1
|
Jernigan R, Jia K, Ren Z, Zhou W. Large-scale multiple inference of collective dependence with applications to protein function. Ann Appl Stat 2021; 15:902-924. [DOI: 10.1214/20-aoas1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Robert Jernigan
- Department of Biochemistry, Biophysics, and Molecular Biology, Program of Bioinformatics and Computational Biology, Iowa State University
| | - Kejue Jia
- Department of Biochemistry, Biophysics, and Molecular Biology, Program of Bioinformatics and Computational Biology, Iowa State University
| | - Zhao Ren
- Department of Statistics, University of Pittsburgh
| | - Wen Zhou
- Department of Statistics, Colorado State University
| |
Collapse
|
2
|
Abstract
Quantitative genetics has evolved dramatically in the past century, and the proliferation of genetic data, in quantity as well as type, enables the characterization of complex interactions and mechanisms beyond the scope of its theoretical foundations. In this article, we argue that revisiting the framework for analysis is important and we begin to lay the foundations of an alternative formulation of quantitative genetics based on information theory. Information theory can provide sensitive and unbiased measures of statistical dependencies among variables, and it provides a natural mathematical language for an alternative view of quantitative genetics. In the previous work, we examined the information content of discrete functions and applied this approach and methods to the analysis of genetic data. In this article, we present a framework built around a set of relationships that both unifies the information measures for the discrete functions and uses them to express key quantitative genetic relationships. Information theory measures of variable interdependency are used to identify significant interactions, and a general approach is described for inferring functional relationships in genotype and phenotype data. We present information-based measures of the genetic quantities: penetrance, heritability, and degrees of statistical epistasis. Our scope here includes the consideration of both two- and three-variable dependencies and independently segregating variants, which captures additive effects, genetic interactions, and two-phenotype pleiotropy. This formalism and the theoretical approach naturally apply to higher multivariable interactions and complex dependencies, and can be adapted to account for population structure, linkage, and nonrandomly segregating markers. This article thus focuses on presenting the initial groundwork for a full formulation of quantitative genetics based on information theory.
Collapse
Affiliation(s)
- David J. Galas
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | | | - Lisa Uechi
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | | |
Collapse
|
3
|
Abstract
Boolean networks are discrete dynamical systems comprised of coupled Boolean functions. An important parameter that characterizes such systems is the Lyapunov exponent, which measures the state stability of the system to small perturbations. We consider networks comprised of monotone Boolean functions and derive asymptotic formulas for the Lyapunov exponent of almost all monotone Boolean networks. The formulas are different depending on whether the number of variables of the constituent Boolean functions, or equivalently, the connectivity of the Boolean network, is even or odd.
Collapse
|
4
|
Capobianco E. Next Generation Networks: Featuring the Potential Role of Emerging Applications in Translational Oncology. J Clin Med 2019; 8:jcm8050664. [PMID: 31083565 PMCID: PMC6572295 DOI: 10.3390/jcm8050664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/24/2023] Open
Abstract
Nowadays, networks are pervasively used as examples of models suitable to mathematically represent and visualize the complexity of systems associated with many diseases, including cancer. In the cancer context, the concept of network entropy has guided many studies focused on comparing equilibrium to disequilibrium (i.e., perturbed) conditions. Since these conditions reflect both structural and dynamic properties of network interaction maps, the derived topological characterizations offer precious support to conduct cancer inference. Recent innovative directions have emerged in network medicine addressing especially experimental omics approaches integrated with a variety of other data, from molecular to clinical and also electronic records, bioimaging etc. This work considers a few theoretically relevant concepts likely to impact the future of applications in personalized/precision/translational oncology. The focus goes to specific properties of networks that are still not commonly utilized or studied in the oncological domain, and they are: controllability, synchronization and symmetry. The examples here provided take inspiration from the consideration of metastatic processes, especially their progression through stages and their hallmark characteristics. Casting these processes into computational frameworks and identifying network states with specific modular configurations may be extremely useful to interpret or even understand dysregulation patterns underlying cancer, and associated events (onset, progression) and disease phenotypes.
Collapse
Affiliation(s)
- Enrico Capobianco
- Center for Computational Science, University of Miami, Miami, FL 33146, USA.
| |
Collapse
|
5
|
Galas DJ, Sakhanenko NA. Symmetries among Multivariate Information Measures Explored Using Möbius Operators. ENTROPY 2019; 21:e21010088. [PMID: 33266804 PMCID: PMC7514198 DOI: 10.3390/e21010088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 11/16/2022]
Abstract
Relations between common information measures include the duality relations based on Möbius inversion on lattices, which are the direct consequence of the symmetries of the lattices of the sets of variables (subsets ordered by inclusion). In this paper we use the lattice and functional symmetries to provide a unifying formalism that reveals some new relations and systematizes the symmetries of the information functions. To our knowledge, this is the first systematic examination of the full range of relationships of this class of functions. We define operators on functions on these lattices based on the Möbius inversions that map functions into one another, which we call Möbius operators, and show that they form a simple group isomorphic to the symmetric group S3. Relations among the set of functions on the lattice are transparently expressed in terms of the operator algebra, and, when applied to the information measures, can be used to derive a wide range of relationships among diverse information measures. The Möbius operator algebra is then naturally generalized which yields an even wider range of new relationships.
Collapse
|
6
|
Uechi L, Galas DJ, Sakhanenko NA. Multivariate Analysis of Data Sets with Missing Values: An Information Theory-Based Reliability Function. J Comput Biol 2018; 26:152-171. [PMID: 30495984 PMCID: PMC6383577 DOI: 10.1089/cmb.2018.0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Missing values in complex biological data sets have significant impacts on our ability to correctly detect and quantify interactions in biological systems and to infer relationships accurately. In this article, we propose a useful metaphor to show that information theory measures, such as mutual information and interaction information, can be employed directly for evaluating multivariable dependencies even if data contain some missing values. The metaphor is that of thinking of variable dependencies as information channels between and among variables. In this view, missing data can be thought of as noise that reduces the channel capacity in predictable ways. We extract the available information in the data even if there are missing values and use the notion of channel capacity to assess the reliability of the result. This avoids the common practice—in the absence of prior knowledge of random imputation—of eliminating samples entirely, thus losing the information they can provide. We show how this reliability function can be implemented for pairs of variables, and generalize it for an arbitrary number of variables. Illustrations of the reliability functions for several cases are provided using simulated data.
Collapse
Affiliation(s)
- Lisa Uechi
- Pacific Northwest Research Institute, Seattle, Washington
| | - David J. Galas
- Pacific Northwest Research Institute, Seattle, Washington
- Address correspondence to: Dr. David J. Galas, Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98119
| | | |
Collapse
|
7
|
Kang C, Aguilar B, Shmulevich I. Emergence of diversity in homogeneous coupled Boolean networks. Phys Rev E 2018; 97:052415. [PMID: 29906914 DOI: 10.1103/physreve.97.052415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 01/03/2023]
Abstract
The origin of multicellularity in metazoa is one of the fundamental questions of evolutionary biology. We have modeled the generic behaviors of gene regulatory networks in isogenic cells as stochastic nonlinear dynamical systems-coupled Boolean networks with perturbation. Model simulations under a variety of dynamical regimes suggest that the central characteristic of multicellularity, permanent spatial differentiation (diversification), indeed can arise. Additionally, we observe that diversification is more likely to occur near the critical regime of Lyapunov stability.
Collapse
Affiliation(s)
- Chris Kang
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA
| | - Boris Aguilar
- Institute for Systems Biology, Seattle, Washington 98109, USA
| | - Ilya Shmulevich
- Institute for Systems Biology, Seattle, Washington 98109, USA
| |
Collapse
|
8
|
Sakhanenko NA, Kunert-Graf J, Galas DJ. The Information Content of Discrete Functions and Their Application in Genetic Data Analysis. J Comput Biol 2017; 24:1153-1178. [PMID: 29028175 PMCID: PMC5729883 DOI: 10.1089/cmb.2017.0143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. We present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discrete variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis—that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. We illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.
Collapse
Affiliation(s)
| | | | - David J Galas
- Pacific Northwest Research Institute , Seattle, Washington
| |
Collapse
|
9
|
Modular genetic regulatory networks increase organization during pattern formation. Biosystems 2016; 146:77-84. [PMID: 27327866 DOI: 10.1016/j.biosystems.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/04/2016] [Indexed: 11/21/2022]
Abstract
Studies have shown that genetic regulatory networks (GRNs) consist of modules that are densely connected subnetworks that function quasi-autonomously. Modules may be recognized motifs that comprise of two or three genes with particular regulatory functions and connectivity or be purely structural and identified through connection density. It is unclear what evolutionary and developmental advantages modular structure and in particular motifs provide that have led to this enrichment. This study seeks to understand how modules within developmental GRNs influence the complexity of multicellular patterns that emerge from the dynamics of the regulatory networks. We apply an algorithmic complexity to measure the organization of the patterns. A computational study was performed by creating Boolean intracellular networks within a simulated epithelial field of embryonic cells, where each cell contains the same network and communicates with adjacent cells using contact-mediated signaling. Intracellular networks with random connectivity were compared to those with modular connectivity and with motifs. Results show that modularity effects network dynamics and pattern organization significantly. In particular: (1) modular connectivity alone increases complexity in network dynamics and patterns; (2) bistable switch motifs simplify both the pattern and network dynamics; (3) all other motifs with feedback loops increase multicellular pattern complexity while simplifying the network dynamics; (4) negative feedback loops affect the dynamics complexity more significantly than positive feedback loops.
Collapse
|
10
|
Sakhanenko NA, Galas DJ. Biological data analysis as an information theory problem: multivariable dependence measures and the shadows algorithm. J Comput Biol 2015; 22:1005-24. [PMID: 26335709 PMCID: PMC4642827 DOI: 10.1089/cmb.2015.0051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Information theory is valuable in multiple-variable analysis for being model-free and nonparametric, and for the modest sensitivity to undersampling. We previously introduced a general approach to finding multiple dependencies that provides accurate measures of levels of dependency for subsets of variables in a data set, which is significantly nonzero only if the subset of variables is collectively dependent. This is useful, however, only if we can avoid a combinatorial explosion of calculations for increasing numbers of variables. The proposed dependence measure for a subset of variables,τ, differential interaction information, Δ(τ), has the property that for subsets ofτ some of the factors of Δ(τ) are significantly nonzero, when the full dependence includes more variables. We use this property to suppress the combinatorial explosion by following the “shadows” of multivariable dependency on smaller subsets. Rather than calculating the marginal entropies of all subsets at each degree level, we need to consider only calculations for subsets of variables with appropriate “shadows.” The number of calculations for n variables at a degree level of d grows therefore, at a much smaller rate than the binomial coefficient (n, d), but depends on the parameters of the “shadows” calculation. This approach, avoiding a combinatorial explosion, enables the use of our multivariable measures on very large data sets. We demonstrate this method on simulated data sets, and characterize the effects of noise and sample numbers. In addition, we analyze a data set of a few thousand mutant yeast strains interacting with a few thousand chemical compounds.
Collapse
Affiliation(s)
| | - David J Galas
- 1 Pacific Northwest Diabetes Research Institute , Seattle, Washington.,2 Luxembourg Centre for Systems Biomedicine, Université de Luxembourg , Luxembourg, Luxembourg
| |
Collapse
|
11
|
Vinga S. Information theory applications for biological sequence analysis. Brief Bioinform 2014; 15:376-89. [PMID: 24058049 PMCID: PMC7109941 DOI: 10.1093/bib/bbt068] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/17/2013] [Indexed: 01/13/2023] Open
Abstract
Information theory (IT) addresses the analysis of communication systems and has been widely applied in molecular biology. In particular, alignment-free sequence analysis and comparison greatly benefited from concepts derived from IT, such as entropy and mutual information. This review covers several aspects of IT applications, ranging from genome global analysis and comparison, including block-entropy estimation and resolution-free metrics based on iterative maps, to local analysis, comprising the classification of motifs, prediction of transcription factor binding sites and sequence characterization based on linguistic complexity and entropic profiles. IT has also been applied to high-level correlations that combine DNA, RNA or protein features with sequence-independent properties, such as gene mapping and phenotype analysis, and has also provided models based on communication systems theory to describe information transmission channels at the cell level and also during evolutionary processes. While not exhaustive, this review attempts to categorize existing methods and to indicate their relation with broader transversal topics such as genomic signatures, data compression and complexity, time series analysis and phylogenetic classification, providing a resource for future developments in this promising area.
Collapse
Affiliation(s)
- Susana Vinga
- IDMEC, Instituto Superior Técnico - Universidade de Lisboa (IST-UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal. Tel.: +351-218419504; Fax: +351-218498097;
| |
Collapse
|
12
|
Mohamadlou H, Shope JC, Flann NS. Maximizing Kolmogorov Complexity for accurate and robust bright field cell segmentation. BMC Bioinformatics 2014; 15:32. [PMID: 24475950 PMCID: PMC3922779 DOI: 10.1186/1471-2105-15-32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 12/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Analysis of cellular processes with microscopic bright field defocused imaging has the advantage of low phototoxicity and minimal sample preparation. However bright field images lack the contrast and nuclei reporting available with florescent approaches and therefore present a challenge to methods that segment and track the live cells. Moreover, such methods must be robust to systemic and random noise, variability in experimental configuration, and the multiple unknowns in the biological system under study. RESULTS A new method called maximal-information is introduced that applies a non-parametric information theoretic approach to segment bright field defocused images. The method utilizes a combinatorial optimization strategy to select specific defocused images from each image stack such that set complexity, a Kolmogorov complexity measure, is maximized. Differences among these selected images are then applied to initialize and guide a level set based segmentation algorithm. The performance of the method is compared with a recent approach that uses a fixed defocused image selection strategy over an image data set of embryonic kidney cells (HEK 293T) from multiple experiments. Results demonstrate that the adaptive maximal-information approach significantly improves precision and recall of segmentation over the diversity of data sets. CONCLUSIONS Integrating combinatorial optimization with non-parametric Kolmogorov complexity has been shown to be effective in extracting information from microscopic bright field defocused images. The approach is application independent and has the potential to be effective in processing a diversity of noisy and redundant high throughput biological data.
Collapse
Affiliation(s)
| | | | - Nicholas S Flann
- Department of Computer Science, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
13
|
Galas DJ, Sakhanenko NA, Skupin A, Ignac T. Describing the complexity of systems: multivariable "set complexity" and the information basis of systems biology. J Comput Biol 2013; 21:118-40. [PMID: 24377753 DOI: 10.1089/cmb.2013.0039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.
Collapse
Affiliation(s)
- David J Galas
- 1 Pacific Northwest Diabetes Research Institute , Seattle, Washington
| | | | | | | |
Collapse
|
14
|
Flann NS, Mohamadlou H, Podgorski GJ. Kolmogorov complexity of epithelial pattern formation: The role of regulatory network configuration. Biosystems 2013; 112:131-8. [DOI: 10.1016/j.biosystems.2013.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Sadot A, Sarbu S, Kesseli J, Amir-Kroll H, Zhang W, Nykter M, Shmulevich I. Information-theoretic analysis of the dynamics of an executable biological model. PLoS One 2013; 8:e59303. [PMID: 23527156 PMCID: PMC3602105 DOI: 10.1371/journal.pone.0059303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/14/2013] [Indexed: 12/16/2022] Open
Abstract
To facilitate analysis and understanding of biological systems, large-scale data are often integrated into models using a variety of mathematical and computational approaches. Such models describe the dynamics of the biological system and can be used to study the changes in the state of the system over time. For many model classes, such as discrete or continuous dynamical systems, there exist appropriate frameworks and tools for analyzing system dynamics. However, the heterogeneous information that encodes and bridges molecular and cellular dynamics, inherent to fine-grained molecular simulation models, presents significant challenges to the study of system dynamics. In this paper, we present an algorithmic information theory based approach for the analysis and interpretation of the dynamics of such executable models of biological systems. We apply a normalized compression distance (NCD) analysis to the state representations of a model that simulates the immune decision making and immune cell behavior. We show that this analysis successfully captures the essential information in the dynamics of the system, which results from a variety of events including proliferation, differentiation, or perturbations such as gene knock-outs. We demonstrate that this approach can be used for the analysis of executable models, regardless of the modeling framework, and for making experimentally quantifiable predictions.
Collapse
Affiliation(s)
- Avital Sadot
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Septimia Sarbu
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Juha Kesseli
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Hila Amir-Kroll
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Wei Zhang
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Matti Nykter
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- * E-mail: (MN); (IS)
| | - Ilya Shmulevich
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (MN); (IS)
| |
Collapse
|
16
|
Mäki-Marttunen T, Kesseli J, Nykter M. Balance between noise and information flow maximizes set complexity of network dynamics. PLoS One 2013; 8:e56523. [PMID: 23516395 PMCID: PMC3596377 DOI: 10.1371/journal.pone.0056523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/10/2013] [Indexed: 12/29/2022] Open
Abstract
Boolean networks have been used as a discrete model for several biological systems, including metabolic and genetic regulatory networks. Due to their simplicity they offer a firm foundation for generic studies of physical systems. In this work we show, using a measure of context-dependent information, set complexity, that prior to reaching an attractor, random Boolean networks pass through a transient state characterized by high complexity. We justify this finding with a use of another measure of complexity, namely, the statistical complexity. We show that the networks can be tuned to the regime of maximal complexity by adding a suitable amount of noise to the deterministic Boolean dynamics. In fact, we show that for networks with Poisson degree distributions, all networks ranging from subcritical to slightly supercritical can be tuned with noise to reach maximal set complexity in their dynamics. For networks with a fixed number of inputs this is true for near-to-critical networks. This increase in complexity is obtained at the expense of disruption in information flow. For a large ensemble of networks showing maximal complexity, there exists a balance between noise and contracting dynamics in the state space. In networks that are close to critical the intrinsic noise required for the tuning is smaller and thus also has the smallest effect in terms of the information processing in the system. Our results suggest that the maximization of complexity near to the state transition might be a more general phenomenon in physical systems, and that noise present in a system may in fact be useful in retaining the system in a state with high information content.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland.
| | | | | |
Collapse
|
17
|
Ignac TM, Sakhanenko NA, Galas DJ. Relations between the set-complexity and the structure of graphs and their sub-graphs. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2012; 2012:13. [PMID: 22995062 PMCID: PMC3610188 DOI: 10.1186/1687-4153-2012-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/13/2012] [Indexed: 01/05/2023]
Abstract
We describe some new conceptual tools for the rigorous, mathematical description of the “set-complexity” of graphs. This set-complexity has been shown previously to be a useful measure for analyzing some biological networks, and in discussing biological information in a quantitative fashion. The advances described here allow us to define some significant relationships between the set-complexity measure and the structure of graphs, and of their component sub-graphs. We show here that modular graph structures tend to maximize the set-complexity of graphs. We point out the relationship between modularity and redundancy, and discuss the significance of set-complexity in this regard. We specifically discuss the relationship between complexity and entropy in the case of complete-bipartite graphs, and present a new method for constructing highly complex, binary graphs. These results can be extended to the case of ternary graphs, and to other multi-edge graphs, which are fundamentally more relevant to biological structures and systems. Finally, our results lead us to an approach for extracting high complexity modular graphs from large, noisy graphs with low information content. We illustrate this approach with two examples.
Collapse
Affiliation(s)
- Tomasz M Ignac
- Institute for Systems Biology, 401 N, Terry Avenue, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
18
|
Mäki-Marttunen T, Aćimović J, Nykter M, Kesseli J, Ruohonen K, Yli-Harja O, Linne ML. Information diversity in structure and dynamics of simulated neuronal networks. Front Comput Neurosci 2011; 5:26. [PMID: 21852970 PMCID: PMC3151619 DOI: 10.3389/fncom.2011.00026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/17/2011] [Indexed: 11/13/2022] Open
Abstract
Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Department of Signal Processing, Tampere University of Technology Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
19
|
Carter GW, Rush CG, Uygun F, Sakhanenko NA, Galas DJ, Galitski T. A systems-biology approach to modular genetic complexity. CHAOS (WOODBURY, N.Y.) 2010; 20:026102. [PMID: 20590331 PMCID: PMC2909309 DOI: 10.1063/1.3455183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/26/2010] [Indexed: 05/29/2023]
Abstract
Multiple high-throughput genetic interaction studies have provided substantial evidence of modularity in genetic interaction networks. However, the correspondence between these network modules and specific pathways of information flow is often ambiguous. Genetic interaction and molecular interaction analyses have not generated large-scale maps comprising multiple clearly delineated linear pathways. We seek to clarify the situation by discerning the difference between genetic modules and classical pathways. We review a method to optimize the discovery of biologically meaningful genetic modules based on a previously described context-dependent information measure to obtain maximally informative networks. We compare the results of this method with the established measures of network clustering and find that it balances global and local clustering information in networks. We further discuss the consequences for genetic interaction networks and propose a framework for the analysis of genetic modularity.
Collapse
Affiliation(s)
- Gregory W Carter
- Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103, USA
| | | | | | | | | | | |
Collapse
|