Venkateswaran M, Unal O, Hurley S, Samsonov A, Wang P, Fain SB, Kurpad KN. Modeling Endovascular MRI Coil Coupling With Transmit RF Excitation.
IEEE Trans Biomed Eng 2016;
64:70-77. [PMID:
26960218 DOI:
10.1109/tbme.2016.2538279]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE
To model inductive coupling of endovascular coils with transmit RF excitation for selecting coils for MRI-guided interventions.
METHODS
Independent and computationally efficient FEM models are developed for the endovascular coil, cable, transmit excitation, and imaging domain. Electromagnetic and circuit solvers are coupled to simulate net B1 + fields and induced currents and voltages. Our models are validated using the Bloch-Siegert B1 + mapping sequence for a series-tuned multimode coil, capable of tracking, wireless visualization, and high-resolution endovascular imaging.
RESULTS
Validation shows good agreement at 24-, 28-, and 34-μT background RF excitation within experimental limitations. Quantitative coil performance metrics agree with simulation. A parametric study demonstrates tradeoff in coil performance metrics when varying number of coil turns. Tracking, imaging, and wireless marker multimode coil features and their integration is demonstrated in a pig study.
CONCLUSION
Developed models for the multimode coil were successfully validated. Modeling for geometric optimization and coil selection serves as a precursor to time consuming and expensive experiments. Specific applications demonstrated include parametric optimization, coil selection for a cardiac intervention, and an animal imaging experiment.
SIGNIFICANCE
Our modular, adaptable, and computationally efficient modeling approach enables rapid comparison, selection, and optimization of inductively coupled coils for MRI-guided interventions.
Collapse