1
|
Wagner MG, Minesinger GM, Falk KL, Kutlu AZ, Kisting MA, Speidel MA, Ziemlewicz TJ, Hinshaw JL, Swietlik JF, Lee FT, Laeseke PF. Evaluation of targeting accuracy of cone beam CT guided histotripsy in an in vivo porcine model. Int J Hyperthermia 2025; 42:2455138. [PMID: 39842812 PMCID: PMC11784921 DOI: 10.1080/02656736.2025.2455138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
PURPOSE The application of histotripsy, an emerging noninvasive, non-ionizing, and non-thermal tumor treatment, is currently limited by the inherent limitations of diagnostic ultrasound as the sole targeting modality. This study evaluates the feasibility and accuracy of cone beam computed tomography (CBCT) guidance for histotripsy treatments in an in vivo porcine model. MATERIALS AND METHODS Histotripsy treatments were performed in the liver of seven healthy swine under the guidance of a C-arm CBCT system that was calibrated to the robotic arm of the histotripsy system. For each treatment, pseudotumors (small histotripsy treatments of 15 mm) were created using conventional US guidance to serve as targets for subsequent CBCT guided treatments. A pretreatment CBCT with intravenous contrast was acquired for each swine and the center of the pseudotumor was selected as the target. The robotic arm automatically aligned the transducer to the selected target location. Ultrasound based aberration offset correction was performed when possible, and a 25 mm diameter treatment was performed. A post-treatment CBCT with intravenous contrast was then acquired to evaluate coverage, treatment size, and distance between the pseudotumor target and actual treatment zone center. RESULTS Treatments were technically successful and pseudotumors were completely covered in all seven treatments (7/7). The average treatment diameter was 39.3 ± 4.2 mm. The center-to-center distance between pseudotumor and actual treatments was 3.8 ± 1.3 mm. CONCLUSION CBCT provides accurate targeting for histotripsy treatment in vivo. While future work is required to assess safety and efficacy in the presence of obstructions, the proposed approach could supplement ultrasound imaging for targeting.
Collapse
Affiliation(s)
- Martin G. Wagner
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
- Department of Medical Physics, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Grace M. Minesinger
- Department of Medical Physics, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Katrina L. Falk
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
- Department of Biomedical Engineering, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Ayca Z. Kutlu
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Meridith A. Kisting
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Michael A. Speidel
- Department of Medical Physics, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
- Department of Medicine, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Timothy J. Ziemlewicz
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - J. Louis Hinshaw
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - John F. Swietlik
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Fred T. Lee
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Paul F. Laeseke
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
- Department of Biomedical Engineering, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| |
Collapse
|
2
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
3
|
Kisting AL, Zlevor AM, Falk KL, Kisting MA, Laklouk IA, Wagner MG, White JK, Winterholler JE, Jentink MS, Abel EJ, Knavel Koepsel EM, Hinshaw JL, Swietlik JF, Mao L, Minesinger GM, Laeseke PF, Ziemlewicz TJ, Lee FT. Histotripsy of the Proximal Ureter and Renal Pelvis: Evaluation of Urothelial Injury in a Porcine Survival Model. J Vasc Interv Radiol 2025; 36:512-520.e1. [PMID: 39662616 DOI: 10.1016/j.jvir.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
PURPOSE To evaluate the response of the ureter and renal pelvis to direct targeting by histotripsy guided by cone-beam computed tomography (CT) in a human-scale porcine chronic-survival model. MATERIALS AND METHODS Bilateral ureteral histotripsy treatments were completed on 6 female swine (n = 12). Animals were divided into 2 groups: (a) acute (n = 2 animals, 4 treatments, sacrificed at Day 0) and (b) chronic (n = 4 animals, 8 treatments, sacrificed at Day 7 [n = 2] and Day 28 [n = 2]). For each treatment, a 2.5-cm sphere (ureter/renal pelvis and renal parenchyma) was targeted using cone-beam CT guidance. CT urography imaging was performed immediately after treatment for all animals, and on Days 7 and 28 for chronic animals, followed by sacrifice, necropsy, and histopathology. Serum chemistries were drawn before treatment and at Days 7 and 28. RESULTS All 12 treatments were successful in targeting the renal pelvis/ureter and renal parenchyma. CT urography findings at Day 0 included ureteral thickening (9/12), delayed parenchymal enhancement (3/12), and mild hydronephrosis (5/12), all resolving by Day 7. Histologic findings of low-grade damage resolved by Day 7. No urine leaks or ureteral strictures were observed. Renal function (creatinine and estimated glomerular filtration rate) remained within the normal range throughout the study. CONCLUSIONS Histotripsy treatment of the ureter and renal pelvis results in transient injuries, suggesting that treatment of central renal tumors adjacent to the ureter and renal pelvis is safe. The results of this study could help expand the range of renal tumors that can be treated with histotripsy.
Collapse
Affiliation(s)
- Adrienne L Kisting
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Annie M Zlevor
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Katrina L Falk
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Meridith A Kisting
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Israa A Laklouk
- Department of Anatomic Pathology, University of California, Los Angeles, Los Angeles, California
| | - Martin G Wagner
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jim K White
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - J Erik Winterholler
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Madeline S Jentink
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - E Jason Abel
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - J Louis Hinshaw
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - John F Swietlik
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lu Mao
- Department of Biostatistics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Grace M Minesinger
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul F Laeseke
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Fred T Lee
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin; Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
4
|
Falk KL, Laeseke PF, Minesinger GM, Ozkan OG, Speidel MA, Ziemlewicz TJ, Lee FT, Wagner MG. Calibration correction to improve registration during cone-beam CT guided histotripsy. Med Phys 2025. [PMID: 39865624 DOI: 10.1002/mp.17644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Histotripsy is a non-invasive, non-ionizing, non-thermal focused ultrasound technique. High amplitude short acoustic pulses converge to create high negative pressures that cavitate endogenous gas into a bubble cloud leading to mechanical tissue destruction. In the United States, histotripsy is approved to treat liver tumors under diagnostic ultrasound guidance but in initial clinical cases, some areas of the liver have not been treated due to bone or gas obstructing the acoustic window for targeting. To address this limitation in visualization, cone-beam computed tomography (CBCT) guided histotripsy was developed to expand the number of tumors and patients that can be treated with histotripsy. PURPOSE The purpose of this work is to improve the accuracy of CBCT guided histotripsy by calibrating the therapeutic bubble cloud location relative to the histotripsy robot arm. METHODS The calibration correction involves creating a bubble cloud sized treatment (a few mm) in an agar-based phantom consisting of 11 layers with alternating high and low x-ray attenuation. The layers were spaced ∼3 mm apart to allow visualization of mixing after mechanical disintegration from the histotripsy treatment. Bubble cloud treatments were localized using an automated algorithm that minimized a cost function based on the intensity difference within the treatment region on the pre- and post-treatment CBCT. The actual treatment location can be compared to the theoretical bubble cloud location (focal point based on the CAD model of the transducer assembly) to calculate a 3D offset (X, Y, Z), which is used as the calibration correction between the therapeutic bubble cloud location and the histotripsy robot arm. The phantom and algorithm were analyzed to determine parameters that maximized bubble cloud treatment detection (treatment duration, localization accuracy of the phantom, number of bubble clouds) and were tested on four different histotripsy transducers. RESULTS Bubble cloud locations were accurately identified with the automated algorithm from post-treatment CBCT images of the multilayer agar phantom. Treating the phantom for 20 seconds was associated with the greatest change in CBCT intensity. The phantom and algorithm were able to localize changes in bubble cloud location with mean residual errors (MRE) between the measured and planned translations of 0.3 ± 0.3 mm in X, -0.2 ± 0.6 mm in Y, and 0.1 ± 1.0 mm in Z. A multi-bubble cloud calibration approach with four adjacent bubble clouds provided a statistically significant lower mean absolute deviation (MAD) in measured 3D offset (0.1, 0.0 and 0.2 mm in X, Y, and Z, respectively) compared to using a single bubble cloud (MAD of 0.2, 1.1 and 1.2 mm in X, Y, and Z, respectively). The calibration correction method measured statistically significantly different 3D transducer offsets between the four histotripsy transducers. CONCLUSIONS Creating and analyzing four adjacent bubble clouds together produced more accurate and reproducible 3D offset measurements than analyzing individual bubble clouds. The presented histotripsy bubble cloud calibration correction method is automated, accurate, and can be easily integrated in the current histotripsy workflow to improve accuracy of CBCT guided histotripsy.
Collapse
Affiliation(s)
- Katrina L Falk
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul F Laeseke
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Grace M Minesinger
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Orhan G Ozkan
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael A Speidel
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Martin G Wagner
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Kisting MA, White JK, Periyasamy S, Kutlu AZ, Kisting AL, Zhang X, Mao L, Laeseke PF, Wagner MG, Vlaisavljevich E, Lee FT, Ziemlewicz TJ. Safety and efficacy of histotripsy delivery through overlying gas-filled small bowel in an ex vivo swine model. Int J Hyperthermia 2024; 41:2369305. [PMID: 38897626 PMCID: PMC11224713 DOI: 10.1080/02656736.2024.2369305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE To evaluate the safety and efficacy of performing histotripsy through overlying gas-filled bowel in an ex vivo swine model. METHODS An ex vivo model was created to simulate histotripsy treatment of solid organs through gas-filled bowel. Spherical 2.5 cm histotripsy treatments were performed in agar phantoms for each of five treatment groups: 1) control with no overlying bowel (n = 6), 2) bowel 0 cm above phantom (n = 6), 3) bowel 1 cm above phantom (n = 6), 4) bowel 2 cm above phantom (n = 6), and 5) bowel 0 cm above the phantom with increased treatment amplitude (n = 6). Bowel was inspected for gross and microscopic damage, and treatment zones were measured. A ray-tracing simulation estimated the percentage of therapeutic beam path blockage by bowel in each scenario. RESULTS All histotripsy treatments through partial blockage were successful (24/24). No visible or microscopic damage was observed to intervening bowel. Partial blockage resulted in a small increase in treatment volume compared to controls (p = 0.002 and p = 0.036 for groups with bowel 0 cm above the phantom, p > 0.3 for bowel 1 cm and 2 cm above the phantom). Gas-filled bowel was estimated to have blocked 49.6%, 35.0%, and 27.3% of the therapeutic beam at 0, 1, and 2 cm, respectively. CONCLUSION Histotripsy has the potential to be applied through partial gas blockage of the therapeutic beam path, as shown by this ex vivo small bowel model. Further work in an in vivo survival model appears indicated.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaofei Zhang
- New York University Long Island School of Medicine Department of Pathology
| | - Lu Mao
- University of Wisconsin Department of Biostatistics
| | - Paul F. Laeseke
- University of Wisconsin Department of Radiology
- University of Wisconsin Department of Biomedical Engineering
| | | | | | - Fred T. Lee
- University of Wisconsin Department of Radiology
- University of Wisconsin Department of Biomedical Engineering
- University of Wisconsin Department of Urology
| | | |
Collapse
|
6
|
Kutlu AZ, Minesinger GM, Laeseke PF, Speidel M, Wagner MG. A target containing phantom for accuracy assessment of cone-beam CT-guided histotripsy. J Appl Clin Med Phys 2024; 25:e14329. [PMID: 38497567 PMCID: PMC11087156 DOI: 10.1002/acm2.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE Histotripsy is a nonionizing, noninvasive, and nonthermal focal tumor therapy. Cone-beam computed tomography (CBCT) guidance was developed for targeting tumors not visible on ultrasound. This approach assumes cavitation is formed at the geometrical focal point of the therapy transducer. In practice, the exact location might vary slightly between transducers. In this study, we present a phantom with an embedded target to evaluate CBCT-guided histotripsy accuracy and assess the completeness of treatments. METHODS Spherical (2.8 cm) targets with alternating layers of agar and radiopaque barium were embedded in larger phantoms with similar layers. The layer geometry was designed so that targets were visible on pre-treatment CBCT scans. The actual histotripsy treatment zone was visualized via the mixing of adjacent barium and agar layers in post-treatment CBCT images. CBCT-guided histotripsy treatments of the targets were performed in six phantoms. Offsets between planned and actual treatment zones were measured and used for calibration refinement. To measure targeting accuracy after calibration refinement, six additional phantoms were treated. In a separate investigation, two groups (N = 3) of phantoms were treated to assess visualization of incomplete treatments ("undertreatment" group: 2 cm treatment within 2.8 cm tumor, "mistarget" group: 2.8 cm treatment intentionally shifted laterally). Treatment zones were segmented (3D Slicer 5.0.3), and the centroid distance between the prescribed target and actual treatment zones was quantified. RESULTS In the calibration refinement group, a 2 mm offset in the direction of ultrasound propagation (Z) was measured. After calibration refinement, the centroid-to-centroid distance between prescribed and actual treatment volumes was 0.5 ± 0.2 mm. Average difference between the prescribed and measured treatment sizes in the incomplete treatment groups was 0.5 ± 0.7 mm. In the mistarget group, the distance between prescribed and measured shifts was 0.2 ± 0.1 mm. CONCLUSION The proposed prototype phantom allowed for accurate measurement of treatment size and location, and the CBCT visible target provided a simple way to detect misalignments for preliminary quality assurance of CBCT-guided histotripsy.
Collapse
Affiliation(s)
- Ayca Z. Kutlu
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Grace M. Minesinger
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Paul F. Laeseke
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Michael Speidel
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Martin G. Wagner
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
7
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
8
|
Morse R, Childers C, Nowak E, Rao J, Vlaisavljevich E. Catheter-Based Medical Device Biofilm Ablation Using Histotripsy: A Parameter Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00203-X. [PMID: 37394375 DOI: 10.1016/j.ultrasmedbio.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Biofilm formation in medical catheters is a major source of hospital-acquired infections which can produce increased morbidity and mortality for patients. Histotripsy is a non-invasive, non-thermal focused ultrasound therapy and recently has been found to be effective at removal of biofilm from medical catheters. Previously established histotripsy methods for biofilm removal, however, would require several hours of use to effectively treat a full-length medical catheter. Here, we investigate the potential to increase the speed and efficiency with which biofilms can be ablated from catheters using histotripsy. METHODS Pseudomonas aeruginosa (PA14) biofilms were cultured in in vitro Tygon catheter mimics and treated with histotripsy using a 1 MHz histotripsy transducer and a variety of histotripsy pulsing rates and scanning methods. The improved parameters identified in these studies were then used to explore the bactericidal effect of histotripsy on planktonic PA14 suspended in a catheter mimic. RESULTS Histotripsy can be used to remove biofilm and kill bacteria at substantially increased speeds compared with previously established methods. Near-complete biofilm removal was achieved at treatment speeds up to 1 cm/s, while a 4.241 log reduction in planktonic bacteria was achieved with 2.4 cm/min treatment. CONCLUSION These results represent a 500-fold increase in biofilm removal speeds and a 6.2-fold increase in bacterial killing speeds compared with previously published methods. These findings indicate that histotripsy shows promise for the treatment of catheter-associated biofilms and planktonic bacteria in a clinically relevant time frame.
Collapse
Affiliation(s)
- Ryan Morse
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA.
| | | | - Elizabeth Nowak
- Internal Medicine, Division of Infectious Disease, Carilion Medical Center, Roanoke, VA, USA
| | - Jayasimha Rao
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA; Internal Medicine, Division of Infectious Disease, Carilion Medical Center, Roanoke, VA, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, VA, USA
| |
Collapse
|
9
|
Kutlu AZ, Laeseke PF, Zeighami Salimabad M, Minesinger GM, Periyasamy S, Pieper AA, Hall TJ, Wagner MG. A Multimodal Phantom for Visualization and Assessment of Histotripsy Treatments on Ultrasound and X-Ray Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1401-1407. [PMID: 36878828 PMCID: PMC10106430 DOI: 10.1016/j.ultrasmedbio.2023.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Histotripsy is an emerging non-invasive, non-ionizing and non-thermal focal tumor therapy. Although histotripsy targeting is currently based on ultrasound (US), other imaging modalities such as cone-beam computed tomography (CBCT) have recently been proposed to enable the treatment of tumors not visible on ultrasound. The objective of this study was to develop and evaluate a multi-modality phantom to facilitate the assessment of histotripsy treatment zones on both US and CBCT imaging. METHODS Fifteen red blood cell phantoms composed of alternating layers with and without barium were manufactured. Spherical 25-mm histotripsy treatments were performed, and treatment zone size and location were measured on CBCT and ultrasound. Sound speed, impedance and attenuation were measured for each layer type. RESULTS The average ± standard deviation signed difference between measured treatment diameters was 0.29 ± 1.25 mm. The Euclidean distance between measured treatment centers was 1.68 ± 0.63 mm. The sound speed in the different layers ranged from 1491 to 1514 m/s and was within typically reported soft tissue ranges (1480-1560 m/s). In all phantoms, histotripsy resulted in sharply delineated treatment zones, allowing segmentation in both modalities. CONCLUSION These phantoms will aid in the development and validation of X-ray-based histotripsy targeting techniques, which promise to expand the scope of treatable lesions beyond only those visible on ultrasound.
Collapse
Affiliation(s)
- Ayca Z Kutlu
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul F Laeseke
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Grace M Minesinger
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarvesh Periyasamy
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexander A Pieper
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy J Hall
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin G Wagner
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Yeats E, Lu N, Sukovich JR, Xu Z, Hall TL. Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1182-1193. [PMID: 36759271 PMCID: PMC10082475 DOI: 10.1016/j.ultrasmedbio.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Phase aberration from soft tissue limits the efficacy of histotripsy, a therapeutic ultrasound technique based on acoustic cavitation. Previous work has shown that the acoustic emissions from cavitation can serve as "point sources" for aberration correction (AC). This study compared the efficacy of soft tissue AC for histotripsy using acoustic cavitation emissions (ACE) from bubble cloud nucleation and collapse. METHODS A 750-kHz, receive-capable histotripsy array was pulsed to generate cavitation in ex vivo porcine liver through an intervening abdominal wall. Received ACE signals were used to determine the arrival time differences to the focus and compute corrective delays. Corrections from single pulses and from the median of multiple pulses were tested. DISCUSSION On average, ACE AC obtained 96% ± 3% of the pressure amplitude obtained by hydrophone-based correction (compared with 71% ± 5% without AC). Both nucleation- and collapse-based corrections obtained >96% of the hydrophone-corrected pressure when using medians of ≥10 pulses. When using single-pulse corrections, nucleation obtained a range of 49%-99% of the hydrophone-corrected pressure, while collapse obtained 95%-99%. CONCLUSION The results suggest that (i) ACE AC can recover nearly all pressure amplitude lost owing to soft tissue aberration and that (ii) the collapse signal permits robust AC using a small number of pulses.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40:2233720. [PMID: 37460101 PMCID: PMC10479943 DOI: 10.1080/02656736.2023.2233720] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
Since its inception about two decades ago, histotripsy - a non-thermal mechanical tissue ablation technique - has evolved into a spectrum of methods, each with distinct potentiating physical mechanisms: intrinsic threshold histotripsy, shock-scattering histotripsy, hybrid histotripsy, and boiling histotripsy. All methods utilize short, high-amplitude pulses of focused ultrasound delivered at a low duty cycle, and all involve excitation of violent bubble activity and acoustic streaming at the focus to fractionate tissue down to the subcellular level. The main differences are in pulse duration, which spans microseconds to milliseconds, and ultrasound waveform shape and corresponding peak acoustic pressures required to achieve the desired type of bubble activity. In addition, most types of histotripsy rely on the presence of high-amplitude shocks that develop in the pressure profile at the focus due to nonlinear propagation effects. Those requirements, in turn, dictate aspects of the instrument design, both in terms of driving electronics, transducer dimensions and intensity limitations at surface, shape (primarily, the F-number) and frequency. The combination of the optimized instrumentation and the bio-effects from bubble activity and streaming on different tissues, lead to target clinical applications for each histotripsy method. Here, the differences and similarities in the physical mechanisms and resulting bioeffects of each method are reviewed and tied to optimal instrumentation and clinical applications.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Gannon J, Imran KM, Hendricks-Wenger A, Edwards M, Covell H, Ruger L, Singh N, Nagai-Singer M, Tintera B, Eden K, Mendiratta-Lala M, Vidal-Jove J, Luyimbazi D, Larson M, Clark-Deener S, Coutermarsh-Ott S, Allen IC, Vlaisavljevich E. Ultrasound-guided noninvasive pancreas ablation using histotripsy: feasibility study in an in vivo porcine model. Int J Hyperthermia 2023; 40:2247187. [PMID: 37643768 PMCID: PMC10839746 DOI: 10.1080/02656736.2023.2247187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Pancreatic cancer is a malignant disease associated with poor survival and nearly 80% present with unresectable tumors. Treatments such as chemotherapy and radiation therapy have shown overall improved survival benefits, albeit limited. Histotripsy is a noninvasive, non-ionizing, and non-thermal focused ultrasound ablation modality that has shown efficacy in treating hepatic tumors and other malignancies. In this novel study, we investigate histotripsy for noninvasive pancreas ablation in a pig model. In two studies, histotripsy was applied to the healthy pancreas in 11 pigs using a custom 32-element, 500 kHz histotripsy transducer attached to a clinical histotripsy system, with treatments guided by real-time ultrasound imaging. A pilot study was conducted in 3 fasted pigs with histotripsy applied at a pulse repetition frequency (PRF) of 500 Hz. Results showed no pancreas visualization on coaxial ultrasound imaging due to overlying intestinal gas, resulting in off-target injury and no pancreas damage. To minimize gas, a second group of pigs (n = 8) were fed a custard diet containing simethicone and bisacodyl. Pigs were euthanized immediately (n = 4) or survived for 1 week (n = 4) post-treatment. Damage to the pancreas and surrounding tissue was characterized using gross morphology, histological analysis, and CT imaging. Results showed histotripsy bubble clouds were generated inside pancreases that were visually maintained on coaxial ultrasound (n = 4), with 2 pigs exhibiting off-target damage. For chronic animals, results showed the treatments were well-tolerated with no complication signs or changes in blood markers. This study provides initial evidence suggesting histotripsy's potential for noninvasive pancreas ablation and warrants further evaluation in more comprehensive studies.
Collapse
Affiliation(s)
- Jessica Gannon
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
| | - Khan Mohammad Imran
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Alissa Hendricks-Wenger
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Michael Edwards
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, US
| | - Hannah Covell
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
| | - Lauren Ruger
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
| | - Neha Singh
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Margaret Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
| | - Benjamin Tintera
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Kristin Eden
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | | | - Joan Vidal-Jove
- Interventional Oncology Institute Khuab, Comprehensive Tumor Center, Barcelona, Spain
| | - David Luyimbazi
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- Department of Surgery, Carilion Clinic, Roanoke, VA, USA
| | - Martha Larson
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- ICTAS Center for Engineering Health, Virginia Tech, Blacksburg, VA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- ICTAS Center for Engineering Health, Virginia Tech, Blacksburg, VA
| |
Collapse
|