1
|
Shen X, Wu P, Lin W. A new model for bubble cluster dynamics in a viscoelastic media. ULTRASONICS SONOCHEMISTRY 2024; 107:106890. [PMID: 38693010 PMCID: PMC11176833 DOI: 10.1016/j.ultsonch.2024.106890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Bubble cluster dynamics in viscoelastic media is instructive for ultrasound diagnosis and therapy. In this paper, we propose a statistical model for bubble cluster dynamics in viscoelastic media considering the radius distribution of bubble nuclei. By investigating and comparing the response for a bubble in three conditions: single bubble; multi-bubble with the same radius; multi-bubble with different radius, the following rules are found: The promotion or suppression of the bubble cluster on the bubble vibration is not monotonous with the increase of the number of bubbles. The promotion or suppression of the bubble cluster on the bubble vibration varies alternately with the frequency. The effect of bubble cluster on bubble vibration is mostly suppressed when the driving acoustic pressure amplitude pa is high (5000 kPa). Usually, the bubble cluster promotes the vibration of the large bubbles (R0 = 10 μm) more, or suppresses it less.
Collapse
Affiliation(s)
- Xiaozhuo Shen
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wu
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weijun Lin
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Hu Z, Yang Y, Yang L, Gong Y, Chukwu C, Ye D, Yue Y, Yuan J, Kravitz AV, Chen H. Airy-beam holographic sonogenetics for advancing neuromodulation precision and flexibility. Proc Natl Acad Sci U S A 2024; 121:e2402200121. [PMID: 38885384 PMCID: PMC11214095 DOI: 10.1073/pnas.2402200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
Advancing our understanding of brain function and developing treatments for neurological diseases hinge on the ability to modulate neuronal groups in specific brain areas without invasive techniques. Here, we introduce Airy-beam holographic sonogenetics (AhSonogenetics) as an implant-free, cell type-specific, spatially precise, and flexible neuromodulation approach in freely moving mice. AhSonogenetics utilizes wearable ultrasound devices manufactured using 3D-printed Airy-beam holographic metasurfaces. These devices are designed to manipulate neurons genetically engineered to express ultrasound-sensitive ion channels, enabling precise modulation of specific neuronal populations. By dynamically steering the focus of Airy beams through ultrasound frequency tuning, AhSonogenetics is capable of modulating neuronal populations within specific subregions of the striatum. One notable feature of AhSonogenetics is its ability to flexibly stimulate either the left or right striatum in a single mouse. This flexibility is achieved by simply switching the acoustic metasurface in the wearable ultrasound device, eliminating the need for multiple implants or interventions. AhSonogentocs also integrates seamlessly with in vivo calcium recording via fiber photometry, showcasing its compatibility with optical modalities without cross talk. Moreover, AhSonogenetics can generate double foci for bilateral stimulation and alleviate motor deficits in Parkinson's disease mice. This advancement is significant since many neurological disorders, including Parkinson's disease, involve dysfunction in multiple brain regions. By enabling precise and flexible cell type-specific neuromodulation without invasive procedures, AhSonogenetics provides a powerful tool for investigating intact neural circuits and offers promising interventions for neurological disorders.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Leqi Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Alexxai V. Kravitz
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO63110
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
3
|
Jiang S, Wu X, Yang F, Rommelfanger NJ, Hong G. Activation of mechanoluminescent nanotransducers by focused ultrasound enables light delivery to deep-seated tissue in vivo. Nat Protoc 2023; 18:3787-3820. [PMID: 37914782 PMCID: PMC11405139 DOI: 10.1038/s41596-023-00895-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/27/2023] [Indexed: 11/03/2023]
Abstract
Light is used extensively in biological and medical research for optogenetic neuromodulation, fluorescence imaging, photoactivatable gene editing and light-based therapies. The major challenge to the in vivo implementation of light-based methods in deep-seated structures of the brain or of internal organs is the limited penetration of photons in biological tissue. The presence of light scattering and absorption has resulted in the development of invasive techniques such as the implantation of optical fibers, the insertion of endoscopes and the surgical removal of overlying tissues to overcome light attenuation and deliver it deep into the body. However, these procedures are highly invasive and make it difficult to reposition and adjust the illuminated area in each animal. Here, we detail a noninvasive approach to deliver light (termed 'deLight') in deep tissue via systemically injected mechanoluminescent nanotransducers that can be gated by using focused ultrasound. This approach achieves localized light emission with sub-millimeter resolution and millisecond response times in any vascularized organ of living mice without requiring invasive implantation of light-emitting devices. For example, deLight enables optogenetic neuromodulation in live mice without a craniotomy or brain implants. deLight provides a generalized method for applications that require a light source in deep tissues in vivo, such as deep-brain fluorescence imaging and photoactivatable genome editing. The implementation of the entire protocol for an in vivo application takes ~1-2 weeks.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Fan Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Nicholas J Rommelfanger
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Parks TV, Szuzupak D, Choi SH, Alikaya A, Mou Y, Silva AC, Schaeffer DJ. Noninvasive disruption of the blood-brain barrier in the marmoset monkey. Commun Biol 2023; 6:806. [PMID: 37532791 PMCID: PMC10397190 DOI: 10.1038/s42003-023-05185-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
The common marmoset monkey (Callithrix jacchus) is a species of rising prominence in the neurosciences due to its small size, ease of handling, fast breeding, and its shared functional and structural brain characteristics with Old World primates. With increasing attention on modeling human brain diseases in marmosets, understanding how to deliver therapeutic or neurotropic agents to the marmoset brain noninvasively is of great preclinical importance. In other species, including humans, transcranial focused ultrasound (tFUS) aided by intravenously injected microbubbles has proven to be a transient, reliable, and safe method for disrupting the blood-brain barrier (BBB), allowing the focal passage of therapeutic agents that do not otherwise readily traverse the tight endothelial junctions of the BBB. The critical gap that we address here is to document parameters to disrupt the BBB reliably and safely in marmosets using tFUS. By integrating our marmoset brain atlases and the use of a marmoset-specific stereotactic targeting system, we conduct a series of systematic transcranial sonication experiments in nine marmosets. We demonstrate the effects of center frequency, acoustic pressure, burst period, and duration, establish a minimum microbubble dose, estimate microbubble clearance time, and estimate the duration that the BBB remains open to passage. Successful BBB disruption is reported in vivo with MRI-based contrast agents, as well as Evans blue staining assessed ex vivo. Histology (Hematoxylin and Eosin staining) and immunohistochemistry indicate that the BBB can be safely and reliably opened with the parameters derived from these experiments. The series of experiments presented here establish methods for safely, reproducibly, and focally perturbing the BBB using tFUS in the common marmoset monkey that can serve as a basis for noninvasive delivery of therapeutic or neurotropic agents.
Collapse
Affiliation(s)
- T Vincenza Parks
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diego Szuzupak
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sang-Ho Choi
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aydin Alikaya
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yongshan Mou
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Ye D, Chen S, Liu Y, Weixel C, Hu Z, Yuan J, Chen H. Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles. Proc Natl Acad Sci U S A 2023; 120:e2212933120. [PMID: 37186852 PMCID: PMC10214201 DOI: 10.1073/pnas.2212933120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The glymphatic system is a perivascular fluid transport system for waste clearance. Glymphatic transport is believed to be driven by the perivascular pumping effect created by the pulsation of the arterial wall caused by the cardiac cycle. Ultrasound sonication of circulating microbubbles (MBs) in the cerebral vasculature induces volumetric expansion and contraction of MBs that push and pull on the vessel wall to generate a MB pumping effect. The objective of this study was to evaluate whether glymphatic transport can be mechanically manipulated by focused ultrasound (FUS) sonication of MBs. The glymphatic pathway in intact mouse brains was studied using intranasal administration of fluorescently labeled albumin as fluid tracers, followed by FUS sonication at a deep brain target (thalamus) in the presence of intravenously injected MBs. Intracisternal magna injection, the conventional technique used in studying glymphatic transport, was employed to provide a comparative reference. Three-dimensional confocal microscopy imaging of optically cleared brain tissue revealed that FUS sonication enhanced the transport of fluorescently labeled albumin tracer in the perivascular space (PVS) along microvessels, primarily the arterioles. We also obtained evidence of FUS-enhanced penetration of the albumin tracer from the PVS into the interstitial space. This study revealed that ultrasound combined with circulating MBs could mechanically enhance glymphatic transport in the brain.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Si Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Yajie Liu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Charlotte Weixel
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO63130
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurosurgery, Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
6
|
Hu Z, Yang Y, Ye D, Chen S, Gong Y, Chukwu C, Chen H. Targeted delivery of therapeutic agents to the mouse brain using a stereotactic-guided focused ultrasound device. STAR Protoc 2023; 4:102132. [PMID: 36861835 PMCID: PMC9988659 DOI: 10.1016/j.xpro.2023.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
Existing protocols of focused ultrasound (FUS) combined with microbubble-mediated blood-brain barrier (BBB) opening (FUS-BBBO) in preclinical research require expensive ultrasound equipment and complex operating procedures. We developed a low-cost, easy-to-use, and precise FUS device for small animal models in preclinical research. Here, we provide a detailed protocol for building the FUS transducer, attaching the transducer to a stereotactic frame for precise brain targeting, applying the integrated FUS device to perform FUS-BBBO in mice, and evaluating the FUS-BBBO outcome. For complete details on the use and execution of this protocol, please refer to Hu et al. (2022).1.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA.
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| |
Collapse
|
7
|
Kim J, Menichella B, Lee H, Dayton PA, Pinton GF. A Rapid Prototyping Method for Sub-MHz Single-Element Piezoelectric Transducers by Using 3D-Printed Components. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010313. [PMID: 36616910 PMCID: PMC9823623 DOI: 10.3390/s23010313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/05/2023]
Abstract
We present a rapid prototyping method for sub-megahertz single-element piezoelectric transducers by using 3D-printed components. In most of the early research phases of applying new sonication ideas, the prototyping quickness is prioritized over the final packaging quality, since the quickness of preliminary demonstration is crucial for promptly determining specific aims and feasible research approaches. We aim to develop a rapid prototyping method for functional ultrasonic transducers to overcome the current long lead time (>a few weeks). Here, we used 3D-printed external housing parts considering a single matching layer and either air backing or epoxy-composite backing (acoustic impedance > 5 MRayl). By molding a single matching layer on the top surface of a piezoceramic in a 3D-printed housing, an entire packaging time was significantly reduced (<26 h) compared to the conventional methods with grinding, stacking, and bonding. We demonstrated this prototyping method for 590-kHz single-element, rectangular-aperture transducers for moderate pressure amplitudes (mechanical index > 1) at focus with temporal pulse controllability (maximum amplitude by <5-cycle burst). We adopted an air-backing design (Type A) for efficient pressure outputs, and bandwidth improvement was tested by a tungsten-composite-backing (Type B) design. The acoustic characterization results showed that the type A prototype provided 3.3 kPa/Vpp far-field transmitting sensitivity with 25.3% fractional bandwidth whereas the type B transducer showed 2.1 kPa/Vpp transmitting sensitivity with 43.3% fractional bandwidth. As this method provided discernable quickness and cost efficiency, this detailed rapid prototyping guideline can be useful for early-phase sonication projects, such as multi-element therapeutic ultrasound array and micro/nanomedicine testing benchtop device prototyping.
Collapse
|
8
|
Ye D, Yuan J, Yang Y, Yue Y, Hu Z, Fadera S, Chen H. Incisionless targeted adeno-associated viral vector delivery to the brain by focused ultrasound-mediated intranasal administration. EBioMedicine 2022; 84:104277. [PMID: 36152518 PMCID: PMC9508404 DOI: 10.1016/j.ebiom.2022.104277] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Adeno-associated viral (AAV) vectors are currently the leading platform for gene therapy with the potential to treat a variety of central nervous system (CNS) diseases. There are numerous methods for delivering AAVs to the CNS, such as direct intracranial injection (DI), intranasal delivery (IN), and intravenous injection with focused ultrasound-induced blood–brain barrier disruption (FUS-BBBD). However, non-invasive and efficient delivery of AAVs to the brain with minimal systemic toxicity remain the major challenge. This study aims to investigate the potential of focused ultrasound-mediated intranasal delivery (FUSIN) in AAV delivery to brain. Methods Mice were intranasally administered with AAV5 encoding enhanced green fluorescence protein (AAV5-EGFP) followed by FUS sonication in the presence of systemically injected microbubbles. Mouse brains and other major organs were harvested for immunohistological staining, PCR quantification, and in situ hybridization. The AAV delivery outcomes were compared with those of DI, FUS-BBBD, and IN delivery. Findings FUSIN achieved safe and efficient delivery of AAV5-EGFP to spatially targeted brain locations, including a superficial brain site (cortex) and a deep brain region (brainstem). FUSIN achieved comparable delivery outcomes as the established DI, and displayed 414.9-fold and 2073.7-fold higher delivery efficiency than FUS-BBBD and IN. FUSIN was associated with minimal biodistribution in peripheral organs, which was comparable to that of DI. Interpretation Our results suggest that FUSIN is a promising technique for non-invasive, efficient, safe, and spatially targeted AAV delivery to the brain. Funding National Institutes of Health (NIH) grants R01EB027223, R01EB030102, R01MH116981, and UG3MH126861.
Collapse
|
9
|
Hu Z, Yang Y, Xu L, Hao Y, Chen H. Binary acoustic metasurfaces for dynamic focusing of transcranial ultrasound. Front Neurosci 2022; 16:984953. [PMID: 36117633 PMCID: PMC9475195 DOI: 10.3389/fnins.2022.984953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Transcranial focused ultrasound (tFUS) is a promising technique for non-invasive and spatially targeted neuromodulation and treatment of brain diseases. Acoustic lenses were designed to correct the skull-induced beam aberration, but these designs could only generate static focused ultrasound beams inside the brain. Here, we designed and 3D printed binary acoustic metasurfaces (BAMs) for skull aberration correction and dynamic ultrasound beam focusing. BAMs were designed by binarizing the phase distribution at the surface of the metasurfaces. The phase distribution was calculated based on time reversal to correct the skull-induced phase aberration. The binarization enabled the ultrasound beam to be dynamically steered along wave propagation direction by adjusting the operation frequency of the incident ultrasound wave. The designed BAMs were manufactured by 3D printing with two coding bits, a polylactic acid unit for bit "1" and a water unit for bit "0." BAMs for single- and multi-point focusing through the human skull were designed, 3D printed, and validated numerically and experimentally. The proposed BAMs with subwavelength scale in thickness are simple to design, easy to fabric, and capable of correcting skull aberration and achieving dynamic beam steering.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
10
|
Hu Z, Yang Y, Xu L, Jing Y, Chen H. Airy Beam-enabled Binary Acoustic Metasurfaces for Underwater Ultrasound Beam Manipulation. PHYSICAL REVIEW APPLIED 2022; 18:024070. [PMID: 36600893 PMCID: PMC9809203 DOI: 10.1103/physrevapplied.18.024070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Airy beams are peculiar beams that are non-diffracting, self-accelerating, and self-healing, and they have offered great opportunities for ultrasound beam manipulation. However, one critical barrier that limits the broad applications of Airy beams in ultrasound is the lack of simply built device to generate Airy beams in water. This work presents a family of Airy beam-enabled binary acoustic metasurfaces (AB-BAMs) to generate Airy beams for underwater ultrasound beam manipulation. AB-BAMs are designed and fabricated by 3D printing with two coding bits: a polylactic acid (which is the commonly used 3D printing material) unit acting as a bit "1" and a water unit acting as a bit "0". The distribution of the binary units on the metasurface is determined by the pattern of Airy beam. To showcase the wavefront engineering capability of the AB-BAMs, several examples of AB-BAMs are designed, 3D printed, and coupled with a planar single-element ultrasound transducer for experimental validation. We demonstrate the capability of AB-BAMs in flexibly tuning the focal region size and beam focusing in 3D space by changing the design of the AB-BAMs. The focal depth of AB-BAMs can be continuous and electronical tuned by adjusting the operating frequency of the planar transducer without replacing the AB-BAMs. The superimposing method is leveraged to enable the generation of complex acoustic fields, e.g., multi-foci and letter patterns (e.g., "W" and "U"). The more complex focal patterns are shown to be also continuously steerable by simply adjusting the operating frequency. Furthermore, the proposed 3D-printed AB-BAMs are simple to design, easy to fabricate, and low-cost to produce with the capabilities to achieve tunable focal size, flexible 3D beam focusing, arbitrary multipoint focusing, and continuous steerability, which creates unprecedented potential for ultrasound beam manipulation.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yun Jing
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63108, USA
| |
Collapse
|