1
|
Jang H, Fotiadis P, Mashour GA, Hudetz AG, Huang Z. Thalamic Roles in Conscious Perception Revealed by Low-Intensity Focused Ultrasound Neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617034. [PMID: 39416133 PMCID: PMC11483030 DOI: 10.1101/2024.10.07.617034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The neural basis of conscious perception remains incompletely understood. While cortical mechanisms of conscious content have been extensively investigated, the role of subcortical structures, including the thalamus, remains less explored. We aim to elucidate the causal contributions of different thalamic regions to conscious perception using transcranial low-intensity focused ultrasound (LIFU) neuromodulation. We hypothesize that modulating different thalamic regions would result in distinct perceptual outcomes. We apply LIFU in human volunteers to investigate region-specific and sonication parameter-dependent effects. We target anterior (transmodal-dominant) and posterior (unimodal-dominant) thalamic regions, further divided into ventral and dorsal regions, while participants perform a near-threshold visual perception task. Task performance is evaluated using Signal Detection Theory metrics. We find that the high duty cycle stimulation of the ventral anterior thalamus enhanced object recognition sensitivity. We also observe a general (i.e., region-independent) effect of LIFU on decision bias (i.e., a tendency toward a particular response) and object categorization accuracy. Specifically, high duty cycle stimulation decreases categorization accuracy, whereas low duty cycle shifts decision bias towards a more conservative stance. In conclusion, our results provide causal insight into the functional organization of the thalamus in shaping human visual experience and highlight the unique role of the transmodal-dominant ventral anterior thalamus.
Collapse
Affiliation(s)
- Hyunwoo Jang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Panagiotis Fotiadis
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G. Hudetz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zirui Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Yan L, Fu K, Li L, Li Q, Zhou X. Potential of sonobiopsy as a novel diagnosis tool for brain cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200840. [PMID: 39077551 PMCID: PMC11284684 DOI: 10.1016/j.omton.2024.200840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Brain tumors have a poor prognosis. Early, accurate diagnosis and treatment are crucial. Although brain surgical biopsy can provide an accurate diagnosis, it is highly invasive and risky and is not suitable for follow-up examination. Blood-based liquid biopsies have a low detection rate of tumor biomarkers and limited evaluation ability due to the existence of the blood-brain barrier (BBB). The BBB is composed of brain capillary endothelial cells through tight junctions, which prevents the release of brain tumor markers to the human peripheral circulation, making it more difficult to diagnose, predict prognosis, and evaluate therapeutic response through brain tumor markers than other tumors. Focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) is an emerging technique using FUS to promote the release of tumor markers into the circulatory system and cerebrospinal fluid, thus facilitating tumor detection. The feasibility and safety data from both animal models and clinical trials support sonobiopsy as a great potential in the diagnosis of brain diseases.
Collapse
Affiliation(s)
- Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Kang Fu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Qing Li
- Ultrasound Diagnosis and Treatment Center, Xi’an International Medical Center Hospital, Xi’an, China
| | - Xiaodong Zhou
- Ultrasound Diagnosis and Treatment Center, Xi’an International Medical Center Hospital, Xi’an, China
| |
Collapse
|
3
|
Kusunose J, Rodriguez WJ, Luo H, Manuel TJ, Phipps MA, Yang PF, Grissom WA, Konrad PE, Chen LM, Dawant BM, Caskey CF. Design and Validation of a Patient-Specific Stereotactic Frame for Transcranial Ultrasound Therapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1030-1041. [PMID: 39024077 PMCID: PMC11465451 DOI: 10.1109/tuffc.2024.3420242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Transcranial-focused ultrasound (tFUS) procedures such as neuromodulation and blood-brain barrier (BBB) opening require precise focus placement within the brain. MRI is currently the most reliable tool for focus localization but can be prohibitive for procedures requiring recurrent therapies. We designed, fabricated, and characterized a patient-specific, 3-D-printed, stereotactic frame for repeated tFUS therapy. The frame is compact, with minimal footprint, can be removed and re-secured between treatments while maintaining sub-mm accuracy, and will allow for precise and repeatable transcranial FUS treatment without the need for MR-guidance following the initial calibration scan. Focus localization and repeatability were assessed via MR-thermometry and MR-acoustic radiation force imaging (ARFI) on an ex vivo skull phantom and in vivo nonhuman primates (NHPs), respectively. Focal localization, registration, steering, and re-steering were accomplished during the initial MRI calibration scan session. Keeping steering coordinates fixed in subsequent therapy and imaging sessions, we found good agreement between steered foci and the intended target, with target registration error (TRE) of 1.2 ± 0.3 ( n = 4 , ex vivo) and 1.0 ± 0.5 ( n = 3 , in vivo) mm. Focus position (steered and non-steered) was consistent, with sub-mm variation in each dimension between studies. Our 3-D-printed, patient-specific stereotactic frame can reliably position and orient the ultrasound transducer for repeated targeting of brain regions using a single MR-based calibration. The compact frame allows for high-precision tFUS to be carried out outside the magnet and could help reduce the cost of tFUS treatments where repeated application of an ultrasound focus is required with high precision.
Collapse
|
4
|
Chien CY, Xu L, Yuan J, Fadera S, Stark AH, Athiraman U, Leuthardt EC, Chen H. Quality assurance for focused ultrasound-induced blood-brain barrier opening procedure using passive acoustic detection. EBioMedicine 2024; 102:105066. [PMID: 38531173 PMCID: PMC10987799 DOI: 10.1016/j.ebiom.2024.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Focused ultrasound (FUS) combined with microbubbles is a promising technique for noninvasive, reversible, and spatially targeted blood-brain barrier opening, with clinical trials currently ongoing. Despite the fast development of this technology, there is a lack of established quality assurance (QA) strategies to ensure procedure consistency and safety. To address this challenge, this study presents the development and clinical evaluation of a passive acoustic detection-based QA protocol for FUS-induced blood-brain barrier opening (FUS-BBBO) procedure. METHODS Ten glioma patients were recruited to a clinical trial for evaluating a neuronavigation-guided FUS device. An acoustic sensor was incorporated at the center of the FUS device to passively capture acoustic signals for accomplishing three QA functions: FUS device QA to ensure the device functions consistently, acoustic coupling QA to detect air bubbles trapped in the acoustic coupling gel and water bladder of the transducer, and FUS procedure QA to evaluate the consistency of the treatment procedure. FINDINGS The FUS device passed the device QA in 9/10 patient studies. 4/9 cases failed acoustic coupling QA on the first try. The acoustic coupling procedure was repeatedly performed until it passed QA in 3/4 cases. One case failed acoustic coupling QA due to time constraints. Realtime passive cavitation monitoring was performed for FUS procedure QA, which captured variations in FUS-induced microbubble cavitation dynamics among patients. INTERPRETATION This study demonstrated that the proposed passive acoustic detection could be integrated with a clinical FUS system for the QA of the FUS-BBBO procedure. FUNDING National Institutes of Health R01CA276174, R01MH116981, UG3MH126861, R01EB027223, R01EB030102, and R01NS128461.
Collapse
Affiliation(s)
- Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Siaka Fadera
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Andrew H Stark
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Division of Neurotechnology, Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Division of Neurotechnology, Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Zadeh AK, Raghuram H, Shrestha S, Kibreab M, Kathol I, Martino D, Pike GB, Pichardo S, Monchi O. The effect of transcranial ultrasound pulse repetition frequency on sustained inhibition in the human primary motor cortex: A double-blind, sham-controlled study. Brain Stimul 2024; 17:476-484. [PMID: 38621645 DOI: 10.1016/j.brs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Non-invasive brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct current stimulation hold promise for inducing brain plasticity. However, their limited precision may hamper certain applications. In contrast, Transcranial Ultrasound Stimulation (TUS), known for its precision and deep brain targeting capabilities, requires further investigation to establish its efficacy in producing enduring effects for treating neurological and psychiatric disorders. OBJECTIVE To investigate the enduring effects of different pulse repetition frequencies (PRF) of TUS on motor corticospinal excitability. METHODS T1-, T2-weighted, and zero echo time magnetic resonance imaging scans were acquired from 21 neurologically healthy participants for neuronavigation, skull reconstruction, and the performance of transcranial ultrasound and thermal modelling. The effects of three different TUS PRFs (10, 100, and 1000 Hz) with a constant duty cycle of 10 % on corticospinal excitability in the primary motor cortex were assessed using TMS-induced motor evoked potentials (MEPs). Each PRF and sham condition was evaluated on separate days, with measurements taken 5-, 30-, and 60-min post-TUS. RESULTS A significant decrease in MEP amplitude was observed with a PRF of 10 Hz (p = 0.007), which persisted for at least 30 min, and with a PRF of 100 Hz (p = 0.001), lasting over 60 min. However, no significant changes were found for the PRF of 1000 Hz and the sham conditions. CONCLUSION This study highlights the significance of PRF selection in TUS and underscores its potential as a non-invasive approach to reduce corticospinal excitability, offering valuable insights for future clinical applications.
Collapse
Affiliation(s)
- Ali K Zadeh
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | | | - Shirshak Shrestha
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Mekale Kibreab
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Iris Kathol
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - G Bruce Pike
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Samuel Pichardo
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Radiology, Radio-oncology and Nuclear Medicine, Université de Montreal, QC, Canada; Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Manuel TJ, Sigona MK, Phipps MA, Kusunose J, Luo H, Yang PF, Newton AT, Gore JC, Grissom W, Chen LM, Caskey CF. Small volume blood-brain barrier opening in macaques with a 1 MHz ultrasound phased array. J Control Release 2023; 363:707-720. [PMID: 37827222 DOI: 10.1016/j.jconrel.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
The use of focused ultrasound to open the blood-brain barrier (BBB) has the potential to deliver drugs to specific regions of the brain. The size of the BBB opening and ability to localize the opening determines the spatial extent and is a limiting factor in many applications of BBB opening where targeting a small brain region is desired. Here we evaluate the performance of a system designed for small opening volumes and highlight the unique challenges associated with pushing the spatial precision of this technique. To achieve small volume openings in cortical regions of the macaque brain, we tested a custom 1 MHz array transducer integrated into a magnetic resonance image-guided focused ultrasound system. Using real-time cavitation monitoring, we demonstrated twelve instances of single sonication, small volume BBB opening with average volumes of 59 ± 37 mm3 and 184 ± 2 mm3 in cortical and subcortical targets, respectively. We found high correlation between subject-specific acoustic simulations and observed openings when incorporating grey matter segmentation (R2 = 0.8577), and the threshold for BBB opening based on simulations was 0.53 MPa. Analysis of MRI-based safety assessment and cavitation signals indicate a safe pressure range for 1 MHz BBB opening and suggest that our system can be used to deliver drugs and gene therapy to small brain regions.
Collapse
Affiliation(s)
- Thomas J Manuel
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Michelle K Sigona
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - M Anthony Phipps
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Jiro Kusunose
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Huiwen Luo
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - William Grissom
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.
| |
Collapse
|
7
|
Sigona MK, Manuel TJ, Anthony Phipps M, Boroujeni KB, Treuting RL, Womelsdorf T, Caskey CF. Generating Patient-Specific Acoustic Simulations for Transcranial Focused Ultrasound Procedures Based on Optical Tracking Information. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 3:146-156. [PMID: 38222464 PMCID: PMC10785958 DOI: 10.1109/ojuffc.2023.3318560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Optical tracking is a real-time transducer positioning method for transcranial focused ultrasound (tFUS) procedures, but the predicted focus from optical tracking typically does not incorporate subject-specific skull information. Acoustic simulations can estimate the pressure field when propagating through the cranium but rely on accurately replicating the positioning of the transducer and skull in a simulated space. Here, we develop and characterize the accuracy of a workflow that creates simulation grids based on optical tracking information in a neuronavigated phantom with and without transmission through an ex vivo skull cap. The software pipeline could replicate the geometry of the tFUS procedure within the limits of the optical tracking system (transcranial target registration error (TRE): 3.9 ± 0.7 mm). The simulated focus and the free-field focus predicted by optical tracking had low Euclidean distance errors of 0.5±0.1 and 1.2±0.4 mm for phantom and skull cap, respectively, and some skull-specific effects were captured by the simulation. However, the TRE of simulation informed by optical tracking was 4.6±0.2, which is as large or greater than the focal spot size used by many tFUS systems. By updating the position of the transducer using the original TRE offset, we reduced the simulated TRE to 1.1 ± 0.4 mm. Our study describes a software pipeline for treatment planning, evaluates its accuracy, and demonstrates an approach using MR-acoustic radiation force imaging as a method to improve dosimetry. Overall, our software pipeline helps estimate acoustic exposure, and our study highlights the need for image feedback to increase the accuracy of tFUS dosimetry.
Collapse
Affiliation(s)
- Michelle K Sigona
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA
| | - Thomas J Manuel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA
| | - M Anthony Phipps
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | | | - Robert Louie Treuting
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Thilo Womelsdorf
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Charles F Caskey
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
8
|
Yuan J, Xu L, Chien CY, Yang Y, Yue Y, Fadera S, Stark AH, Schwetye KE, Nazeri A, Desai R, Athiraman U, Chaudhuri AA, Chen H, Leuthardt EC. First-in-human prospective trial of sonobiopsy in high-grade glioma patients using neuronavigation-guided focused ultrasound. NPJ Precis Oncol 2023; 7:92. [PMID: 37717084 PMCID: PMC10505140 DOI: 10.1038/s41698-023-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
Sonobiopsy is an emerging technology that combines focused ultrasound (FUS) with microbubbles to enrich circulating brain disease-specific biomarkers for noninvasive molecular diagnosis of brain diseases. Here, we report the first-in-human prospective trial of sonobiopsy in high-grade glioma patients to evaluate its feasibility and safety in enriching plasma circulating tumor biomarkers. A nimble FUS device integrated with a clinical neuronavigation system was used to perform sonobiopsy following an established clinical workflow for neuronavigation. Analysis of blood samples collected before and after FUS sonication showed that sonobiopsy enriched plasma circulating tumor DNA (ctDNA), including a maximum increase of 1.6-fold for the mononucleosome cell-free DNA (cfDNA) fragments (120-280 bp), 1.9-fold for the patient-specific tumor variant ctDNA level, and 5.6-fold for the TERT mutation ctDNA level. Histological analysis of surgically resected tumors confirmed the safety of the procedure. Transcriptome analysis of sonicated and nonsonicated tumor tissues found that FUS sonication modulated cell physical structure-related genes. Only 2 out of 17,982 total detected genes related to the immune pathways were upregulated. These feasibility and safety data support the continued investigation of sonobiopsy for noninvasive molecular diagnosis of brain diseases.
Collapse
Affiliation(s)
- Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Siaka Fadera
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Andrew H Stark
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Katherine E Schwetye
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rupen Desai
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Umeshkumar Athiraman
- Department of Anesthesia, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aadel A Chaudhuri
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Division of Neurotechnology, Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Division of Neurotechnology, Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
9
|
Yuan J, Xu L, Chien CY, Yang Y, Yue Y, Fadera S, Stark AH, Schwetye KE, Nazeri A, Desai R, Athiraman U, Chaudhuri AA, Chen H, Leuthardt EC. First-in-human prospective trial of sonobiopsy in glioblastoma patients using neuronavigation-guided focused ultrasound. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.17.23287378. [PMID: 36993173 PMCID: PMC10055591 DOI: 10.1101/2023.03.17.23287378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sonobiopsy is an emerging technology that combines focused ultrasound (FUS) with microbubbles to enrich circulating brain disease-specific biomarkers for noninvasive molecular diagnosis of brain diseases. Here, we report the first-in-human prospective trial of sonobiopsy in glioblastoma patients to evaluate its feasibility and safety in enriching circulating tumor biomarkers. A nimble FUS device integrated with a clinical neuronavigation system was used to perform sonobiopsy following an established clinical workflow for neuronavigation. Analysis of blood samples collected before and after FUS sonication showed enhanced plasma circulating tumor biomarker levels. Histological analysis of surgically resected tumors confirmed the safety of the procedure. Transcriptome analysis of sonicated and unsonicated tumor tissues found that FUS sonication modulated cell physical structure-related genes but evoked minimal inflammatory response. These feasibility and safety data support the continued investigation of sonobiopsy for noninvasive molecular diagnosis of brain diseases.
Collapse
|