1
|
Murakami R, Mori S, Zhang HK. Intraoperative Ablation Control Based on Real-Time Necrosis Monitoring Feedback: Numerical Evaluation. Ann Biomed Eng 2024; 52:3312-3325. [PMID: 39133389 DOI: 10.1007/s10439-024-03599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
Ablation therapy is a type of minimally invasive treatment, utilized for various organs including the brain, heart, and kidneys. The accuracy of the ablation process is critically important to avoid both insufficient and excessive ablation, which may result in compromised efficacy or complications. The thermal ablation is formulated by two theoretical models: the heat transfer (HT) and necrosis formation (NF) models. In modern medical practices, feed-forward (FF) and temperature feedback (TFB) controls are primarily used as ablation control methodologies. FF involves pre-therapy procedure planning based on previous experiences and theoretical knowledge without monitoring the intraoperative tissue response, hence, it can't compensate for discrepancies in the assumed HT or NF models. These discrepancies can arise due to individual patient's tissue characteristic differences and specific environmental conditions. Conversely, TFB control is based on the intraoperative temperature profile. It estimates the resulting heat damage based on the monitored temperature distribution and assumed NF model. Therefore, TFB can make necessary adjustments even if there is an error in the assumed HT model. TFB is thus seen as a more robust control method against modeling errors in the HT model. Still, TFB is limited as it assumes a fixed NF model, irrespective of the patient or the ablation technique used. An ideal solution to these limitations would be to actively monitor heat damage to the tissue during the operation and utilize this data to control ablation. This strategy is defined as necrosis feedback (NFB) in this study. Such real-time necrosis monitoring modalities making NFB possible are emerging, however, there is an absence of a generalized study that discusses the integration and quantifies the significance of the real-time necrosis monitor techniques for ablation therapy. Such an investigation is expected to clarify the universal principles of how these techniques would improve ablation therapy. In this study, we examine the potential of NFB in suppressing errors associated with the NF model as NFB is theoretically capable of monitoring and suppressing the errors associated with the NF models in its closed control loop. We simulate and compare the performances of TFB and NFB with artificially generated modeling errors using the finite element method (FEM). The results show that NFB provides more accurate ablation control than TFB when NF-oriented errors are applied, indicating NFB's potential to improve the ablation control accuracy and highlighting the value of the ongoing research to make real-time necrosis monitoring a clinically viable option.
Collapse
Affiliation(s)
- Ryo Murakami
- Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Haichong K Zhang
- Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
- Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
- Computer Science, Worcester Polytechnic Institute, MA, Worcester, USA.
| |
Collapse
|
2
|
Zhao Z, Jiang Y, Bales C, Wang Y, Fischer G. Development of Advanced FEM Simulation Technology for Pre-Operative Surgical Planning. ARXIV 2024:arXiv:2409.03990v2. [PMID: 39279837 PMCID: PMC11398534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Intracorporeal needle-based therapeutic ultrasound (NBTU) offers a minimally invasive approach for the thermal ablation of malignant brain tumors, including both primary and metastatic cancers. NBTU utilizes a high-frequency alternating electric field to excite a piezoelectric transducer, generating acoustic waves that cause localized heating and tumor cell ablation, and it provides a more precise ablation by delivering lower acoustic power doses directly to targeted tumors while sparing surrounding healthy tissue. Building on our previous work, this study introduces a database for optimizing pre-operative surgical planning by simulating ablation effects in varied tissue environments and develops an extended simulation model incorporating various tumor types and sizes to evaluate thermal damage under trans-tissue conditions. A comprehensive database is created from these simulations, detailing critical parameters such as CEM43 isodose maps, temperature changes, thermal dose areas, and maximum ablation distances for four directional probes. This database serves as a valuable resource for future studies, aiding in complex trajectory planning and parameter optimization for NBTU procedures. Moreover, a novel probe selection method is proposed to enhance pre-surgical planning, providing a strategic approach to selecting probes that maximize therapeutic efficiency and minimize ablation time. By avoiding unnecessary thermal propagation and optimizing probe angles, this method has the potential to improve patient outcomes and streamline surgical procedures. Overall, the findings of this study contribute significantly to the field of NBTU, offering a robust framework for enhancing treatment precision and efficacy in clinical settings.
Collapse
Affiliation(s)
- Zhanyue Zhao
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA 01605 USA
| | - Yiwei Jiang
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA 01605 USA
| | - Charles Bales
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA 01605 USA
| | - Yang Wang
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA 01605 USA
| | - Gregory Fischer
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA 01605 USA
| |
Collapse
|
3
|
Zhao Z, Szewczyk B, Tarasek M, Bales C, Wang Y, Liu M, Jiang Y, Bhushan C, Fiveland E, Campwala Z, Trowbridge R, Johansen PM, Olmsted Z, Ghoshal G, Heffter T, Gandomi K, Tavakkolmoghaddam F, Nycz C, Jeannotte E, Mane S, Nalwalk J, Burdette EC, Qian J, Yeo D, Pilitsis J, Fischer GS. Deep Brain Ultrasound Ablation Thermal Dose Modeling with in Vivo Experimental Validation. ARXIV 2024:arXiv:2409.02395v2. [PMID: 39279835 PMCID: PMC11398545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Intracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field (up to 10 MHz) to excite a piezoelectric transducer. The resulting rapid deformation of the transducer produces an acoustic wave that propagates through tissue, leading to localized high-temperature heating at the target tumor site and inducing rapid cell death. To optimize the design of NBTU transducers for thermal dose delivery during treatment, numerical modeling of the acoustic pressure field generated by the deforming piezoelectric transducer is frequently employed. The bioheat transfer process generated by the input pressure field is used to track the thermal propagation of the applicator over time. Magnetic resonance thermal imaging (MRTI) can be used to experimentally validate these models. Validation results using MRTI demonstrated the feasibility of this model, showing a consistent thermal propagation pattern. However, a thermal damage isodose map is more advantageous for evaluating therapeutic efficacy. To achieve a more accurate simulation based on the actual brain tissue environment, a new finite element method (FEM) simulation with enhanced damage evaluation capabilities was conducted. The results showed that the highest temperature and ablated volume differed between experimental and simulation results by 2.1884°C (3.71%) and 0.0631 cm3 (5.74%), respectively. The lowest Pearson correlation coefficient (PCC) for peak temperature was 0.7117, and the lowest Dice coefficient for the ablated area was 0.7021, indicating a good agreement in accuracy between simulation and experiment.
Collapse
Affiliation(s)
| | - Benjamin Szewczyk
- Worcester Polytechnic Institute, Worcester, MA
- Department of Neurosurgery, Albany Medical Center, Albany, NY
| | | | | | - Yang Wang
- Worcester Polytechnic Institute, Worcester, MA
| | - Ming Liu
- Worcester Polytechnic Institute, Worcester, MA
| | - Yiwei Jiang
- Worcester Polytechnic Institute, Worcester, MA
| | | | | | - Zahabiya Campwala
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | - Rachel Trowbridge
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | - Phillip M Johansen
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Zachary Olmsted
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | | | | | | | | | | | - Erin Jeannotte
- Animal Resources Facility, Albany Medical Center, Albany, NY
| | - Shweta Mane
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | - Julia Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | | | - Jiang Qian
- Department of Neurosurgery, Albany Medical Center, Albany, NY
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | | | - Julie Pilitsis
- Department of Neurosurgery, Albany Medical Center, Albany, NY
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | | |
Collapse
|
4
|
Gupta P, Heffter T, Zubair M, Hsu IC, Burdette EC, Diederich CJ. Treatment Planning Strategies for Interstitial Ultrasound Ablation of Prostate Cancer. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:362-375. [PMID: 38899026 PMCID: PMC11186654 DOI: 10.1109/ojemb.2024.3397965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE To develop patient-specific 3D models using Finite-Difference Time-Domain (FDTD) simulations and pre-treatment planning tools for the selective thermal ablation of prostate cancer with interstitial ultrasound. This involves the integration with a FDA 510(k) cleared catheter-based ultrasound interstitial applicators and delivery system. METHODS A 3D generalized "prostate" model was developed to generate temperature and thermal dose profiles for different applicator operating parameters and anticipated perfusion ranges. A priori planning, based upon these pre-calculated lethal thermal dose and iso-temperature clouds, was devised for iterative device selection and positioning. Full 3D patient-specific anatomic modeling of actual placement of single or multiple applicators to conformally ablate target regions can be applied, with optional integrated pilot-point temperature-based feedback control and urethral/rectum cooling. These numerical models were verified against previously reported ex-vivo experimental results obtained in soft tissues. RESULTS For generic prostate tissue, 360 treatment schemes were simulated based on the number of transducers (1-4), applied power (8-20 W/cm2), heating time (5, 7.5, 10 min), and blood perfusion (0, 2.5, 5 kg/m3/s) using forward treatment modelling. Selectable ablation zones ranged from 0.8-3.0 cm and 0.8-5.3 cm in radial and axial directions, respectively. 3D patient-specific thermal treatment modeling for 12 Cases of T2/T3 prostate disease demonstrate applicability of workflow and technique for focal, quadrant and hemi-gland ablation. A temperature threshold (e.g., Tthres = 52 °C) at the treatment margin, emulating placement of invasive temperature sensing, can be applied for pilot-point feedback control to improve conformality of thermal ablation. Also, binary power control (e.g., Treg = 45 °C) can be applied which will regulate the applied power level to maintain the surrounding temperature to a safe limit or maximum threshold until the set heating time. CONCLUSIONS Prostate-specific simulations of interstitial ultrasound applicators were used to generate a library of thermal-dose distributions to visually optimize and set applicator positioning and directivity during a priori treatment planning pre-procedure. Anatomic 3D forward treatment planning in patient-specific models, along with optional temperature-based feedback control, demonstrated single and multi-applicator implant strategies to effectively ablate focal disease while affording protection of normal tissues.
Collapse
Affiliation(s)
- Pragya Gupta
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCA94115USA
| | | | - Muhammad Zubair
- Department of Neurology and Neurological SciencesStanford UniversityStanfordCA94305USA
| | - I-Chow Hsu
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCA94115USA
| | | | - Chris J. Diederich
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCA94115USA
| |
Collapse
|
5
|
Szewczyk B, Tarasek M, Campwala Z, Trowbridge R, Zhao Z, Johansen PM, Olmsted Z, Bhushan C, Fiveland E, Ghoshal G, Heffter T, Tavakkolmoghaddam F, Bales C, Wang Y, Rajamani DK, Gandomi K, Nycz C, Jeannotte E, Mane S, Nalwalk J, Burdette EC, Fischer G, Yeo D, Qian J, Pilitsis J. What happens to brain outside the thermal ablation zones? An assessment of needle-based therapeutic ultrasound in survival swine. Int J Hyperthermia 2022; 39:1283-1293. [PMID: 36162814 DOI: 10.1080/02656736.2022.2126901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND In stereotactic radiosurgery, isodose lines must be considered to determine how surrounding tissue is affected. In thermal ablative therapy, such as laser interstitial thermal therapy (LITT), transcranial MR-guided focused ultrasound (tcMRgFUS), and needle-based therapeutic ultrasound (NBTU), how the surrounding area is affected has not been well studied. OBJECTIVE We aimed to quantify the transition zone surrounding the ablation core created by magnetic resonance-guided robotically-assisted (MRgRA) delivery of NBTU using multi-slice volumetric 2-D magnetic resonance thermal imaging (MRTI) and subsequent characterization of the resultant tissue damage using histopathologic analysis. METHODS Four swine underwent MRgRA NBTU using varying duration and wattage for treatment delivery. Serial MRI images were obtained, and the most representative were overlaid with isodose lines and compared to brain tissue acquired postmortem which underwent histopathologic analysis. These results were also compared to predicted volumes using a finite element analysis model. Contralateral brain tissue was used for control data. RESULTS Intraoperative MRTI thermal isodose contours were characterized and comprehensively mapped to post-operative MRI images and qualitatively compared with histological tissue sections postmortem. NBTU 360° ablations induced smaller lesion volumes (33.19 mm3; 120 s, 3 W; 30.05 mm3, 180 s, 4 W) versus 180° ablations (77.20 mm3, 120 s, 3 W; 109.29 mm3; 180 s; 4 W). MRTI/MRI overlay demonstrated the lesion within the proximal isodose lines. The ablation-zone was characterized by dense macrophage infiltration and glial/neuronal loss as demonstrated by glial fibrillary acidic protein (GFAP) and neurofilament (NF) absence and avid CD163 staining. The transition-zone between lesion and normal brain demonstrated decreased macrophage infiltration and measured ∼345 microns (n - 3). We did not detect overt hemorrhages or signs of edema in the adjacent spared tissue. CONCLUSION We successfully performed MRgRA NBTU ablation in swine and demonstrated minimal histologic changes extended past the ablation-zone. The lesion was characterized by macrophage infiltration and glial/neuronal loss which decreased through the transition-zone.
Collapse
Affiliation(s)
- Benjamin Szewczyk
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA.,Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Zahabiya Campwala
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | - Rachel Trowbridge
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | - Zhanyue Zhao
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Phillip M Johansen
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Zachary Olmsted
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | | | | | | | | | | | - Charles Bales
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Yang Wang
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Dhruv Kool Rajamani
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Katie Gandomi
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Christopher Nycz
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Erin Jeannotte
- Animal Resources Facility, Albany Medical Center, Albany, NY, USA
| | - Shweta Mane
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | - Julia Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | | | - Gregory Fischer
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Desmond Yeo
- GE Global Research Center, Niskayuna, NY, USA
| | - Jiang Qian
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA.,Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | - Julie Pilitsis
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA.,Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA.,Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
6
|
Su H, Kwok KW, Cleary K, Iordachita I, Cavusoglu MC, Desai JP, Fischer GS. State of the Art and Future Opportunities in MRI-Guided Robot-Assisted Surgery and Interventions. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:968-992. [PMID: 35756185 PMCID: PMC9231642 DOI: 10.1109/jproc.2022.3169146] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of target anatomy, surrounding tissue, and instrumentation, but there are significant challenges in harnessing it for effectively guiding interventional procedures. Challenges include the strong static magnetic field, rapidly switching magnetic field gradients, high-power radio frequency pulses, sensitivity to electrical noise, and constrained space to operate within the bore of the scanner. MRI has a number of advantages over other medical imaging modalities, including no ionizing radiation, excellent soft-tissue contrast that allows for visualization of tumors and other features that are not readily visible by other modalities, true 3-D imaging capabilities, including the ability to image arbitrary scan plane geometry or perform volumetric imaging, and capability for multimodality sensing, including diffusion, dynamic contrast, blood flow, blood oxygenation, temperature, and tracking of biomarkers. The use of robotic assistants within the MRI bore, alongside the patient during imaging, enables intraoperative MR imaging (iMRI) to guide a surgical intervention in a closed-loop fashion that can include tracking of tissue deformation and target motion, localization of instrumentation, and monitoring of therapy delivery. With the ever-expanding clinical use of MRI, MRI-compatible robotic systems have been heralded as a new approach to assist interventional procedures to allow physicians to treat patients more accurately and effectively. Deploying robotic systems inside the bore synergizes the visual capability of MRI and the manipulation capability of robotic assistance, resulting in a closed-loop surgery architecture. This article details the challenges and history of robotic systems intended to operate in an MRI environment and outlines promising clinical applications and associated state-of-the-art MRI-compatible robotic systems and technology for making this possible.
Collapse
Affiliation(s)
- Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Ka-Wai Kwok
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
| | - Kevin Cleary
- Children's National Health System, Washington, DC 20010 USA
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218 USA
| | - M Cenk Cavusoglu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jaydev P Desai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Gregory S Fischer
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| |
Collapse
|
7
|
Tavakkolmoghaddam F, Rajamani DK, Szewczyk B, Zhao Z, Gandomi K, Sekhar SC, Pilitsis J, Nycz C, Fischer G. NeuroPlan: A Surgical Planning Toolkit for an MRI-Compatible Stereotactic Neurosurgery Robot. ... INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS. INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS 2021; 2021:10.1109/ismr48346.2021.9661581. [PMID: 35789074 PMCID: PMC9248070 DOI: 10.1109/ismr48346.2021.9661581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The adoption of robotic image-guided surgeries has enabled physicians to perform therapeutic and diagnostic procedures with less invasiveness and higher accuracy. One example is the MRI-guided stereotactic robotic-assisted surgery for conformal brain tumor ablation, where the robot is used to position and orient a thin probe to target a desired region within the brain. Requirements such as the remote center of motion and precise manipulation, impose the use of complex kinematic structures, which result in non-trivial workspaces in these robots. The lack of workspace visualization poses a challenge in selecting valid entry and target points during the surgical planning and navigation stage. In this paper, we present a surgical planning toolkit called the "NeuroPlan" for our MRI-compatible stereotactic neurosurgery robot developed as a module for 3D Slicer software. This toolkit streamlines the current surgical workflow by rendering and overlaying the robot's reachable workspace on the MRI image. It also assists with identifying the optimal entry point by segmenting the cranial burr hole volume and locating its center. We demonstrate the accuracy of the workspace rendering and burr hole parameter detection through both phantom and MR-images acquired from previously conducted animal studies.
Collapse
Affiliation(s)
| | - Dhruv Kool Rajamani
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester MA
| | - Benjamin Szewczyk
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester MA
- Department of Neurosurgery, Albany Medical Center, Albany NY
| | - Zhanyue Zhao
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester MA
| | - Katie Gandomi
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester MA
| | | | - Julie Pilitsis
- Department of Neurosurgery, Albany Medical Center, Albany NY
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany NY
| | - Christopher Nycz
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester MA
| | - Gregory Fischer
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester MA
| |
Collapse
|