1
|
Jeong W, Park Y, Hong YK, Kim I, Son H, Ha DH. How Do Colloidal Nanoparticles Move in a Solution under an Electric Field?: In Situ Light Scattering Analysis. J Phys Chem Lett 2023; 14:1230-1238. [PMID: 36716325 DOI: 10.1021/acs.jpclett.2c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the dynamics of colloidal nanoparticles (NPs) in a solution is the key to assembling them into solids through a solution process such as electrophoretic deposition. In this study, newly developed in situ analysis with light scattering is used to examine NP dynamics induced by a non-uniform electric field. We reveal that the symmetric directions of moving NP aggregates are due to dielectrophoresis between the cylindrical electrodes, while the actual NP deposition is based on the charge of NPs (electrophoresis). Over time, the symmetry of the dynamics becomes less evident, inducing feeble deposition as the less-ordered dynamics become stronger. Eventually, two separate deposition mechanisms emerge as the deposition rate decreases with the change in the NP dynamics. Furthermore, we identify the vortex-like NP motion between the electrodes. These in situ analyses provide insights into the electrophoretic deposition mechanism and NP behavior in a solution under an electric field for fine film construction.
Collapse
Affiliation(s)
- Wooseok Jeong
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul06974, Republic of Korea
| | - Yoonsu Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul06974, Republic of Korea
| | - Yun-Kun Hong
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul06974, Republic of Korea
| | - Ildoo Kim
- Department of Mechatronics, Konkuk University, Chungju27478, Republic of Korea
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul06974, Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul06974, Republic of Korea
| |
Collapse
|
2
|
Li G, Sun Y, Zheng X, Choi HJ, Zhang K. Effect of drag-reducing polymer on blood flow in microchannels. Colloids Surf B Biointerfaces 2021; 209:112212. [PMID: 34798502 DOI: 10.1016/j.colsurfb.2021.112212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
Drag-reducing polymers (DRPs) can significantly improve blood circulation when added to blood at a nanomolar concentration, manifesting great potential for application in the biomedical field. In this work, hyaluronic acid (HA) was selected as a natural DRP, and its effects on blood microcirculation at different concentrations, flow rates, and channel geometry were studied in microchannels. The experimental results show that adding a small dose of HA can increase the velocity and shorten the thickness of the cell-free layer (CFL or cell depletion layer (CDL)) near the wall. After considering efficiency, our experiments determined 50 ppm addition of HA to be the most suitable amount for improving blood circulation. Our results demonstrate that HA has high efficiency in improving the circulation of blood flow and shed light on unveiling the mechanism of using natural DRPs to cure some cardiovascular diseases.
Collapse
Affiliation(s)
- Guanjie Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hyoung Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, South Korea
| | - Ke Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
3
|
Microfluidic Lab-on-a-Chip Based on UHF-Dielectrophoresis for Stemness Phenotype Characterization and Discrimination among Glioblastoma Cells. BIOSENSORS-BASEL 2021; 11:bios11100388. [PMID: 34677344 PMCID: PMC8534203 DOI: 10.3390/bios11100388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive solid tumors, particularly due to the presence of cancer stem cells (CSCs). Nowadays, the characterization of this cell type with an efficient, fast and low-cost method remains an issue. Hence, we have developed a microfluidic lab-on-a-chip based on dielectrophoresis (DEP) single cell electro-manipulation to measure the two crossover frequencies: fx01 in the low-frequency range (below 500 kHz) and fx02 in the ultra-high-frequency range (UHF, above 50 MHz). First, in vitro conditions were investigated. An U87-MG cell line was cultured in different conditions in order to induce an undifferentiated phenotype. Then, ex vivo GBM cells from patients’ primary cell culture were passed through the developed microfluidic system and characterized in order to reflect clinical conditions. This article demonstrates that the usual exploitation of low-frequency range DEP does not allow the discrimination of the undifferentiated GBM cells from the differentiated one. However, the presented study highlights the use of UHF-DEP as a relevant discriminant parameter. The proposed microfluidic lab-on-a-chip is able to follow the kinetics of U87-MG phenotype transformation in a CSC enrichment medium and the cancer stem cells phenotype acquirement.
Collapse
|
4
|
Rodriguez-Villarreal AI, Tana LO, Cid J, Hernandez-Machado A, Alarcon T, Miribel-Catala P, Colomer-Farrarons J. An Integrated Detection Method for Flow Viscosity Measurements in Microdevices. IEEE Trans Biomed Eng 2021; 68:2049-2057. [PMID: 32746079 DOI: 10.1109/tbme.2020.3013519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Puneeth SB, Goel S. Handheld and ‘Turnkey’ 3D printed paper-microfluidic viscometer with on-board microcontroller for smartphone based biosensing applications. Anal Chim Acta 2021; 1153:338303. [PMID: 33714437 DOI: 10.1016/j.aca.2021.338303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Affiliation(s)
- S B Puneeth
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electronics and Electrical Science, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, India, 500078
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electronics and Electrical Science, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, India, 500078.
| |
Collapse
|
6
|
Li Y, Wang Y, Wan K, Wu M, Guo L, Liu X, Wei G. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. NANOSCALE 2021; 13:4330-4358. [PMID: 33620368 DOI: 10.1039/d0nr08892g] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an efficient, rapid and label-free micro-/nanoparticle separation technique, dielectrophoresis (DEP) has attracted widespread attention in recent years, especially in the field of biomedicine, which exhibits huge potential in biomedically relevant applications such as disease diagnosis, cancer cell screening, biosensing, and others. DEP technology has been greatly developed recently from the low-flux laboratory level to high-throughput practical applications. In this review, we summarize the recent progress of DEP technology in biomedical applications, including firstly the design of various types and materials of DEP electrode and flow channel, design of input signals, and other improved designs. Then, functional tailoring of DEP systems with endowed specific functions including separation, purification, capture, enrichment and connection of biosamples, as well as the integration of multifunctions, are demonstrated. After that, representative DEP biomedical application examples in aspects of disease detection, drug synthesis and screening, biosensing and cell positioning are presented. Finally, limitations of existing DEP platforms on biomedical application are discussed, in which emphasis is given to the impact of other electrodynamic effects such as electrophoresis (EP), electroosmosis (EO) and electrothermal (ET) effects on DEP efficiency. This article aims to provide new ideas for the design of novel DEP micro-/nanoplatforms with desirable high throughput toward application in the biomedical community.
Collapse
Affiliation(s)
- Yalin Li
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Mingxue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Lei Guo
- Research Center for High-Value Utilization of Waste Biomass, College of Life Science, College of Life Science, Qingdao University, 266071 Qingdao, PR China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
7
|
Ji J, Zhang J, Wang J, Huang Q, Jiang X, Zhang W, Sang S, Guo X, Li S. Three-dimensional analyses of cells’ positioning on the quadrupole-electrode microfluid chip considering the coupling effect of nDEP, ACEO, and ETF. Biosens Bioelectron 2020; 165:112398. [DOI: 10.1016/j.bios.2020.112398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
|
8
|
Wang Z, Liu M, Yang X. A four-way coupled CFD-DEM modeling framework for charged particles under electrical field with applications to gas insulated switchgears. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.06.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Salari A, Navi M, Lijnse T, Dalton C. AC Electrothermal Effect in Microfluidics: A Review. MICROMACHINES 2019; 10:E762. [PMID: 31717932 PMCID: PMC6915365 DOI: 10.3390/mi10110762] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
The electrothermal effect has been investigated extensively in microfluidics since the 1990s and has been suggested as a promising technique for fluid manipulations in lab-on-a-chip devices. The purpose of this article is to provide a timely overview of the previous works conducted in the AC electrothermal field to provide a comprehensive reference for researchers new to this field. First, electrokinetic phenomena are briefly introduced to show where the electrothermal effect stands, comparatively, versus other mechanisms. Then, recent advances in the electrothermal field are reviewed from different aspects and categorized to provide a better insight into the current state of the literature. Results and achievements of different studies are compared, and recommendations are made to help researchers weigh their options and decide on proper configuration and parameters.
Collapse
Affiliation(s)
- Alinaghi Salari
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada;
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
- Keenan Research Centre, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Maryam Navi
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada;
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
- Keenan Research Centre, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Thomas Lijnse
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Colin Dalton
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Electrical and Computer Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
10
|
Sato N, Yao J, Kawashima D, Takei M. Numerical Study of Enhancement of Positive Dielectrophoresis Particle Trapping in Electrode-Multilayered Microfluidic Device. IEEE Trans Biomed Eng 2019; 66:2936-2944. [PMID: 30762523 DOI: 10.1109/tbme.2019.2898876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Enhancement of positive dielectrophoresis (pDEP) particle trapping by a co-occurring fluid flow under an ac electric field in an electrode-multilayered microfluidic device is investigated by three-dimensional particle-fluid flow simulations. The particle motion near one cross section of the microfluidic device is simulated under a zero flow condition by the Eulerian-Lagrangian method incorporating the ac electrothermal effect, thermal buoyancy, and dielectrophoresis. The mean trapping rate under the steady state Rm is evaluated from the simulated number of trapped particles Ntrap for 54 cases with four parameters: electrode excitation pattern, medium conductivity σ, applied voltage ϕe, and the real part of the Clausius-Mossotti factor Re[K(ω)]. The simulated pDEP velocity in the upper part of the flow channel is validated by an experiment using cell suspension and is fitted so that the non-dimensional velocity error is within 15% of a typical velocity of pDEP. The mean trapping rate Rm is greatly increased by the fluid flow only in the high conductivity and high voltage cases. Regardless of the electrode excitation pattern, Rm increased almost proportionally to the inflow rate into the capture region, where the pDEP force is effective. From a fitted equation of the results, the increase of Rm when Re[K(ω)] = 0.1 to 0.5 is found to be about 20% to 30% of the number of particles transported into the capture regions. The results quantify the enhancement of pDEP trapping by the fluid flow occurring under practical conditions in the device.
Collapse
|