1
|
Zhang H, Ma Q, Qiu Y, Lai Z. ACGRHA-Net: Accelerated multi-contrast MR imaging with adjacency complementary graph assisted residual hybrid attention network. Neuroimage 2024; 303:120921. [PMID: 39521395 DOI: 10.1016/j.neuroimage.2024.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Multi-contrast magnetic resonance (MR) imaging is an advanced technology used in medical diagnosis, but the long acquisition process can lead to patient discomfort and limit its broader application. Shortening acquisition time by undersampling k-space data introduces noticeable aliasing artifacts. To address this, we propose a method that reconstructs multi-contrast MR images from zero-filled data by utilizing a fully-sampled auxiliary contrast MR image as a prior to learn an adjacency complementary graph. This graph is then combined with a residual hybrid attention network, forming the adjacency complementary graph assisted residual hybrid attention network (ACGRHA-Net) for multi-contrast MR image reconstruction. Specifically, the optimal structural similarity is represented by a graph learned from the fully sampled auxiliary image, where the node features and adjacency matrices are designed to precisely capture structural information among different contrast images. This structural similarity enables effective fusion with the target image, improving the detail reconstruction. Additionally, a residual hybrid attention module is designed in parallel with the graph convolution network, allowing it to effectively capture key features and adaptively emphasize these important features in target contrast MR images. This strategy prioritizes crucial information while preserving shallow features, thereby achieving comprehensive feature fusion at deeper levels to enhance multi-contrast MR image reconstruction. Extensive experiments on the different datasets, using various sampling patterns and accelerated factors demonstrate that the proposed method outperforms the current state-of-the-art reconstruction methods.
Collapse
Affiliation(s)
- Haotian Zhang
- School of Ocean Information Engineering, Jimei University, Xiamen, China
| | - Qiaoyu Ma
- School of Ocean Information Engineering, Jimei University, Xiamen, China
| | - Yiran Qiu
- School of Ocean Information Engineering, Jimei University, Xiamen, China
| | - Zongying Lai
- School of Ocean Information Engineering, Jimei University, Xiamen, China.
| |
Collapse
|
2
|
Cao T, Hu Z, Mao X, Chen Z, Kwan AC, Xie Y, Berman DS, Li D, Christodoulou AG. Alternating low-rank tensor reconstruction for improved multiparametric mapping with cardiovascular MR Multitasking. Magn Reson Med 2024; 92:1421-1439. [PMID: 38726884 PMCID: PMC11262969 DOI: 10.1002/mrm.30131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 05/15/2024]
Abstract
PURPOSE To develop a novel low-rank tensor reconstruction approach leveraging the complete acquired data set to improve precision and repeatability of multiparametric mapping within the cardiovascular MR Multitasking framework. METHODS A novel approach that alternated between estimation of temporal components and spatial components using the entire data set acquired (i.e., including navigator data and imaging data) was developed to improve reconstruction. The precision and repeatability of the proposed approach were evaluated on numerical simulations, 10 healthy subjects, and 10 cardiomyopathy patients at multiple scan times for 2D myocardial T1/T2 mapping with MR Multitasking and were compared with those of the previous navigator-derived fixed-basis approach. RESULTS In numerical simulations, the proposed approach outperformed the previous fixed-basis approach with lower T1 and T2 error against the ground truth at all scan times studied and showed better motion fidelity. In human subjects, the proposed approach showed no significantly different sharpness or T1/T2 measurement and significantly improved T1 precision by 20%-25%, T2 precision by 10%-15%, T1 repeatability by about 30%, and T2 repeatability by 25%-35% at 90-s and 50-s scan times The proposed approach at the 50-s scan time also showed comparable results with that of the previous fixed-basis approach at the 90-s scan time. CONCLUSION The proposed approach improved precision and repeatability for quantitative imaging with MR Multitasking while maintaining comparable motion fidelity, T1/T2 measurement, and septum sharpness and had the potential for further reducing scan time from 90 s to 50 s.
Collapse
Affiliation(s)
- Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Zheyuan Hu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Xianglun Mao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zihao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Alan C. Kwan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Departments of Imaging and Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniel S. Berman
- Departments of Imaging and Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Sedighin F. Tensor Methods in Biomedical Image Analysis. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:16. [PMID: 39100745 PMCID: PMC11296571 DOI: 10.4103/jmss.jmss_55_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 08/06/2024]
Abstract
In the past decade, tensors have become increasingly attractive in different aspects of signal and image processing areas. The main reason is the inefficiency of matrices in representing and analyzing multimodal and multidimensional datasets. Matrices cannot preserve the multidimensional correlation of elements in higher-order datasets and this highly reduces the effectiveness of matrix-based approaches in analyzing multidimensional datasets. Besides this, tensor-based approaches have demonstrated promising performances. These together, encouraged researchers to move from matrices to tensors. Among different signal and image processing applications, analyzing biomedical signals and images is of particular importance. This is due to the need for extracting accurate information from biomedical datasets which directly affects patient's health. In addition, in many cases, several datasets have been recorded simultaneously from a patient. A common example is recording electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) of a patient with schizophrenia. In such a situation, tensors seem to be among the most effective methods for the simultaneous exploitation of two (or more) datasets. Therefore, several tensor-based methods have been developed for analyzing biomedical datasets. Considering this reality, in this paper, we aim to have a comprehensive review on tensor-based methods in biomedical image analysis. The presented study and classification between different methods and applications can show the importance of tensors in biomedical image enhancement and open new ways for future studies.
Collapse
Affiliation(s)
- Farnaz Sedighin
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Zhang Y, Li P, Hu Y. T 2LR-Net: An unrolling network learning transformed tensor low-rank prior for dynamic MR image reconstruction. Comput Biol Med 2024; 170:108034. [PMID: 38301517 DOI: 10.1016/j.compbiomed.2024.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
The tensor low-rank prior has attracted considerable attention in dynamic MR reconstruction. Tensor low-rank methods preserve the inherent high-dimensional structure of data, allowing for improved extraction and utilization of intrinsic low-rank characteristics. However, most current methods are still confined to utilizing low-rank structures either in the image domain or predefined transformed domains. Designing an optimal transformation adaptable to dynamic MRI reconstruction through manual efforts is inherently challenging. In this paper, we propose a deep unrolling network that utilizes the convolutional neural network (CNN) to adaptively learn the transformed domain for leveraging tensor low-rank priors. Under the supervised mechanism, the learning of the tensor low-rank domain is directly guided by the reconstruction accuracy. Specifically, we generalize the traditional t-SVD to a transformed version based on arbitrary high-dimensional unitary transformations and introduce a novel unitary transformed tensor nuclear norm (UTNN). Subsequently, we present a dynamic MRI reconstruction model based on UTNN and devise an efficient iterative optimization algorithm using ADMM, which is finally unfolded into the proposed T2LR-Net. Experiments on two dynamic cardiac MRI datasets demonstrate that T2LR-Net outperforms the state-of-the-art optimization-based and unrolling network-based methods.
Collapse
Affiliation(s)
- Yinghao Zhang
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
| | - Peng Li
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
| | - Yue Hu
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
5
|
Giannakopoulos II, Guryev GD, Serralles JEC, Paska J, Zhang B, Daniel L, White JK, Collins CM, Lattanzi R. A Hybrid Volume-Surface Integral Equation Method for Rapid Electromagnetic Simulations in MRI. IEEE Trans Biomed Eng 2023; 70:105-114. [PMID: 35759593 PMCID: PMC9875343 DOI: 10.1109/tbme.2022.3186235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We developed a hybrid volume surface integral equation (VSIE) method based on domain decomposition to perform fast and accurate magnetic resonance imaging (MRI) simulations that include both remote and local conductive elements. METHODS We separated the conductive surfaces present in MRI setups into two domains and optimized electromagnetic (EM) modeling for each case. Specifically, interactions between the body and EM waves originating from local radiofrequency (RF) coils were modeled with the precorrected fast Fourier transform, whereas the interactions with remote conductive surfaces (RF shield, scanner bore) were modeled with a novel cross tensor train-based algorithm. We compared the hybrid-VSIE with other VSIE methods for realistic MRI simulation setups. RESULTS The hybrid-VSIE was the only practical method for simulation using 1 mm voxel isotropic resolution (VIR). For 2 mm VIR, our method could be solved at least 23 times faster and required 760 times lower memory than traditional VSIE methods. CONCLUSION The hybrid-VSIE demonstrated a marked improvement in terms of convergence times of the numerical EM simulation compared to traditional approaches in multiple realistic MRI scenarios. SIGNIFICANCE The efficiency of the novel hybrid-VSIE method could enable rapid simulations of complex and comprehensive MRI setups.
Collapse
|
6
|
Hu Z, Christodoulou AG, Wang N, Xie Y, Shiroishi MS, Yang W, Zada G, Chow FE, Margol AS, Tamrazi B, Chang EL, Li D, Fan Z. MR multitasking-based dynamic imaging for cerebrovascular evaluation (MT-DICE): Simultaneous quantification of permeability and leakage-insensitive perfusion by dynamic T 1 / T 2 * mapping. Magn Reson Med 2023; 89:161-176. [PMID: 36128892 PMCID: PMC9826278 DOI: 10.1002/mrm.29431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE To develop an MR multitasking-based dynamic imaging for cerebrovascular evaluation (MT-DICE) technique for simultaneous quantification of permeability and leakage-insensitive perfusion with a single-dose contrast injection. METHODS MT-DICE builds on a saturation-recovery prepared multi-echo fast low-angle shot sequence. The k-space is randomly sampled for 7.6 min, with single-dose contrast agent injected 1.5 min into the scan. MR multitasking is used to model the data into six dimensions, including three spatial dimensions for whole-brain coverage, a saturation-recovery time dimension, and a TE dimension for dynamicT 1 $$ {\mathrm{T}}_1 $$ andT 2 * $$ {\mathrm{T}}_2^{\ast } $$ quantification, respectively, and a contrast dynamics dimension for capturing contrast kinetics. The derived pixel-wiseT 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ time series are converted into contrast concentration-time curves for calculation of kinetic metrics. The technique was assessed for its agreement with reference methods inT 1 $$ {\mathrm{T}}_1 $$ andT 2 * $$ {\mathrm{T}}_2^{\ast } $$ measurements in eight healthy subjects and, in three of them, inter-session repeatability of permeability and leakage-insensitive perfusion parameters. Its feasibility was also demonstrated in four patients with brain tumors. RESULTS MT-DICET 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ values of normal gray matter and white matter were in excellent agreement with reference values (intraclass correlation coefficients = 0.860/0.962 for gray matter and 0.925/0.975 for white matter ). Both permeability and perfusion parameters demonstrated good to excellent intersession agreement with the lowest intraclass correlation coefficients at 0.694. Contrast kinetic parameters in all healthy subjects and patients were within the literature range. CONCLUSION Based on dynamicT 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ mapping, MT-DICE allows for simultaneous quantification of permeability and leakage-insensitive perfusion metrics with a single-dose contrast injection.
Collapse
Affiliation(s)
- Zhehao Hu
- Department of RadiologyUniversity of Southern California
Los AngelesCaliforniaUSA
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Nan Wang
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Yibin Xie
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Mark S. Shiroishi
- Department of RadiologyUniversity of Southern California
Los AngelesCaliforniaUSA
| | - Wensha Yang
- Department of Radiation OncologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Gabriel Zada
- Department of NeurosurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Frances E. Chow
- Department of NeurosurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ashley S. Margol
- Department of Neuro‐oncologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Benita Tamrazi
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Eric L. Chang
- Department of Radiation OncologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Debiao Li
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Zhaoyang Fan
- Department of RadiologyUniversity of Southern California
Los AngelesCaliforniaUSA
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Eyre K, Lindsay K, Razzaq S, Chetrit M, Friedrich M. Simultaneous multi-parametric acquisition and reconstruction techniques in cardiac magnetic resonance imaging: Basic concepts and status of clinical development. Front Cardiovasc Med 2022; 9:953823. [PMID: 36277755 PMCID: PMC9582154 DOI: 10.3389/fcvm.2022.953823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Simultaneous multi-parametric acquisition and reconstruction techniques (SMART) are gaining attention for their potential to overcome some of cardiovascular magnetic resonance imaging's (CMR) clinical limitations. The major advantages of SMART lie within their ability to simultaneously capture multiple "features" such as cardiac motion, respiratory motion, T1/T2 relaxation. This review aims to summarize the overarching theory of SMART, describing key concepts that many of these techniques share to produce co-registered, high quality CMR images in less time and with less requirements for specialized personnel. Further, this review provides an overview of the recent developments in the field of SMART by describing how they work, the parameters they can acquire, their status of clinical testing and validation, and by providing examples for how their use can improve the current state of clinical CMR workflows. Many of the SMART are in early phases of development and testing, thus larger scale, controlled trials are needed to evaluate their use in clinical setting and with different cardiac pathologies.
Collapse
Affiliation(s)
- Katerina Eyre
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada,*Correspondence: Katerina Eyre,
| | - Katherine Lindsay
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Saad Razzaq
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Michael Chetrit
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Matthias Friedrich
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Weingärtner S, Demirel ÖB, Gama F, Pierce I, Treibel TA, Schulz-Menger J, Akçakaya M. Cardiac phase-resolved late gadolinium enhancement imaging. Front Cardiovasc Med 2022; 9:917180. [PMID: 36247474 PMCID: PMC9557076 DOI: 10.3389/fcvm.2022.917180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR) imaging is the clinical reference for assessment of myocardial scar and focal fibrosis. However, current LGE techniques are confined to imaging of a single cardiac phase, which hampers assessment of scar motility and does not allow cross-comparison between multiple phases. In this work, we investigate a three step approach to obtain cardiac phase-resolved LGE images: (1) Acquisition of cardiac phase-resolved imaging data with varying T1 weighting. (2) Generation of semi-quantitative T1* maps for each cardiac phase. (3) Synthetization of LGE contrast to obtain functional LGE images. The proposed method is evaluated in phantom imaging, six healthy subjects at 3T and 20 patients at 1.5T. Phantom imaging at 3T demonstrates consistent contrast throughout the cardiac cycle with a coefficient of variation of 2.55 ± 0.42%. In-vivo results show reliable LGE contrast with thorough suppression of the myocardial tissue is healthy subjects. The contrast between blood and myocardium showed moderate variation throughout the cardiac cycle in healthy subjects (coefficient of variation 18.2 ± 3.51%). Images were acquired at 40–60 ms and 80 ms temporal resolution, at 3T and 1.5, respectively. Functional LGE images acquired in patients with myocardial scar visualized scar tissue throughout the cardiac cycle, albeit at noticeably lower imaging resolution and noise resilience than the reference technique. The proposed technique bears the promise of integrating the advantages of phase-resolved CMR with LGE imaging, but further improvements in the acquisition quality are warranted for clinical use.
Collapse
Affiliation(s)
- Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
- *Correspondence: Sebastian Weingärtner
| | - Ömer B. Demirel
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Francisco Gama
- Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Iain Pierce
- Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Thomas A. Treibel
- Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance Imaging, Experimental and Clinical Research Center, Joint Cooperation of the Max-Delbrück-Centrum and Charite-Medical University Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch and DZHK, Berlin, Germany
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Ma L, Wu J, Yang Q, Zhou Z, He H, Bao J, Bao L, Wang X, Zhang P, Zhong J, Cai C, Cai S, Chen Z. Single-shot multi-parametric mapping based on multiple overlapping-echo detachment (MOLED) imaging. Neuroimage 2022; 263:119645. [PMID: 36155244 DOI: 10.1016/j.neuroimage.2022.119645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Multi-parametric quantitative magnetic resonance imaging (mqMRI) allows the characterization of multiple tissue properties non-invasively and has shown great potential to enhance the sensitivity of MRI measurements. However, real-time mqMRI during dynamic physiological processes or general motions remains challenging. To overcome this bottleneck, we propose a novel mqMRI technique based on multiple overlapping-echo detachment (MOLED) imaging, termed MQMOLED, to enable mqMRI in a single shot. In the data acquisition of MQMOLED, multiple MR echo signals with different multi-parametric weightings and phase modulations are generated and acquired in the same k-space. The k-space data is Fourier transformed and fed into a well-trained neural network for the reconstruction of multi-parametric maps. We demonstrated the accuracy and repeatability of MQMOLED in simultaneous mapping apparent proton density (APD) and any two parameters among T2, T2*, and apparent diffusion coefficient (ADC) in 130-170 ms. The abundant information delivered by the multiple overlapping-echo signals in MQMOLED makes the technique potentially robust to system imperfections, such as inhomogeneity of static magnetic field or radiofrequency field. Benefitting from the single-shot feature, MQMOLED exhibits a strong motion tolerance to the continuous movements of subjects. For the first time, it captured the synchronous changes of ADC, T2, and T1-weighted APD in contrast-enhanced perfusion imaging on patients with brain tumors, providing additional information about vascular density to the hemodynamic parametric maps. We expect that MQMOLED would promote the development of mqMRI technology and greatly benefit the applications of mqMRI, including therapeutics and analysis of metabolic/functional processes.
Collapse
Affiliation(s)
- Lingceng Ma
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jian Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Qinqin Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Zihan Zhou
- The Center for Brain Imaging Science and Technology, The Collaborative Innovation Center for Diagnosis and The Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310027, China
| | - Hongjian He
- The Center for Brain Imaging Science and Technology, The Collaborative Innovation Center for Diagnosis and The Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310027, China
| | - Jianfeng Bao
- Department of MRI, Henan Key Laboratory of Magnetic Resonance Function and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Lijun Bao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Xiaoyin Wang
- The Center for Brain Imaging Science and Technology, The Collaborative Innovation Center for Diagnosis and The Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310027, China
| | - Pujie Zhang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianhui Zhong
- The Center for Brain Imaging Science and Technology, The Collaborative Innovation Center for Diagnosis and The Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310027, China; Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
10
|
Khan S, Azam B, Yao Y, Chen W. Deep collaborative network with alpha matte for precise knee tissue segmentation from MRI. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106963. [PMID: 35752117 DOI: 10.1016/j.cmpb.2022.106963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Precise segmentation of knee tissues from magnetic resonance imaging (MRI) is critical in quantitative imaging and diagnosis. Convolutional neural networks (CNNs), being state of the art, often challenged by the lack of image-specific adaptation, such as low tissue contrasts and structural inhomogeneities, thereby leading to incomplete segmentation results. METHODS This paper presents a deep learning-based automatic segmentation framework for precise knee tissue segmentation. A novel deep collaborative method is proposed, which consists of an encoder-decoder-based segmentation network in combination with a low rank tensor-reconstructed segmentation network. Low rank reconstruction in MRI tensor sub-blocks is introduced to exploit the morphological variations in knee tissues. To model the tissue boundary regions and effectively utilize the superimposed regions, trimap generation is proposed for defining high, medium and low confidence regions from the multipath CNNs. The secondary path with low rank reconstructed input mitigates the conditions in which the primary segmentation network can potentially fail and overlook the boundary regions. The outcome of the segmentation is solved as an alpha matting problem by blending the trimap with the source input. RESULTS Experiments on Osteoarthritis Initiative (OAI) datasets with all the 6 musculoskeletal tissues provide an overall segmentation dice score of 0.8925, where Femoral and Tibial part of cartilage achieving an average dice exceeding 0.9. The volumetric metrics also indicate the superior performances in all tissue compartments. CONCLUSIONS Experiments on Osteoarthritis Initiative (OAI) datasets and a self-prepared scan validate the effectiveness of the proposed method. Inclusion of extra prediction scale allowed the model to distinguish and segment the tissue boundary accurately. We specifically demonstrate the application of the proposed method in a cartilage segmentation-based thickness map for diagnosis purposes.
Collapse
Affiliation(s)
- Sheheryar Khan
- Department of Imaging and Interventional Radiology, CU lab of AI in radiology (CLAIR), Chinese University of Hong Kong, Prince of Wales Hospital, Shatin N.T., Hong Kong, China; School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Basim Azam
- Center for Intelligent Systems, Central Queensland University, Brisbane, Australia
| | - Yongcheng Yao
- Department of Imaging and Interventional Radiology, CU lab of AI in radiology (CLAIR), Chinese University of Hong Kong, Prince of Wales Hospital, Shatin N.T., Hong Kong, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, CU lab of AI in radiology (CLAIR), Chinese University of Hong Kong, Prince of Wales Hospital, Shatin N.T., Hong Kong, China.
| |
Collapse
|
11
|
Luo YS, Zhao XL, Jiang TX, Chang Y, Ng MK, Li C. Self-Supervised Nonlinear Transform-Based Tensor Nuclear Norm for Multi-Dimensional Image Recovery. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:3793-3808. [PMID: 35609097 DOI: 10.1109/tip.2022.3176220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, transform-based tensor nuclear norm (TNN) minimization methods have received increasing attention for recovering third-order tensors in multi-dimensional imaging problems. The main idea of these methods is to perform the linear transform along the third mode of third-order tensors and then minimize the nuclear norm of frontal slices of the transformed tensor. The main aim of this paper is to propose a nonlinear multilayer neural network to learn a nonlinear transform by solely using the observed tensor in a self-supervised manner. The proposed network makes use of the low-rank representation of the transformed tensor and data-fitting between the observed tensor and the reconstructed tensor to learn the nonlinear transform. Extensive experimental results on different data and different tasks including tensor completion, background subtraction, robust tensor completion, and snapshot compressive imaging demonstrate the superior performance of the proposed method over state-of-the-art methods.
Collapse
|
12
|
Li Z, Xu X, Yang Y, Feng L. Repeatability and robustness of MP-GRASP T 1 mapping. Magn Reson Med 2022; 87:2271-2286. [PMID: 34971467 PMCID: PMC10061203 DOI: 10.1002/mrm.29131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To demonstrate the repeatability of fast 3D T1 mapping using Magnetization-Prepared Golden-angle RAdial Sparse Parallel (MP-GRASP) MRI and its robustness to variation of imaging parameters including flip angle and spatial resolution in phantoms and the brain. THEORY AND METHODS Multiple imaging experiments were performed to (1) assess the robustness of MP-GRASP T1 mapping to B1 inhomogeneity using a single tube phantom filled with uniform MnCl2 liquid; (2) compare the repeatability of T1 mapping between MP-GRASP and inversion recovery-based spin-echo (IR-SE; over 12 scans), using a commercial T1MES phantom; (3) evaluate the longitudinal variation of T1 estimation using MP-GRASP with varying imaging parameters, including spatial resolution, flip angle, TR/TE, and acceleration rate, using the T1MES phantom (106 scans performed over a period of 12 months); and (4) evaluate the variation of T1 estimation using MP-GRASP with varying imaging parameters in the brain (24 scans in a single visit). In addition, the accuracy of MP-GRASP T1 mapping was also validated against IR-SE by performing linear correlation and calculating the Lin's concordance correlation coefficient (CCC). RESULTS MP-GRASP demonstrates good robustness to B1 inhomogeneity, with intra-slice variability below 1% in the single tube phantom experiment. The longitudinal variability is good both in the phantom (below 2.5%) and in the brain (below 2%) with varying imaging parameters. The T1 values estimated from MP-GRASP are accurate compared to that from the IR-SE imaging (R2 = 0.997, Lin's CCC = 0.996). CONCLUSION MP-GRASP shows excellent repeatability of T1 estimation over time, and it is also robust to variation of different imaging parameters evaluated in this study.
Collapse
Affiliation(s)
- Zhitao Li
- Department of Radiology, Stanford University, Palo Alto, California, United States
| | - Xiang Xu
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yang Yang
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Feng
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
13
|
Ismail TF, Strugnell W, Coletti C, Božić-Iven M, Weingärtner S, Hammernik K, Correia T, Küstner T. Cardiac MR: From Theory to Practice. Front Cardiovasc Med 2022; 9:826283. [PMID: 35310962 PMCID: PMC8927633 DOI: 10.3389/fcvm.2022.826283] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading single cause of morbidity and mortality, causing over 17. 9 million deaths worldwide per year with associated costs of over $800 billion. Improving prevention, diagnosis, and treatment of CVD is therefore a global priority. Cardiovascular magnetic resonance (CMR) has emerged as a clinically important technique for the assessment of cardiovascular anatomy, function, perfusion, and viability. However, diversity and complexity of imaging, reconstruction and analysis methods pose some limitations to the widespread use of CMR. Especially in view of recent developments in the field of machine learning that provide novel solutions to address existing problems, it is necessary to bridge the gap between the clinical and scientific communities. This review covers five essential aspects of CMR to provide a comprehensive overview ranging from CVDs to CMR pulse sequence design, acquisition protocols, motion handling, image reconstruction and quantitative analysis of the obtained data. (1) The basic MR physics of CMR is introduced. Basic pulse sequence building blocks that are commonly used in CMR imaging are presented. Sequences containing these building blocks are formed for parametric mapping and functional imaging techniques. Commonly perceived artifacts and potential countermeasures are discussed for these methods. (2) CMR methods for identifying CVDs are illustrated. Basic anatomy and functional processes are described to understand the cardiac pathologies and how they can be captured by CMR imaging. (3) The planning and conduct of a complete CMR exam which is targeted for the respective pathology is shown. Building blocks are illustrated to create an efficient and patient-centered workflow. Further strategies to cope with challenging patients are discussed. (4) Imaging acceleration and reconstruction techniques are presented that enable acquisition of spatial, temporal, and parametric dynamics of the cardiac cycle. The handling of respiratory and cardiac motion strategies as well as their integration into the reconstruction processes is showcased. (5) Recent advances on deep learning-based reconstructions for this purpose are summarized. Furthermore, an overview of novel deep learning image segmentation and analysis methods is provided with a focus on automatic, fast and reliable extraction of biomarkers and parameters of clinical relevance.
Collapse
Affiliation(s)
- Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Cardiology Department, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Wendy Strugnell
- Queensland X-Ray, Mater Hospital Brisbane, Brisbane, QLD, Australia
| | - Chiara Coletti
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
| | - Maša Božić-Iven
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | | | - Kerstin Hammernik
- Lab for AI in Medicine, Technical University of Munich, Munich, Germany
- Department of Computing, Imperial College London, London, United Kingdom
| | - Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Centre of Marine Sciences, Faro, Portugal
| | - Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Liu Y, Ying L, Chen W, Cui ZX, Zhu Q, Liu X, Zheng H, Liang D, Zhu Y. Accelerating the 3D T 1ρ mapping of cartilage using a signal-compensated robust tensor principal component analysis model. Quant Imaging Med Surg 2021; 11:3376-3391. [PMID: 34341716 DOI: 10.21037/qims-20-790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/19/2021] [Indexed: 11/06/2022]
Abstract
Background Magnetic resonance (MR) quantitative T1ρ imaging has been increasingly used to detect the early stages of osteoarthritis. The small volume and curved surface of articular cartilage necessitate imaging with high in-plane resolution and thin slices for accurate T1ρ measurement. Compared with 2D T1ρ mapping, 3D T1ρ mapping is free from artifacts caused by slice cross-talk and has a thinner slice thickness and full volume coverage. However, this technique needs to acquire multiple T1ρ-weighted images with different spin-lock times, which results in a very long scan duration. It is highly expected that the scan time can be reduced in 3D T1ρ mapping without compromising the T1ρ quantification accuracy and precision. Methods To accelerate the acquisition of 3D T1ρ mapping without compromising the T1ρ quantification accuracy and precision, a signal-compensated robust tensor principal component analysis method was proposed in this paper. The 3D T1ρ-weighted images compensated at different spin-lock times were decomposed as a low-rank high-order tensor plus a sparse component. Poisson-disk random undersampling patterns were applied to k-space data in the phase- and partition-encoding directions in both retrospective and prospective experiments. Five volunteers were involved in this study. The fully sampled k-space data acquired from 3 volunteers were retrospectively undersampled at R=5.2, 7.7, and 9.7, respectively. Reference values were obtained from the fully sampled data. Prospectively undersampled data for R=5 and R=7 were acquired from 2 volunteers. Bland-Altman analyses were used to assess the agreement between the accelerated and reference T1ρ measurements. The reconstruction performance was evaluated using the normalized root mean square error and the median of the normalized absolute deviation (MNAD) of the reconstructed T1ρ-weighted images and the corresponding T1ρ maps. Results T1ρ parameter maps were successfully estimated from T1ρ-weighted images reconstructed using the proposed method for all accelerations. The accelerated T1ρ measurements and reference values were in good agreement for R=5.2 (T1ρ: 40.4±1.4 ms), R=7.7 (T1ρ: 40.4±2.1 ms), and R=9.7 (T1ρ: 40.9±2.2 ms) in the Bland-Altman analyses. The T1ρ parameter maps reconstructed from the prospectively undersampled data also showed promising image quality using the proposed method. Conclusions The proposed method achieves the 3D T1ρ mapping of in vivo knee cartilage in eight minutes using a signal-compensated robust tensor principal component analysis method in image reconstruction.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,National Innovation Center for Advanced Medical Devices, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.,Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Leslie Ying
- Department of Biomedical Engineering and Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhuo-Xu Cui
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qingyong Zhu
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
15
|
Chen Q, She H, Du YP. Whole Brain Myelin Water Mapping in One Minute Using Tensor Dictionary Learning With Low-Rank Plus Sparse Regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1253-1266. [PMID: 33439835 DOI: 10.1109/tmi.2021.3051349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The quantification of myelin water content in the brain can be obtained by the multi-echo [Formula: see text] weighted images ( [Formula: see text]WIs). To accelerate the long acquisition, a novel tensor dictionary learning algorithm with low-rank and sparse regularization (TDLLS) is proposed to reconstruct the [Formula: see text]WIs from the undersampled data. The proposed algorithm explores the local and nonlocal similarity and the global temporal redundancy in the real and imaginary parts of the complex relaxation signals. The joint application of the low-rank constraints on the dictionaries and the sparse constraints on the core coefficient tensors improves the performance of the tensor-based recovery. Parallel imaging is incorporated into the TDLLS algorithm (pTDLLS) for further acceleration. A pulse sequence is proposed to prospectively undersample the Ky-t space to obtain the whole brain high-quality myelin water fraction (MWF) maps within 1 minute at an undersampling rate (R) of 6.
Collapse
|
16
|
Demirel OB, Weingärtner S, Moeller S, Akçakaya M. Improved simultaneous multislice cardiac MRI using readout concatenated k-space SPIRiT (ROCK-SPIRiT). Magn Reson Med 2021; 85:3036-3048. [PMID: 33566378 DOI: 10.1002/mrm.28680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE To develop and evaluate a simultaneous multislice (SMS) reconstruction technique that provides noise reduction and leakage blocking for highly accelerated cardiac MRI. METHODS ReadOut Concatenated k-space SPIRiT (ROCK-SPIRiT) uses the concept of readout concatenation in image domain to represent SMS encoding, and performs coil self-consistency as in SPIRiT-type reconstruction in an extended k-space, while allowing regularization for further denoising. The proposed method is implemented with and without regularization, and validated on retrospectively SMS-accelerated cine imaging with three-fold SMS and two-fold in-plane acceleration. ROCK-SPIRiT is compared with two leakage-blocking SMS reconstruction methods: readout-SENSE-GRAPPA and split slice-GRAPPA. Further evaluation and comparisons are performed using prospectively SMS-accelerated cine imaging. RESULTS Results on retrospectively three-fold SMS and two-fold in-plane accelerated cine imaging show that ROCK-SPIRiT without regularization significantly improves on existing methods in terms of PSNR (readout-SENSE-GRAPPA: 33.5 ± 3.2, split slice-GRAPPA: 34.1 ± 3.8, ROCK-SPIRiT: 35.0 ± 3.3) and SSIM (readout-SENSE-GRAPPA: 84.4 ± 8.9, split slice-GRAPPA: 85.0 ± 8.9, ROCK-SPIRiT: 88.2 ± 6.6 [in percentage]). Regularized ROCK-SPIRiT significantly outperforms all methods, as characterized by these quantitative metrics (PSNR: 37.6 ± 3.8, SSIM: 94.2 ± 4.1 [in percentage]). The prospectively five-fold SMS and two-fold in-plane accelerated data show that ROCK-SPIRiT and regularized ROCK-SPIRiT have visually improved image quality compared with existing methods. CONCLUSION The proposed ROCK-SPIRiT technique reduces noise and interslice leakage in accelerated SMS cardiac cine MRI, improving on existing methods both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Omer Burak Demirel
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebastian Weingärtner
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Guo S, Fessler JA, Noll DC. High-Resolution Oscillating Steady-State fMRI Using Patch-Tensor Low-Rank Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4357-4368. [PMID: 32809938 PMCID: PMC7751316 DOI: 10.1109/tmi.2020.3017450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The goals of fMRI acquisition include high spatial and temporal resolutions with a high signal to noise ratio (SNR). Oscillating Steady-State Imaging (OSSI) is a new fMRI acquisition method that provides large oscillating signals with the potential for high SNR, but does so at the expense of spatial and temporal resolutions. The unique oscillation pattern of OSSI images makes it well suited for high-dimensional modeling. We propose a patch-tensor low-rank model to exploit the local spatial-temporal low-rankness of OSSI images. We also develop a practical sparse sampling scheme with improved sampling incoherence for OSSI. With an alternating direction method of multipliers (ADMM) based algorithm, we improve OSSI spatial and temporal resolutions with a factor of 12 acquisition acceleration and 1.3 mm isotropic spatial resolution in prospectively undersampled experiments. The proposed model yields high temporal SNR with more activation than other low-rank methods. Compared to the standard grad- ient echo (GRE) imaging with the same spatial-temporal resolution, 3D OSSI tensor model reconstruction demonstrates 2 times higher temporal SNR with 2 times more functional activation.
Collapse
|
18
|
Liu Y, Yi Z, Zhao Y, Chen F, Feng Y, Guo H, Leong ATL, Wu EX. Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion. Magn Reson Med 2020; 85:897-911. [PMID: 32966651 DOI: 10.1002/mrm.28480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To provide joint calibrationless parallel imaging reconstruction of highly accelerated multislice 2D MR k-space data. METHODS Adjacent image slices in multislice MR data have similar coil sensitivity maps, spatial support, and image content. Such similarities can be utilized to improve image quality by reconstructing multiple slices jointly with low-rank tensor completion. Specifically, the multichannel k-space data from multiple slices are constructed into a block-wise Hankel tensor and iteratively updated by promoting tensor low-rankness through higher-order SVD. This multislice block-wise Hankel tensor completion was implemented for 2D spiral and Cartesian k-space undersampling where sampling patterns vary between adjacent slices. The approach was evaluated with human brain MR data and compared to the traditional single-slice simultaneous autocalibrating and k-space estimation reconstruction. RESULTS The proposed multislice block-wise Hankel tensor completion approach robustly reconstructed highly undersampled multislice 2D spiral and Cartesian data. It produced substantially lower level of artifacts compared to the traditional single-slice simultaneous autocalibrating and k-space estimation reconstruction. Quantitative evaluation using error maps and root mean square error demonstrated its significantly improved performance in terms of residual artifacts and root mean square error. CONCLUSION Our proposed multislice block-wise Hankel tensor completion method exploits the similar coil sensitivity and image content within multislice MR data through a tensor completion framework. It offers a new and effective approach to acquire and reconstruct highly undersampled multislice MR data in a calibrationless manner.
Collapse
Affiliation(s)
- Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zheyuan Yi
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yujiao Zhao
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
19
|
Hu Z, Christodoulou AG, Wang N, Shaw JL, Song SS, Maya MM, Ishimori ML, Forbess LJ, Xiao J, Bi X, Han F, Li D, Fan Z. Magnetic resonance multitasking for multidimensional assessment of cardiovascular system: Development and feasibility study on the thoracic aorta. Magn Reson Med 2020; 84:2376-2388. [PMID: 32301164 DOI: 10.1002/mrm.28275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To develop an MR multitasking-based multidimensional assessment of cardiovascular system (MT-MACS) with electrocardiography-free and navigator-free data acquisition for a comprehensive evaluation of thoracic aortic diseases. METHODS The MT-MACS technique adopts a low-rank tensor image model with a cardiac time dimension for phase-resolved cine imaging and a T2 -prepared inversion-recovery dimension for multicontrast assessment. Twelve healthy subjects and 2 patients with thoracic aortic diseases were recruited for the study at 3 T, and both qualitative (image quality score) and quantitative (contrast-to-noise ratio between lumen and wall, lumen and wall area, and aortic strain index) analyses were performed in all healthy subjects. The overall image quality was scored based on a 4-point scale: 3, excellent; 2, good; 1, fair; and 0, poor. Statistical analysis was used to test the measurement agreement between MT-MACS and its corresponding 2D references. RESULTS The MT-MACS images reconstructed from acquisitions as short as 6 minutes demonstrated good or excellent image quality for bright-blood (2.58 ± 0.46), dark-blood (2.58 ± 0.50), and gray-blood (2.17 ± 0.53) contrast weightings, respectively. The contrast-to-noise ratios for the three weightings were 49.2 ± 12.8, 20.0 ± 5.8 and 2.8 ± 1.8, respectively. There were good agreements in the lumen and wall area (intraclass correlation coefficient = 0.993, P < .001 for lumen; intraclass correlation coefficient = 0.969, P < .001 for wall area) and strain (intraclass correlation coefficient = 0.947, P < .001) between MT-MACS and conventional 2D sequences. CONCLUSION The MT-MACS technique provides high-quality, multidimensional images for a comprehensive assessment of the thoracic aorta. Technical feasibility was demonstrated in healthy subjects and patients with thoracic aortic diseases. Further clinical validation is warranted.
Collapse
Affiliation(s)
- Zhehao Hu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Anthony G Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| | - Nan Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Jaime L Shaw
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlee S Song
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Marcel M Maya
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mariko L Ishimori
- Department of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lindsy J Forbess
- Department of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jiayu Xiao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Fei Han
- Siemens Healthcare, Los Angeles, California
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| |
Collapse
|