1
|
Rogatinsky J, Recco D, Feichtmeier J, Kang Y, Kneier N, Hammer P, O’Leary E, Mah D, Hoganson D, Vasilyev NV, Ranzani T. A multifunctional soft robot for cardiac interventions. SCIENCE ADVANCES 2023; 9:eadi5559. [PMID: 37878705 PMCID: PMC10599628 DOI: 10.1126/sciadv.adi5559] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
In minimally invasive endovascular procedures, surgeons rely on catheters with low dexterity and high aspect ratios to reach an anatomical target. However, the environment inside the beating heart presents a combination of challenges unique to few anatomic locations, making it difficult for interventional tools to maneuver dexterously and apply substantial forces on an intracardiac target. We demonstrate a millimeter-scale soft robotic platform that can deploy and self-stabilize at the entrance to the heart, and guide existing interventional tools toward a target site. In two exemplar intracardiac procedures within the right atrium, the robotic platform provides enough dexterity to reach multiple anatomical targets, enough stability to maintain constant contact on motile targets, and enough mechanical leverage to generate newton-level forces. Because the device addresses ongoing challenges in minimally invasive intracardiac intervention, it may enable the further development of catheter-based interventions.
Collapse
Affiliation(s)
- Jacob Rogatinsky
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Dominic Recco
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Yuchen Kang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Nicholas Kneier
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Peter Hammer
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Edward O’Leary
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Douglas Mah
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David Hoganson
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Nikolay V. Vasilyev
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tommaso Ranzani
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
2
|
Machaidze Z, Mencattelli M, Arnal G, Price K, Wu FY, Weixler V, Brown DW, Mayer JE, Dupont PE. Optically-guided instrument for transapical beating-heart delivery of artificial mitral chordae tendineae. J Thorac Cardiovasc Surg 2019; 158:1332-1340. [PMID: 31005306 PMCID: PMC6754808 DOI: 10.1016/j.jtcvs.2019.02.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE We sought to develop an instrument that would enable the delivery of artificial chordae tendineae (ACT) using optical visualization of the leaflet inside the beating heart. METHODS A delivery instrument was developed together with an ACT anchor system. The instrument incorporates an optically clear silicone grasping surface in which are embedded a camera and LED for direct leaflet visualization during localization, grasping, and chordal delivery. ACTs, comprised of T-shaped anchors and an expanded polytetrafluoroethylene chordae, were fabricated to enable testing in a porcine model. Ex vivo experiments were used to measure the anchor tear-out force from the mitral leaflets. In vivo experiments were performed in which the mitral leaflets were accessed transapically using only optical guidance and ACTs were deployed in the posterior and anterior leaflets (P2 and A2 segments). RESULTS In 5 porcine ex vivo experiments, the mean force required to tear the anchors from the leaflets was 3.8 ± 1.2 N. In 5 porcine in vivo nonsurvival procedures, 14 ACTs were successfully placed in the leaflets (9 in P2 and 5 in A2). ACT implantation took an average of 3.22 ± 0.83 minutes from entry to exit through the apex. CONCLUSIONS Optical visualization of the mitral leaflet during chordal placement is feasible and provides direct feedback to the operator throughout the deployment sequence. This enables visual confirmation of the targeted leaflet location, distance from the free edge, and successful deployment of the chordal anchor. Further studies are needed to refine and assess the device for clinical use.
Collapse
Affiliation(s)
- Zurab Machaidze
- Department of Cardiovascular Surgery, Boston's Children's Hospital, Boston, Mass
| | | | - Gustavo Arnal
- Department of Cardiovascular Surgery, Boston's Children's Hospital, Boston, Mass
| | - Karl Price
- Department of Cardiovascular Surgery, Boston's Children's Hospital, Boston, Mass
| | - Fei-Yi Wu
- Division of Cardiovascular Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Viktoria Weixler
- Department of Cardiovascular Surgery, Boston's Children's Hospital, Boston, Mass
| | - David W Brown
- Department of Cardiology, Boston's Children's Hospital, Boston, Mass
| | - John E Mayer
- Department of Cardiovascular Surgery, Boston's Children's Hospital, Boston, Mass
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston's Children's Hospital, Boston, Mass.
| |
Collapse
|
3
|
Sharifi M, Salarieh H, Behzadipour S, Tavakoli M. Beating-heart robotic surgery using bilateral impedance control: Theory and experiments. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Ren H, Anuraj B, Dupont PE. Varying ultrasound power level to distinguish surgical instruments and tissue. Med Biol Eng Comput 2018; 56:453-467. [PMID: 28808900 PMCID: PMC6257990 DOI: 10.1007/s11517-017-1695-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 07/20/2017] [Indexed: 11/28/2022]
Abstract
We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.
Collapse
Affiliation(s)
- Hongliang Ren
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| | - Banani Anuraj
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA, 02115, USA
| |
Collapse
|
5
|
Manjila S, Mencattelli M, Rosa B, Price K, Fagogenis G, Dupont PE. A multiport MR-compatible neuroendoscope: spanning the gap between rigid and flexible scopes. Neurosurg Focus 2017; 41:E13. [PMID: 27581309 DOI: 10.3171/2016.7.focus16181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Rigid endoscopes enable minimally invasive access to the ventricular system; however, the operative field is limited to the instrument tip, necessitating rotation of the entire instrument and causing consequent tissue compression while reaching around corners. Although flexible endoscopes offer tip steerability to address this limitation, they are more difficult to control and provide fewer and smaller working channels. A middle ground between these instruments-a rigid endoscope that possesses multiple instrument ports (for example, one at the tip and one on the side)-is proposed in this article, and a prototype device is evaluated in the context of a third ventricular colloid cyst resection combined with septostomy. METHODS A prototype neuroendoscope was designed and fabricated to include 2 optical ports, one located at the instrument tip and one located laterally. Each optical port includes its own complementary metal-oxide semiconductor (CMOS) chip camera, light-emitting diode (LED) illumination, and working channels. The tip port incorporates a clear silicone optical window that provides 2 additional features. First, for enhanced safety during tool insertion, instruments can be initially seen inside the window before they extend from the scope tip. Second, the compliant tip can be pressed against tissue to enable visualization even in a blood-filled field. These capabilities were tested in fresh porcine brains. The image quality of the multiport endoscope was evaluated using test targets positioned at clinically relevant distances from each imaging port, comparing it with those of clinical rigid and flexible neuroendoscopes. Human cadaver testing was used to demonstrate third ventricular colloid cyst phantom resection through the tip port and a septostomy performed through the lateral port. To extend its utility in the treatment of periventricular tumors using MR-guided laser therapy, the device was designed to be MR compatible. Its functionality and compatibility inside a 3-T clinical scanner were also tested in a brain from a freshly euthanized female pig. RESULTS Testing in porcine brains confirmed the multiport endoscope's ability to visualize tissue in a blood-filled field and to operate inside a 3-T MRI scanner. Cadaver testing confirmed the device's utility in operating through both of its ports and performing combined third ventricular colloid cyst resection and septostomy with an endoscope rotation of less than 5°. CONCLUSIONS The proposed design provides freedom in selecting both the number and orientation of imaging and instrument ports, which can be customized for each ventricular pathological entity. The lightweight, easily manipulated device can provide added steerability while reducing the potential for the serious brain distortion that happens with rigid endoscope navigation. This capability would be particularly valuable in treating hydrocephalus, both primary and secondary (due to tumors, cysts, and so forth). Magnetic resonance compatibility can aid in endoscope-assisted ventricular aqueductal plasty and stenting, the management of multiloculated complex hydrocephalus, and postinflammatory hydrocephalus in which scarring obscures the ventricular anatomy.
Collapse
Affiliation(s)
- Sunil Manjila
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Margherita Mencattelli
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benoit Rosa
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Karl Price
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georgios Fagogenis
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Rosa B, Machaidze Z, Dupont PE. When will a Robot Outperform a Handheld Instrument? - A Case Study in Beating-Heart Paravalvular Leak Closure. THE HAMLYN SYMPOSIUM ON MEDICAL ROBOTICS : PROCEEDINGS 2016; 2016:11-12. [PMID: 30740599 PMCID: PMC6366623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- B. Rosa
- Pediatric Cardiac Bioengineering, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - Z. Machaidze
- Pediatric Cardiac Bioengineering, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - P. E. Dupont
- Pediatric Cardiac Bioengineering, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|