1
|
Yi H. Efficient machine learning algorithm for electroencephalogram modeling in brain–computer interfaces. Neural Comput Appl 2022. [DOI: 10.1007/s00521-020-04861-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Zhong J, Zeng X, Cao W, Wu S, Liu C, Yu Z, Wong HS. Semisupervised Multiple Choice Learning for Ensemble Classification. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:3658-3668. [PMID: 32924945 DOI: 10.1109/tcyb.2020.3016048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ensemble learning has many successful applications because of its effectiveness in boosting the predictive performance of classification models. In this article, we propose a semisupervised multiple choice learning (SemiMCL) approach to jointly train a network ensemble on partially labeled data. Our model mainly focuses on improving a labeled data assignment among the constituent networks and exploiting unlabeled data to capture domain-specific information, such that semisupervised classification can be effectively facilitated. Different from conventional multiple choice learning models, the constituent networks learn multiple tasks in the training process. Specifically, an auxiliary reconstruction task is included to learn domain-specific representation. For the purpose of performing implicit labeling on reliable unlabeled samples, we adopt a negative l1 -norm regularization when minimizing the conditional entropy with respect to the posterior probability distribution. Extensive experiments on multiple real-world datasets are conducted to verify the effectiveness and superiority of the proposed SemiMCL model.
Collapse
|
3
|
Ding W, Abdel-Basset M, Hawash H. RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions. Inf Sci (N Y) 2021; 578:559-573. [PMID: 34305162 PMCID: PMC8294559 DOI: 10.1016/j.ins.2021.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 07/17/2021] [Indexed: 12/16/2022]
Abstract
The segmentation of COVID-19 lesions from computed tomography (CT) scans is crucial to develop an efficient automated diagnosis system. Deep learning (DL) has shown success in different segmentation tasks. However, an efficient DL approach requires a large amount of accurately annotated data, which is difficult to aggregate owing to the urgent situation of COVID-19. Inaccurate annotation can easily occur without experts, and segmentation performance is substantially worsened by noisy annotations. Therefore, this study presents a reliable and consistent temporal-ensembling (RCTE) framework for semi-supervised lesion segmentation. A segmentation network is integrated into a teacher-student architecture to segment infection regions from a limited number of annotated CT scans and a large number of unannotated CT scans. The network generates reliable and unreliable targets, and to evenly handle these targets potentially degrades performance. To address this, a reliable teacher-student architecture is introduced, where a reliable teacher network is the exponential moving average (EMA) of a reliable student network that is reliably renovated by restraining the student involvement to EMA when its loss is larger. We also present a noise-aware loss based on improvements to generalized cross-entropy loss to lead the segmentation performance toward noisy annotations. Comprehensive analysis validates the robustness of RCTE over recent cutting-edge semi-supervised segmentation techniques, with a 65.87% Dice score.
Collapse
Affiliation(s)
- Weiping Ding
- School of Information Science and Technology, Nantong University, Nantong 226019, China
| | - Mohamed Abdel-Basset
- Zagazig Univesitry, Shaibet an Nakareyah, Zagazig 2, 44519 Ash Sharqia Governorate, Egypt
| | - Hossam Hawash
- Zagazig Univesitry, Shaibet an Nakareyah, Zagazig 2, 44519 Ash Sharqia Governorate, Egypt
| |
Collapse
|
4
|
Cui S, Wang Y, Yin Y, Cheng T, Wang D, Zhai M. A cluster-based intelligence ensemble learning method for classification problems. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.01.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Development of ensemble learning classification with density peak decomposition-based evolutionary multi-objective optimization. INT J MACH LEARN CYB 2021. [DOI: 10.1007/s13042-020-01271-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
|
7
|
Jan Z, Verma B. Multicluster Class-Balanced Ensemble. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:1014-1025. [PMID: 32275624 DOI: 10.1109/tnnls.2020.2979839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ensemble classifiers using clustering have significantly improved classification and prediction accuracies of many systems. These types of ensemble approaches create multiple clusters to train the base classifiers. However, the problem with this is that each class might have many clusters and each cluster might have different number of samples, so an ensemble decision based on large number of clusters and different number of samples per class within a cluster produces biased and inaccurate results. Therefore, in this article, we propose a novel methodology to create an appropriate number of strong data clusters for each class and then balance them. Furthermore, an ensemble framework is proposed with base classifiers trained on strong and balanced data clusters. The proposed approach is implemented and evaluated on 24 benchmark data sets from the University of California Irvine (UCI) machine learning repository. An analysis of results using the proposed approach and the existing state-of-the-art ensemble classifier approaches is conducted and presented. A significance test is conducted to further validate the efficacy of the results and a detailed analysis is presented.
Collapse
|
8
|
Jan ZM, Verma B. Multiple Elimination of Base Classifiers in Ensemble Learning Using Accuracy and Diversity Comparisons. ACM T INTEL SYST TEC 2020. [DOI: 10.1145/3405790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
When generating ensemble classifiers, selecting the best set of classifiers from the base classifier pool is considered a combinatorial problem and an efficient classifier selection methodology must be utilized. Different researchers have used different strategies such as evolutionary algorithms, genetic algorithms, rule-based algorithms, simulated annealing, and so forth to select the best set of classifiers that can maximize overall ensemble classifier accuracy. In this article, we present a novel classifier selection approach to generate an ensemble classifier. The proposed approach selects classifiers in multiple rounds of elimination. In each round, a classifier is given a chance to be selected to become a part of the ensemble, if it can contribute to the overall ensemble accuracy or diversity; otherwise, it is put back into the pool. Each classifier is given multiple opportunities to participate in rounds of selection and they are discarded only if they have no remaining chances. The process is repeated until no classifier in the pool has any chance left to participate in the round of selection. To test the efficacy of the proposed approach, 13 benchmark datasets from the UCI repository are used and results are compared with single classifier models and existing state-of-the-art ensemble classifier approaches. Statistical significance testing is conducted to further validate the results, and an analysis is provided.
Collapse
Affiliation(s)
- Zohaib Md. Jan
- Center for Intelligent Systems, Central Queensland University, Brisbane, Queensland, Australia
| | - Brijesh Verma
- Center for Intelligent Systems, Central Queensland University, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Jiang F, Yu X, Zhao H, Gong D, Du J. Ensemble learning based on random super-reduct and resampling. Artif Intell Rev 2020. [DOI: 10.1007/s10462-020-09922-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Cammarota G, Ianiro G, Ahern A, Carbone C, Temko A, Claesson MJ, Gasbarrini A, Tortora G. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Rev Gastroenterol Hepatol 2020; 17:635-648. [PMID: 32647386 DOI: 10.1038/s41575-020-0327-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
The gut microbiome has been implicated in cancer in several ways, as specific microbial signatures are known to promote cancer development and influence safety, tolerability and efficacy of therapies. The 'omics' technologies used for microbiome analysis continuously evolve and, although much of the research is still at an early stage, large-scale datasets of ever increasing size and complexity are being produced. However, there are varying levels of difficulty in realizing the full potential of these new tools, which limit our ability to critically analyse much of the available data. In this Perspective, we provide a brief overview on the role of gut microbiome in cancer and focus on the need, role and limitations of a machine learning-driven approach to analyse large amounts of complex health-care information in the era of big data. We also discuss the potential application of microbiome-based big data aimed at promoting precision medicine in cancer.
Collapse
Affiliation(s)
- Giovanni Cammarota
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gianluca Ianiro
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Ahern
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Carmine Carbone
- Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andriy Temko
- School of Engineering, University College Cork, Cork, Ireland.,Qualcomm ML R&D, Cork, Ireland
| | - Marcus J Claesson
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Antonio Gasbarrini
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
Shi Y, Yu Z, Chen CLP, You J, Wong HS, Wang Y, Zhang J. Transfer Clustering Ensemble Selection. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:2872-2885. [PMID: 30596592 DOI: 10.1109/tcyb.2018.2885585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Clustering ensemble (CE) takes multiple clustering solutions into consideration in order to effectively improve the accuracy and robustness of the final result. To reduce redundancy as well as noise, a CE selection (CES) step is added to further enhance performance. Quality and diversity are two important metrics of CES. However, most of the CES strategies adopt heuristic selection methods or a threshold parameter setting to achieve tradeoff between quality and diversity. In this paper, we propose a transfer CES (TCES) algorithm which makes use of the relationship between quality and diversity in a source dataset, and transfers it into a target dataset based on three objective functions. Furthermore, a multiobjective self-evolutionary process is designed to optimize these three objective functions. Finally, we construct a transfer CE framework (TCE-TCES) based on TCES to obtain better clustering results. The experimental results on 12 transfer clustering tasks obtained from the 20newsgroups dataset show that TCE-TCES can find a better tradeoff between quality and diversity, as well as obtaining more desirable clustering results.
Collapse
|
12
|
Shen X, Chung FL. Deep Network Embedding for Graph Representation Learning in Signed Networks. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:1556-1568. [PMID: 30307885 DOI: 10.1109/tcyb.2018.2871503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Network embedding has attracted an increasing attention over the past few years. As an effective approach to solve graph mining problems, network embedding aims to learn a low-dimensional feature vector representation for each node of a given network. The vast majority of existing network embedding algorithms, however, are only designed for unsigned networks, and the signed networks containing both positive and negative links, have pretty distinct properties from the unsigned counterpart. In this paper, we propose a deep network embedding model to learn the low-dimensional node vector representations with structural balance preservation for the signed networks. The model employs a semisupervised stacked auto-encoder to reconstruct the adjacency connections of a given signed network. As the adjacency connections are overwhelmingly positive in the real-world signed networks, we impose a larger penalty to make the auto-encoder focus more on reconstructing the scarce negative links than the abundant positive links. In addition, to preserve the structural balance property of signed networks, we design the pairwise constraints to make the positively connected nodes much closer than the negatively connected nodes in the embedding space. Based on the network representations learned by the proposed model, we conduct link sign prediction and community detection in signed networks. Extensive experimental results in real-world datasets demonstrate the superiority of the proposed model over the state-of-the-art network embedding algorithms for graph representation learning in signed networks.
Collapse
|
13
|
Semi-Supervised Ensemble Classification Method Based on Near Neighbor and Its Application. Processes (Basel) 2020. [DOI: 10.3390/pr8040415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Semi-supervised learning can be used to solve the problem of insufficient labeled samples in the process industry. However, in an actual scenario, traditional semi-supervised learning methods usually do not achieve satisfactory performance when the small number of labeled samples is subjective and inaccurate and some do not consider how to develop a strategy to expand the training set. In this paper, a new algorithm is proposed to alleviate the above two problems, and consequently, the information contained in unlabeled samples can be fully mined. First, the multivariate adaptive regression splines (MARS) and adaptive boosting (Adaboost) algorithms are adopted for co-training to make the most of the deep connection between samples and features. In addition, the strategies, pseudo-labeled dataset selection algorithm based on near neighbor degree (DSSA) and pseudo-labeled sample detection algorithm based on near neighbor degree selection (SPDA) are adopted to enlarge the dataset of labeled samples. When we select the samples from the pseudo-labeled data to join the training set, the confidence degree and the spatial relationship with labeled samples are considered, which are able to improve classifier accuracy. The results of tests on multiple University of California Irvine (UCI) datasets and an actual dataset in the aluminum electrolysis industry demonstrate the effectiveness of the proposed algorithm.
Collapse
|
14
|
Yu Z, Zhang Y, Chen CLP, You J, Wong HS, Dai D, Wu S, Zhang J. Multiobjective Semisupervised Classifier Ensemble. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:2280-2293. [PMID: 29993923 DOI: 10.1109/tcyb.2018.2824299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Classification of high-dimensional data with very limited labels is a challenging task in the field of data mining and machine learning. In this paper, we propose the multiobjective semisupervised classifier ensemble (MOSSCE) approach to address this challenge. Specifically, a multiobjective subspace selection process (MOSSP) in MOSSCE is first designed to generate the optimal combination of feature subspaces. Three objective functions are then proposed for MOSSP, which include the relevance of features, the redundancy between features, and the data reconstruction error. Then, MOSSCE generates an auxiliary training set based on the sample confidence to improve the performance of the classifier ensemble. Finally, the training set, combined with the auxiliary training set, is used to select the optimal combination of basic classifiers in the ensemble, train the classifier ensemble, and generate the final result. In addition, diversity analysis of the ensemble learning process is applied, and a set of nonparametric statistical tests is adopted for the comparison of semisupervised classification approaches on multiple datasets. The experiments on 12 gene expression datasets and two large image datasets show that MOSSCE has a better performance than other state-of-the-art semisupervised classifiers on high-dimensional data.
Collapse
|
15
|
Yu Z, Wang D, Zhao Z, Chen CLP, You J, Wong HS, Zhang J. Hybrid Incremental Ensemble Learning for Noisy Real-World Data Classification. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:403-416. [PMID: 29990215 DOI: 10.1109/tcyb.2017.2774266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Traditional ensemble learning approaches explore the feature space and the sample space, respectively, which will prevent them to construct more powerful learning models for noisy real-world dataset classification. The random subspace method only search for the selection of features. Meanwhile, the bagging approach only search for the selection of samples. To overcome these limitations, we propose the hybrid incremental ensemble learning (HIEL) approach which takes into consideration the feature space and the sample space simultaneously to handle noisy dataset. Specifically, HIEL first adopts the bagging technique and linear discriminant analysis to remove noisy attributes, and generates a set of bootstraps and the corresponding ensemble members in the subspaces. Then, the classifiers are selected incrementally based on a classifier-specific criterion function and an ensemble criterion function. The corresponding weights for the classifiers are assigned during the same process. Finally, the final label is summarized by a weighted voting scheme, which serves as the final result of the classification. We also explore various classifier-specific criterion functions based on different newly proposed similarity measures, which will alleviate the effect of noisy samples on the distance functions. In addition, the computational cost of HIEL is analyzed theoretically. A set of nonparametric tests are adopted to compare HIEL and other algorithms over several datasets. The experiment results show that HIEL performs well on the noisy datasets. HIEL outperforms most of the compared classifier ensemble methods on 14 out of 24 noisy real-world UCI and KEEL datasets.
Collapse
|
16
|
Yu Z, Zhang Y, You J, Chen CLP, Wong HS, Han G, Zhang J. Adaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:366-379. [PMID: 29989979 DOI: 10.1109/tcyb.2017.2761908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High dimensional data classification with very limited labeled training data is a challenging task in the area of data mining. In order to tackle this task, we first propose a feature selection-based semi-supervised classifier ensemble framework (FSCE) to perform high dimensional data classification. Then, we design an adaptive semi-supervised classifier ensemble framework (ASCE) to improve the performance of FSCE. When compared with FSCE, ASCE is characterized by an adaptive feature selection process, an adaptive weighting process (AWP), and an auxiliary training set generation process (ATSGP). The adaptive feature selection process generates a set of compact subspaces based on the selected attributes obtained by the feature selection algorithms, while the AWP associates each basic semi-supervised classifier in the ensemble with a weight value. The ATSGP enlarges the training set with unlabeled samples. In addition, a set of nonparametric tests are adopted to compare multiple semi-supervised classifier ensemble (SSCE)approaches over different datasets. The experiments on 20 high dimensional real-world datasets show that: 1) the two adaptive processes in ASCE are useful for improving the performance of the SSCE approach and 2) ASCE works well on high dimensional datasets with very limited labeled training data, and outperforms most state-of-the-art SSCE approaches.
Collapse
|
17
|
Fan M, Zhang X, Du L, Chen L, Tao D. Semi-Supervised Learning Through Label Propagation on Geodesics. IEEE TRANSACTIONS ON CYBERNETICS 2018; 48:1486-1499. [PMID: 28693001 DOI: 10.1109/tcyb.2017.2703610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Graph-based semi-supervised learning (SSL) has attracted great attention over the past decade. However, there are still several open problems in this paper, including: 1) how to construct an effective graph over data with complex distribution and 2) how to define and effectively use pair-wise similarity for robust label propagation. In this paper, we utilize a simple and effective graph construction method to construct the graph over data lying on multiple data manifolds. The method can guarantee the connectiveness between pair-wise data points. Then, the global pair-wise data similarity is naturally characterized by geodesic distance-based joint probability, where the geodesic distance is approximated by the graph distance. The new data similarity is much more effective than previous Euclidean distance-based similarities. To apply data structure for robust label propagation, Kullback-Leibler divergence is utilized to measure the inconsistency between the input pair-wise similarity and the output similarity. In order to further consider intraclass and interclass variances, a novel regularization term on sample-wise margins is introduced to the objective function. This enables the proposed method fully utilizes the input data structure and the label information for classification. An efficient optimization method and the convergence analysis have been proposed for our problem. Besides, out-of-sample extension is discussed and addressed. Comparisons with the state-of-the-art SSL methods on image classification tasks have been presented to show the effectiveness of the proposed method.
Collapse
|
18
|
Yuen PC, Chellappa R. Learning Common and Feature-Specific Patterns: A Novel Multiple-Sparse-Representation-Based Tracker. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2018; 27:2022-2037. [PMID: 29989985 DOI: 10.1109/tip.2017.2777183] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of multiple features has been shown to be an effective strategy for visual tracking because of their complementary contributions to appearance modeling. The key problem is how to learn a fused representation from multiple features for appearance modeling. Different features extracted from the same object should share some commonalities in their representations while each feature should also have some feature-specific representation patterns which reflect its complementarity in appearance modeling. Different from existing multi-feature sparse trackers which only consider the commonalities among the sparsity patterns of multiple features, this paper proposes a novel multiple sparse representation framework for visual tracking which jointly exploits the shared and feature-specific properties of different features by decomposing multiple sparsity patterns. Moreover, we introduce a novel online multiple metric learning to efficiently and adaptively incorporate the appearance proximity constraint, which ensures that the learned commonalities of multiple features are more representative. Experimental results on tracking benchmark videos and other challenging videos demonstrate the effectiveness of the proposed tracker.
Collapse
|