1
|
Quintana GI, Li Z, Vancamberg L, Mougeot M, Desolneux A, Muller S. Exploiting Patch Sizes and Resolutions for Multi-Scale Deep Learning in Mammogram Image Classification. Bioengineering (Basel) 2023; 10:bioengineering10050534. [PMID: 37237603 DOI: 10.3390/bioengineering10050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Recent progress in deep learning (DL) has revived the interest on DL-based computer aided detection or diagnosis (CAD) systems for breast cancer screening. Patch-based approaches are one of the main state-of-the-art techniques for 2D mammogram image classification, but they are intrinsically limited by the choice of patch size, as there is no unique patch size that is adapted to all lesion sizes. In addition, the impact of input image resolution on performance is not yet fully understood. In this work, we study the impact of patch size and image resolution on the classifier performance for 2D mammograms. To leverage the advantages of different patch sizes and resolutions, a multi patch-size classifier and a multi-resolution classifier are proposed. These new architectures perform multi-scale classification by combining different patch sizes and input image resolutions. The AUC is increased by 3% on the public CBIS-DDSM dataset and by 5% on an internal dataset. Compared with a baseline single patch size and single resolution classifier, our multi-scale classifier reaches an AUC of 0.809 and 0.722 in each dataset.
Collapse
Affiliation(s)
- Gonzalo Iñaki Quintana
- GE HealthCare, 283 Rue de la Minière, 78530 Buc, France
- ENS Paris-Saclay, Centre Borelli, 91190 Gif-sur-Yvette, France
| | - Zhijin Li
- GE HealthCare, 283 Rue de la Minière, 78530 Buc, France
| | | | | | - Agnès Desolneux
- ENS Paris-Saclay, Centre Borelli, 91190 Gif-sur-Yvette, France
| | - Serge Muller
- GE HealthCare, 283 Rue de la Minière, 78530 Buc, France
| |
Collapse
|
2
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
3
|
Toledo JB, Liu H, Grothe MJ, Rashid T, Launer L, Shaw LM, Snoussi H, Heckbert S, Weiner M, Trojanwoski JQ, Seshadri S, Habes M. Disentangling tau and brain atrophy cluster heterogeneity across the Alzheimer's disease continuum. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12305. [PMID: 35619830 PMCID: PMC9127251 DOI: 10.1002/trc2.12305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022]
Abstract
Introduction Neuroimaging heterogeneity in dementia has been examined using single modalities. We evaluated the associations of magnetic resonance imaging (MRI) atrophy and flortaucipir positron emission tomography (PET) clusters across the Alzheimer's disease (AD) spectrum. Methods We included 496 Alzheimer's Disease Neuroimaging Initiative participants with brain MRI, flortaucipir PET scan, and amyloid beta biomarker measures obtained. We applied a novel robust collaborative clustering (RCC) approach on the MRI and flortaucipir PET scans. We derived indices for AD-like (SPARE-AD index) and brain age (SPARE-BA) atrophy. Results We identified four tau (I-IV) and three atrophy clusters. Tau clusters were associated with the apolipoprotein E genotype. Atrophy clusters were associated with white matter hyperintensity volumes. Only the hippocampal sparing atrophy cluster showed a specific association with brain aging imaging index. Tau clusters presented stronger clinical associations than atrophy clusters. Tau and atrophy clusters were partially associated. Conclusions Each neuroimaging modality captured different aspects of brain aging, genetics, vascular changes, and neurodegeneration leading to individual multimodal phenotyping.
Collapse
Affiliation(s)
- Jon B. Toledo
- Department of NeurologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Hangfan Liu
- Center for Biomedical Image Computing and Analytics (CBICA)University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michel J. Grothe
- Unidad de Trastornos del Movimiento, Instituto de Bioedicina de Sevilla (IBiS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
| | - Tanweer Rashid
- Center for Biomedical Image Computing and Analytics (CBICA)University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Neuroimage Analytics Laboratory (NAL) and the Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexasUSA
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research ProgramNational Institute on AgingBethesdaMarylandUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Haykel Snoussi
- Neuroimage Analytics Laboratory (NAL) and the Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexasUSA
| | - Susan Heckbert
- Department of Epidemiology and Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of RadiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PsychiatryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michael Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Alzheimer's Disease Core Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John Q. Trojanwoski
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute on AgingPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sudha Seshadri
- Udall Parkinson's Research CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
| | - Mohamad Habes
- Center for Biomedical Image Computing and Analytics (CBICA)University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Neuroimage Analytics Laboratory (NAL) and the Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexasUSA
| | | |
Collapse
|
4
|
A Semi-Unsupervised Segmentation Methodology Based on Texture Recognition for Radiomics: A Preliminary Study on Brain Tumours. ELECTRONICS 2022. [DOI: 10.3390/electronics11101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because of the intrinsic anatomic complexity of the brain structures, brain tumors have a high mortality and disability rate, and an early diagnosis is mandatory to contain damages. The commonly used biopsy is the diagnostic gold standard method, but it is invasive and, due to intratumoral heterogeneity, biopsies may lead to an incorrect result. Moreover, some tumors cannot be resectable if located in critical eloquent areas. On the other hand, medical imaging procedures can evaluate the entire tumor in a non-invasive and reproducible way. Radiomics is an emerging diagnosis technique based on quantitative medical image analyses, which makes use of data provided by non-invasive diagnosis techniques such as X-ray, computer-tomography (CT), magnetic resonance (MR), and proton emission tomography (PET). Radiomics techniques require the comprehensive analysis of huge numbers of medical images to extract a large and useful number of phenotypic features (usually called radiomics biomarkers). The goal is to explore and obtain the associations between features of tumors, diagnosis and patients’ prognoses to choose the best treatments and maximize the patient’s survival rate. Current radiomics techniques are not standardized in term of segmentation, feature extraction, and selection, moreover, the decision on suitable therapies still requires the supervision of an expert doctor. In this paper, we propose a semi-automatic methodology aimed to help the identification and segmentation of malignant tissues by using the combination of binary texture recognition, growing area algorithm, and machine learning techniques. In particular, the proposed method not only helps to better identify pathologic tissues but also permits to analyze in a fast way the huge amount of data, in Dicom format, provided by non-invasive diagnostic techniques. A preliminary experimental assessment has been conducted, considering a real MRI database of brain tumors. The method has been compared with the segmentation software’s tools “slicer 3D”. The obtained results are quite promising and demonstrate the potentialities of the proposed semi-unsupervised segmentation methodology.
Collapse
|
5
|
Jiao Z, Li H, Xiao Y, Dorsey J, Simone CB, Feigenberg S, Kao G, Fan Y. Integration of Deep Learning Radiomics and Counts of Circulating Tumor Cells Improves Prediction of Outcomes of Early Stage NSCLC Patients Treated With Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2022; 112:1045-1054. [PMID: 34775000 PMCID: PMC9074888 DOI: 10.1016/j.ijrobp.2021.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE We develop a deep learning (DL) radiomics model and integrate it with circulating tumor cell (CTC) counts as a clinically useful prognostic marker for predicting recurrence outcomes of early-stage (ES) non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS A cohort of 421 NSCLC patients was used to train a DL model for gleaning informative imaging features from computed tomography (CT) data. The learned imaging features were optimized on a cohort of 98 ES-NSCLC patients treated with SBRT for predicting individual patient recurrence risks by building DL models on CT data and clinical measures. These DL models were validated on the third cohort of 60 ES-NSCLC patients treated with SBRT to predict recurrent risks and stratify patients into subgroups with distinct outcomes in conjunction with CTC counts. RESULTS The DL model obtained a concordance-index of 0.880 (95% confidence interval, 0.879-0.881). Patient subgroups with low and high DL risk scores had significantly different recurrence outcomes (P = 3.5e-04). The integration of DL risk scores and CTC measures identified 4 subgroups of patients with significantly different risks of recurrence (χ2 = 20.11, P = 1.6e-04). Patients with positive CTC measures were associated with increased risks of recurrence that were significantly different from patients with negative CTC measures (P = 0.0447). CONCLUSIONS In this first-ever study integrating DL radiomics models and CTC counts, our results suggested that this integration improves patient stratification compared with either imagining data or CTC measures alone in predicting recurrence outcomes for patients treated with SBRT for ES-NSCLC.
Collapse
Affiliation(s)
- Zhicheng Jiao
- Department of Radiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongming Li
- Department of Radiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ying Xiao
- Department of Radiation Oncology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jay Dorsey
- Department of Radiation Oncology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven Feigenberg
- Department of Radiation Oncology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gary Kao
- Department of Radiation Oncology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
6
|
Liu Y, Zheng H, Liang Z, Miao Q, Brisbane WG, Marks LS, Raman SS, Reiter RE, Yang G, Sung K. Textured-Based Deep Learning in Prostate Cancer Classification with 3T Multiparametric MRI: Comparison with PI-RADS-Based Classification. Diagnostics (Basel) 2021; 11:1785. [PMID: 34679484 PMCID: PMC8535024 DOI: 10.3390/diagnostics11101785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
The current standardized scheme for interpreting MRI requires a high level of expertise and exhibits a significant degree of inter-reader and intra-reader variability. An automated prostate cancer (PCa) classification can improve the ability of MRI to assess the spectrum of PCa. The purpose of the study was to evaluate the performance of a texture-based deep learning model (Textured-DL) for differentiating between clinically significant PCa (csPCa) and non-csPCa and to compare the Textured-DL with Prostate Imaging Reporting and Data System (PI-RADS)-based classification (PI-RADS-CLA), where a threshold of PI-RADS ≥ 4, representing highly suspicious lesions for csPCa, was applied. The study cohort included 402 patients (60% (n = 239) of patients for training, 10% (n = 42) for validation, and 30% (n = 121) for testing) with 3T multiparametric MRI matched with whole-mount histopathology after radical prostatectomy. For a given suspicious prostate lesion, the volumetric patches of T2-Weighted MRI and apparent diffusion coefficient images were cropped and used as the input to Textured-DL, consisting of a 3D gray-level co-occurrence matrix extractor and a CNN. PI-RADS-CLA by an expert reader served as a baseline to compare classification performance with Textured-DL in differentiating csPCa from non-csPCa. Sensitivity and specificity comparisons were performed using Mcnemar's test. Bootstrapping with 1000 samples was performed to estimate the 95% confidence interval (CI) for AUC. CIs of sensitivity and specificity were calculated by the Wald method. The Textured-DL model achieved an AUC of 0.85 (CI [0.79, 0.91]), which was significantly higher than the PI-RADS-CLA (AUC of 0.73 (CI [0.65, 0.80]); p < 0.05) for PCa classification, and the specificity was significantly different between Textured-DL and PI-RADS-CLA (0.70 (CI [0.59, 0.82]) vs. 0.47 (CI [0.35, 0.59]); p < 0.05). In sub-analyses, Textured-DL demonstrated significantly higher specificities in the peripheral zone (PZ) and solitary tumor lesions compared to the PI-RADS-CLA (0.78 (CI [0.66, 0.90]) vs. 0.42 (CI [0.28, 0.57]); 0.75 (CI [0.54, 0.96]) vs. 0.38 [0.14, 0.61]; all p values < 0.05). Moreover, Textured-DL demonstrated a high negative predictive value of 92% while maintaining a high positive predictive value of 58% among the lesions with a PI-RADS score of 3. In conclusion, the Textured-DL model was superior to the PI-RADS-CLA in the classification of PCa. In addition, Textured-DL demonstrated superior performance in the specificities for the peripheral zone and solitary tumors compared with PI-RADS-based risk assessment.
Collapse
Affiliation(s)
- Yongkai Liu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.Z.); (Q.M.); (S.S.R.); (K.S.)
- Physics and Biology in Medicine IDP, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Haoxin Zheng
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.Z.); (Q.M.); (S.S.R.); (K.S.)
| | - Zhengrong Liang
- Departments of Radiology and Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Qi Miao
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.Z.); (Q.M.); (S.S.R.); (K.S.)
| | - Wayne G. Brisbane
- Department of Urology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (W.G.B.); (L.S.M.); (R.E.R.)
| | - Leonard S. Marks
- Department of Urology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (W.G.B.); (L.S.M.); (R.E.R.)
| | - Steven S. Raman
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.Z.); (Q.M.); (S.S.R.); (K.S.)
| | - Robert E. Reiter
- Department of Urology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (W.G.B.); (L.S.M.); (R.E.R.)
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, South Kensington, London SW7 2AZ, UK;
| | - Kyunghyun Sung
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.Z.); (Q.M.); (S.S.R.); (K.S.)
- Physics and Biology in Medicine IDP, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Integration of Risk Survival Measures Estimated From Pre- and Posttreatment Computed Tomography Scans Improves Stratification of Patients With Early-Stage Non-small Cell Lung Cancer Treated With Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 109:1647-1656. [PMID: 33333202 PMCID: PMC7965338 DOI: 10.1016/j.ijrobp.2020.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE To predict overall survival of patients receiving stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer (ES-NSCLC), we developed a radiomic model that integrates risk of death estimates and changes based on pre- and posttreatment computed tomography (CT) scans. We hypothesize this innovation will improve our ability to stratify patients into various oncologic outcomes with greater accuracy. METHODS AND MATERIALS Two cohorts of patients with ES-NSCLC uniformly treated with SBRT (a median dose of 50 Gy in 4-5 fractions) were studied. Prediction models were built on a discovery cohort of 100 patients with treatment planning CT scans, and then were applied to a separate validation cohort of 60 patients with pre- and posttreatment CT scans for evaluating their performance. RESULTS Prediction models achieved a c-index up to 0.734 in predicting survival outcomes of the validation cohort. The integration of the pretreatment risk of survival measures (risk-high vs risk-low) and changes (risk-increase vs risk-decrease) in risk of survival measures between the pretreatment and posttreatment scans further stratified the patients into 4 subgroups (risk: high, increase; risk: high, decrease; risk: low, increase; risk: low, decrease) with significant difference (χ2 = 18.549, P = .0003, log-rank test). There was also a significant difference between the risk-increase and risk-decrease groups (χ2 = 6.80, P = .0091, log-rank test). In addition, a significant difference (χ2 = 7.493, P = .0062, log-rank test) was observed between the risk-high and risk-low groups obtained based on the pretreatment risk of survival measures. CONCLUSION The integration of risk of survival measures estimated from pre- and posttreatment CT scans can help differentiate patients with good expected survival from those who will do more poorly following SBRT. The analysis of these radiomics-based longitudinal risk measures may help identify patients with early-stage NSCLC who will benefit from adjuvant treatment after lung SBRT, such as immunotherapy.
Collapse
|