1
|
Chen K, Liang B, Yang P, Li M, Yuan H, Wu J, Gao W, Jin Q. A novel microfluidic chip integrated with Pt micro-thermometer for temperature measurement at the single-cell level. Heliyon 2024; 10:e30649. [PMID: 38774078 PMCID: PMC11107094 DOI: 10.1016/j.heliyon.2024.e30649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Noninvasive and sensitive thermometry of a single cell during the normal physiological process is crucial for analyzing fundamental cellular metabolism and applications to cancer treatment. However, current thermometers generally sense the average temperature variation for many cells, thereby failing to obtain real-time and continuous data of an individual cell. In this study, we employed platinum (Pt) electrodes to construct an integrated microfluidic chip as a single-cell thermometer. The single-cell isolation unit in the microchip consisted of a main channel, which was connected to the inlet and outlet of a single-cell capture funnel. A single cell can be trapped in the funnel and the remaining cells can bypass and flow along the main channel to the outlet. The best capture ratio of a single MCF7 cell at a single-cell isolation unit was 90 % under optimal condition. The thermometer in the micro-chip had a temperature resolution of 0.007 °C and showed a good linear relationship in the range of 20-40 °C (R2 = 0.9999). Slight temperature increment of different single tumor cell (MCF7 cell, H1975 cell, and HepG2 cell) cultured on the chip was continuously recorded under normal physiological condition. In addition, the temperature variation of single MCF7 cell in-situ after exposure to a stimulus (4 % paraformaldehyde treatment) was also monitored, showing an amplitude of temperature fluctuations gradually decreased over time. Taken together, this integrated microchip is a practical tool for detecting the change in the temperature of a single cell in real-time, thereby offering valuable information for the drug screening, diagnosis, and treatment of cancer.
Collapse
Affiliation(s)
- Kai Chen
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Baihui Liang
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, 315336, Zhejiang, China
- Ningbo Fotile Kitchen Ware Company, Ningbo, 315336, Zhejiang, China
| | - Ping Yang
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Min Li
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Haojun Yuan
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinlei Wu
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Wanlei Gao
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qinghui Jin
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
2
|
Zhang F, Wang F, Li Y, Yuan L, Fan L, Zhou X, Wu H, Zhu X, Wang H, Gu N. Real-Time Cell Temperature Fluctuation Monitoring System Using Precision Pt Sensors Coated with Low Thermal Capacity, Low Thermal Resistance, and Self-Assembled Multilayer Films. ACS Sens 2023; 8:141-149. [PMID: 36640268 DOI: 10.1021/acssensors.2c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Real-time monitoring of cell temperature fluctuation can help researchers better understand physiological phenomena and the effects of drug treatment on cells, which is a novel and important tool for cellular informatics. The platinum (Pt) temperature sensor is widely used in temperature measurement with the advantages of strong stability, great accuracy, and high sensitivity. However, the commercially available Pt sensors have large thermal resistance and heat capacity which are difficult to be applied for cell temperature measurement because only a very small amount of heat flux is generated by live cells. In this study, we designed a system using precision Pt thin-film temperature sensors with low heat capacity and thermal resistance. The Pt thin-film sensors are covered by a silicon nitride insulation layer grafted with a self-assembled multilayer silane film for promoting cell adhesion. The temperature coefficient of resistance of the Pt temperature sensor was about 2100 ppm/°C. The four-wire lead design next to the sensor detection area ensured maximum accuracy, resulting in a system noise below 0.01 °C over a long time. HEK-293T and HeLa cells were cultured on the sensor surface, respectively. The temperature fluctuation of 293T cells was monitored in a cell culture medium, showing a temperature increase of about 0.05-0.12 °C. The temperature fluctuation of HeLa cells treated with cisplatin was also measured and recorded, indicating a temperature decrease of 0.01 °C first and then a gradual temperature increase of 0.04 °C. The Pt sensor system we developed demonstrated high sensitivity and long stability for cell temperature fluctuation monitoring, which can be widely used in cell activity and cellular informatics studies.
Collapse
Affiliation(s)
- Fangzhou Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China.,Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Fangxu Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Lihua Yuan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Li Fan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Xiaojin Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Huijuan Wu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Xingyue Zhu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Hong Wang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
3
|
Huang LQ, Ding XL, Pan XT, Li ZQ, Wang K, Xia XH. Single-cell thermometry with a nanothermocouple probe. Chem Commun (Camb) 2023; 59:876-879. [PMID: 36598045 DOI: 10.1039/d2cc06110d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herein, a nanopipette-based thermocouple probe that possesses high temperature resolution, rapid response, good reversibility and stability was constructed and successfully applied for single-cell temperature sensing. Different intracellular temperatures were observed in diverse types of cells, which reveals differences in their metabolism levels. Temperature responses of cancer and normal cells against various exogenous drugs were also demonstrated. The spatially resolved temperature sensing of three-dimensional cell culture models unveils the existence of their inner temperature gradients. This work would facilitate drug screening and disease diagnosis.
Collapse
Affiliation(s)
- Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Yin N, Lin B, Huo F, Shu Y, Wang J. Nanothermometer with Temperature Induced Reversible Emission for Evaluation of Intracellular Thermal Dynamics. Anal Chem 2022; 94:12111-12119. [PMID: 36000825 DOI: 10.1021/acs.analchem.2c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Temperature dynamics reflect the physiological state of cells, and accurate measurement of intracellular temperature helps to understand the biological processes. Herein, we report a novel nanothermometer by conjugating a fluorescent probe 3-ethyl-2-[4-(1,2,2-triphenylvinyl)styryl]benzothiazol-3-ium iodide (TPEBT) with a thermoresponsive polymer poly(N-isopropylacrylamide-co-tetrabutylphosphonium styrenesulfonate) [P(NIPAM-co-TPSS)]. The derived nanoprobe TPEBT-P(NIPAM-co-TPSS) self-assembles into micelles with TPEBT as hydrophobic core and PNIPAM as hydrophilic shell. It exhibits aggregation-induced emission (AIE) at λex/λem = 420/640 nm in aqueous medium with a quantum yield of ΦF 11.9%. The rise in temperature transforms PNIPAM chains from linear to compact spheres to serve as the core of micelles, and meanwhile converts TPEBT from the state of aggregation to dispersion and redistributes in the micellar shell. Temperature-driven phase transition of P(NIPAM-co-TPSS) mediates the reversible aggregation and disaggregation of TPEBT and endows the nanothermometer with temperature-dependent AIE features and favorable sensitivity for temperature sensing in 32-40 °C. TPEBT-P(NIPAM-co-TPSS) is taken up by HeLa cells to distribute mainly in lysosomes. It enables quantitative visualization of in situ thermal dynamics in response to stimuli from carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, oligomycin, genipin, and lipopolysaccharide. The real-time monitoring of photothermal-induced intracellular temperature variation is further conducted.
Collapse
Affiliation(s)
- Nana Yin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Bo Lin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
5
|
Han D, Xu J, Wang H, Wang Z, Yang N, Yang F, Shen Q, Xu S. Non-Interventional and High-Precision Temperature Measurement Biochips for Long-Term Monitoring the Temperature Fluctuations of Individual Cells. BIOSENSORS 2021; 11:454. [PMID: 34821670 PMCID: PMC8615431 DOI: 10.3390/bios11110454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Monitoring the thermal responses of individual cells to external stimuli is essential for studies of cell metabolism, organelle function, and drug screening. Fluorescent temperature probes are usually employed to measure the temperatures of individual cells; however, they have some unavoidable problems, such as, poor stability caused by their sensitivity to the chemical composition of the solution and the limitation in their measurement time due to the short fluorescence lifetime. Here, we demonstrate a stable, non-interventional, and high-precision temperature-measurement chip that can monitor the temperature fluctuations of individual cells subject to external stimuli and over a normal cell life cycle as long as several days. To improve the temperature resolution, we designed temperature sensors made of Pd-Cr thin-film thermocouples, a freestanding Si3N4 platform, and a dual-temperature control system. Our experimental results confirm the feasibility of using this cellular temperature-measurement chip to detect local temperature fluctuations of individual cells that are 0.3-1.5 K higher than the ambient temperature for HeLa cells in different proliferation cycles. In the future, we plan to integrate this chip with other single-cell technologies and apply it to research related to cellular heat-stress response.
Collapse
Affiliation(s)
- Danhong Han
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
- Beijing Research Institute of Mechanical Equipment, Beijing 100854, China
| | - Jingjing Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
- School of Microelectronics, Shandong University, Jinan 250100, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, China
| | - Han Wang
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China;
| | - Zhenhai Wang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
- Beijing Research Institute of Mechanical Equipment, Beijing 100854, China
| | - Nana Yang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
| | - Fan Yang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
| | - Qundong Shen
- Department of Chemistry, Nanjing University, Nanjing 210023, China;
| | - Shengyong Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
| |
Collapse
|
6
|
Wang L, Zhu B, Huang J, Xiang X, Tang Y, Ma L, Yan F, Cheng C, Qiu L. Ultrasound-targeted microbubble destruction augmented synergistic therapy of rheumatoid arthritis via targeted liposomes. J Mater Chem B 2021; 8:5245-5256. [PMID: 32432638 DOI: 10.1039/d0tb00430h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA) can lead to joint destruction and deformity, which is a significant cause of the loss of the young and middle-aged labor force. However, the treatment of RA is still filled with challenges. Though dexamethasone, one of the glucocorticoids, is commonly used in the treatment of RA, its clinical use is limited because of the required high-dose and long-term use, unsatisfactory therapeutic effects, and various side-effects. Ultrasound-targeted microbubble destruction (UTMD) can augment the ultrasonic cavitation effects and trigger drug release from targeted nanocarriers in the synovial cavity, which makes it a more effective synergistic treatment strategy for RA. In this work, we aim to utilize the UTMD effect to augment the synergistic therapy of RA by using polyethylene glycol (PEG)-modified folate (FA)-conjugated liposomes (LPs) loaded with dexamethasone sodium phosphate (DexSP) (DexSP@LPs-PEG-FA). The UTMD-mediated DexSP@LPs-PEG-FA for targeted delivery of DexSP including a synergistic ultrasonic cavitation effect and drug therapy were investigated through in vitro RAW264.7 cell experiments and in vivo collagen-induced arthritis SD rat model animal experiments. The results show the DexSP release from targeted liposomes was improved under the UTMD effect. Likewise, the folate-conjugated liposomes displayed targeting association to RAW264.7 cells. Together with the application of ultrasound and microbubbles, liposomes-delivered DexSP potently reduced joints swelling, bone erosion, and inflammation in both joints and serum with a low dose. These results demonstrated that UTMD-mediated folate-conjugated liposomes are not only a promising method for targeted synergistic treatment of RA but also may show high potential for serving as nanomedicines for many other biomedical fields.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bihui Zhu
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jianbo Huang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xi Xiang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuanjiao Tang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Feng Yan
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China and Department of Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Li Qiu
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Yu S, Li C, Ding Y, Huang S, Wang W, Wu Y, Wang F, Wang A, Han Y, Sun Z, Lu Y, Gu N. Exploring the 'cold/hot' properties of traditional Chinese medicine by cell temperature measurement. PHARMACEUTICAL BIOLOGY 2020; 58:208-218. [PMID: 32114881 PMCID: PMC7067177 DOI: 10.1080/13880209.2020.1732429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Context: It is common sense that chewing a mint leaf can cause a cooling feeling, while chewing ginger root will produce a burning feeling. In Traditional Chinese Medicine (TCM), this phenomenon is referred to as 'cold/hot' properties of herbs. Herein, it is reported that TCM with different "cold/hot" properties have different effects on the variation of cells.Objective: To explore the intrinsic 'cold/hot' properties of TCM from the perspective of cellular and molecular biology.Materials and methods: A375 cells were selected using Cancer Cell Line Encyclopaedia (CCLE) analysis and western blots. Hypaconitine and baicalin were selected by structural similarity analysis from 56 and 140 compounds, respectively. A wireless thermometry system was used to measure cellular temperature change induced by different compounds. Alteration of intracellular calcium influx was investigated by means of calcium imaging.Results: The IC50 values of GSK1016790A, HC067047, hypaconitine, and baicalin for A375 cells are 8.363 nM, 816.4 μM, 286.4 μM and 29.84 μM, respectively. And, 8 μM hypaconitine induced obvious calcium influx while 8 μM baicalin inhibited calcium influx induced by TRPV4 activation. Cellular temperature elevated significantly when treated with GSK1016790A or hypaconitine, while the results were reversed when cells were treated with HC067047 or baicalin.Discussion and conclusions: The changes in cellular temperature are speculated to be caused by the alteration of intracellular calcium influx mediated by TRPV4. In addition, the 'cold/hot' properties of compounds in TCM can be classified by using cellular temperature detection.
Collapse
Affiliation(s)
- Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Can Li
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangxu Wang
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering of Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuexia Han
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering of Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Zhiguang Sun
- Jiangsu Provincial Second Chinese Medicine Hospital, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- CONTACT Yin Lu
| | - Ning Gu
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering of Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- Ning Gu
| |
Collapse
|
8
|
Ding J, Li J, Yang F, Gu N. A Multi-Channel System for Temperature Sensing of Neural Stem Cells in Adherent Culture. Anal Chem 2020; 92:3270-3275. [PMID: 32022536 DOI: 10.1021/acs.analchem.9b05134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural stem cells (NSCs) can gradually proliferate or differentiate during adherent culture. It is found that stem cells have different temperature characteristics in different physiological states. In order to detect the temperature of NSCs during adherent culture, in this study, we have designed a temperature monitoring system, in which a thin-film platinum resistor was used as the sensor. The NSCs were seeded on the sensor, and the data acquisition device was connected to the host computer via Bluetooth. Results indicate that there are about 5000 cells attached on the surface of each sensor, and the cell viability is maintained at about 90% after 24 h culture. An electrostatic force microscope (EFM) result proves that there is no electric field on the sensor surface to influence the activity of NSCs. This system can work continuously for more than 24 h with 0.05 °C detection sensitivity. Furthermore, the significant temperature change of NSCs is observed when stimulated by different concentrations of thyroid hormone, which demonstrates that the temperature change related to cell activity. Therefore, by detecting the temperature of the cell population, the fabricated system can provide reference information for studying the metabolic state of NSCs, as well as physiological responses of cells under various conditions in biomedical applications.
Collapse
Affiliation(s)
- Jiaxu Ding
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Jing Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
9
|
Yang S, He W, Li C, Han Y, Gu N. A new approach of electrochemical etching fabrication based on drop-off-delay control. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:074902. [PMID: 31370438 DOI: 10.1063/1.5094470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
W-Pt micro-nano-thermocouple is a brand new sensor for intracellular temperature measurement. As a nanodevice, it is based on the electrochemical etching method of which the shape is directly related to the performance. Although much research has been done on how to control the shape of the tungsten tip through electrochemical etching method, preparing different shapes requires different fabrication methods. In this article, we proposed a flexible and general control method which can fit all the fabrication methods by merely modifying the software. Moreover, this method based on drop-off-delay time control is capable of controlling the duration of the electrochemical reaction during the final formation of the tungsten tip. Based on this method, the cone angle can be set to any value from 5° to 30° with the radius of curvature maintaining from 2 nm to 5 nm. Additionally, the sophisticated fabrication of W-Pt micro-nano-thermocouple was designed to be automatically completed by three workshops in batches. The efficiency and uniformity of W-Pt micro-nano-thermocouple fabrication were well improved.
Collapse
Affiliation(s)
- Sheng Yang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Weinan He
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Can Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yuexia Han
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|