle the inter-subject variations existing in the population analysis of ECG, applied for localizing the origin of ventricular tachycardia (VT) from 12-lead electrocardiograms (ECGs). METHODS The presented method involves a factor disentangling sequential autoencoder (f-SAE) - realized in both long short-term memory (LSTM) and gated recurrent unit (GRU) networks - to learn to disentangle the inter-subject variations from the factor relating to the location of origin of VT. To perform such disentanglement, a pair-wise contrastive loss is introduced. RESULTS The presented methods are evaluated on ECG dataset with 1012 distinct pacing sites collected from scar-related VT patients during routine pace-mapping procedures. Experiments demonstrate that, for classifying the origin of VT into the predefined segments, the presented f-SAE improves the classification accuracy by 8.94% from using prescribed QRS features, by 1.5% from the supervised deep CNN network, and 5.15% from the standard SAE without factor disentanglement. Similarly, when predicting the coordinates of the VT origin, the presented f-SAE improves the performance by 2.25 mm from using prescribed QRS features, by 1.18 mm from the supervised deep CNN network and 1.6 mm from the standard SAE. CONCLUSION These results demonstrate the importance as well as the feasibility of the presented f-SAE approach for separating inter-subject variations when using 12-lead ECG to localize the origin of VT. SIGNIFICANCE This work suggests the important research direction to deal with the well-known challenge posed by inter-subject variations during population analysis from ECG signals.
Collapse
|
22
|
Potyagaylo D, Chmelevsky M, van Dam P, Budanova M, Zubarev S, Treshkur T, Lebedev D. ECG Adapted Fastest Route Algorithm to Localize the Ectopic Excitation Origin in CRT Patients. Front Physiol 2019; 10:183. [PMID: 30914963 PMCID: PMC6421262 DOI: 10.3389/fphys.2019.00183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/14/2019] [Indexed: 01/15/2023] Open
Abstract
Although model-based solution strategies for the ECGI were reported to deliver promising clinical results, they strongly rely on some a priori assumptions, which do not hold true for many pathological cases. The fastest route algorithm (FRA) is a well-established method for noninvasive imaging of ectopic activities. It generates test activation sequences on the heart and compares the corresponding test body surface potential maps (BSPMs) to the measured ones. The test excitation propagation patterns are constructed under the assumption of a global conduction velocity in the heart, which is violated in the cardiac resynchronization (CRT) patients suffering from conduction disturbances. In the present work, we propose to apply dynamic time warping (DTW) to the test and measured ECGs before measuring their similarity. The warping step is a non-linear pattern matching that compensates for local delays in the temporal sequences, thus accounting for the inhomogeneous excitation propagation, while aligning them in an optimal way with respect to a distance function. To evaluate benefits of the temporal warping for FRA-based BSPMs, we considered three scenarios. In the first setting, a simplified simulation example was constructed to illustrate the temporal warping and display the resulting distance map. Then, we applied the proposed method to eight BSPMs produced by realistic ectopic activation sequences and compared its performance to FRA. Finally, we assessed localization accuracy of both techniques in ten CRT patients. For each patient, we noninvasively imaged two paced ECGs: from left and right ventricular implanted leads. In all scenarios, FRA-DTW outperformed FRA in terms of LEs. For the clinical cases, the median (25-75% range) distance errors were reduced from 16 (8-23)mm to 5 (2-10)mm for all pacings, from 15 (11-25)mm to 8 (3-13)mm in the left, and from 19 (6-23)mm to 4 (2-8)mm in the right ventricle, respectively. The obtained results suggest the ability of temporal ECG warping to compensate for an inhomogeneous conduction profile, while retaining computational efficiency intrinsic to FRA.
Collapse
Affiliation(s)
| | - Mikhail Chmelevsky
- EP Solutions SA, Yverdon-les-Bains, Switzerland.,Almazov National Medical Research Center, Saint Petersburg, Russia
| | - Peter van Dam
- Cardiology Department, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Stepan Zubarev
- Almazov National Medical Research Center, Saint Petersburg, Russia
| | - Tatjana Treshkur
- Almazov National Medical Research Center, Saint Petersburg, Russia
| | - Dmitry Lebedev
- Almazov National Medical Research Center, Saint Petersburg, Russia
| |
Collapse
|