1
|
Chen J, Yuan Z, Xi J, Gao Z, Li Y, Zhu X, Shi YS, Guan F, Wang Y. Efficient and Accurate Semi-Automatic Neuron Tracing with Extended Reality. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:7299-7309. [PMID: 39255163 DOI: 10.1109/tvcg.2024.3456197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Neuron tracing, alternately referred to as neuron reconstruction, is the procedure for extracting the digital representation of the three-dimensional neuronal morphology from stacks of microscopic images. Achieving accurate neuron tracing is critical for profiling the neuroanatomical structure at single-cell level and analyzing the neuronal circuits and projections at whole-brain scale. However, the process often demands substantial human involvement and represents a nontrivial task. Conventional solutions towards neuron tracing often contend with challenges such as non-intuitive user interactions, suboptimal data generation throughput, and ambiguous visualization. In this paper, we introduce a novel method that leverages the power of extended reality (XR) for intuitive and progressive semi-automatic neuron tracing in real time. In our method, we have defined a set of interactors for controllable and efficient interactions for neuron tracing in an immersive environment. We have also developed a GPU-accelerated automatic tracing algorithm that can generate updated neuron reconstruction in real time. In addition, we have built a visualizer for fast and improved visual experience, particularly when working with both volumetric images and 3D objects. Our method has been successfully implemented with one virtual reality (VR) headset and one augmented reality (AR) headset with satisfying results achieved. We also conducted two user studies and proved the effectiveness of the interactors and the efficiency of our method in comparison with other approaches for neuron tracing.
Collapse
|
2
|
Liu M, Wu S, Chen R, Lin Z, Wang Y, Meijering E. Brain Image Segmentation for Ultrascale Neuron Reconstruction via an Adaptive Dual-Task Learning Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2574-2586. [PMID: 38373129 DOI: 10.1109/tmi.2024.3367384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Accurate morphological reconstruction of neurons in whole brain images is critical for brain science research. However, due to the wide range of whole brain imaging, uneven staining, and optical system fluctuations, there are significant differences in image properties between different regions of the ultrascale brain image, such as dramatically varying voxel intensities and inhomogeneous distribution of background noise, posing an enormous challenge to neuron reconstruction from whole brain images. In this paper, we propose an adaptive dual-task learning network (ADTL-Net) to quickly and accurately extract neuronal structures from ultrascale brain images. Specifically, this framework includes an External Features Classifier (EFC) and a Parameter Adaptive Segmentation Decoder (PASD), which share the same Multi-Scale Feature Encoder (MSFE). MSFE introduces an attention module named Channel Space Fusion Module (CSFM) to extract structure and intensity distribution features of neurons at different scales for addressing the problem of anisotropy in 3D space. Then, EFC is designed to classify these feature maps based on external features, such as foreground intensity distributions and image smoothness, and select specific PASD parameters to decode them of different classes to obtain accurate segmentation results. PASD contains multiple sets of parameters trained by different representative complex signal-to-noise distribution image blocks to handle various images more robustly. Experimental results prove that compared with other advanced segmentation methods for neuron reconstruction, the proposed method achieves state-of-the-art results in the task of neuron reconstruction from ultrascale brain images, with an improvement of about 49% in speed and 12% in F1 score.
Collapse
|
3
|
Li Y, Jiang S, Ding L, Liu L. NRRS: a re-tracing strategy to refine neuron reconstruction. BIOINFORMATICS ADVANCES 2023; 3:vbad054. [PMID: 37213868 PMCID: PMC10199312 DOI: 10.1093/bioadv/vbad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
It is crucial to develop accurate and reliable algorithms for fine reconstruction of neural morphology from whole-brain image datasets. Even though the involvement of human experts in the reconstruction process can help to ensure the quality and accuracy of the reconstructions, automated refinement algorithms are necessary to handle substantial deviations problems of reconstructed branches and bifurcation points from the large-scale and high-dimensional nature of the image data. Our proposed Neuron Reconstruction Refinement Strategy (NRRS) is a novel approach to address the problem of deviation errors in neuron morphology reconstruction. Our method partitions the reconstruction into fixed-size segments and resolves the deviation problems by re-tracing in two steps. We also validate the performance of our method using a synthetic dataset. Our results show that NRRS outperforms existing solutions and can handle most deviation errors. We apply our method to SEU-ALLEN/BICCN dataset containing 1741 complete neuron reconstructions and achieve remarkable improvements in the accuracy of the neuron skeleton representation, the task of radius estimation and axonal bouton detection. Our findings demonstrate the critical role of NRRS in refining neuron morphology reconstruction. Availability and implementation The proposed refinement method is implemented as a Vaa3D plugin and the source code are available under the repository of vaa3d_tools/hackathon/Levy/refinement. The original fMOST images of mouse brains can be found at the BICCN's Brain Image Library (BIL) (https://www.brainimagelibrary.org). The synthetic dataset is hosted on GitHub (https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/Levy/refinement). Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | - Liya Ding
- Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lijuan Liu
- To whom correspondence should be addressed.
| |
Collapse
|
4
|
Liu Y, Wang G, Ascoli GA, Zhou J, Liu L. Neuron tracing from light microscopy images: automation, deep learning and bench testing. Bioinformatics 2022; 38:5329-5339. [PMID: 36303315 PMCID: PMC9750132 DOI: 10.1093/bioinformatics/btac712] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Large-scale neuronal morphologies are essential to neuronal typing, connectivity characterization and brain modeling. It is widely accepted that automation is critical to the production of neuronal morphology. Despite previous survey papers about neuron tracing from light microscopy data in the last decade, thanks to the rapid development of the field, there is a need to update recent progress in a review focusing on new methods and remarkable applications. RESULTS This review outlines neuron tracing in various scenarios with the goal to help the community understand and navigate tools and resources. We describe the status, examples and accessibility of automatic neuron tracing. We survey recent advances of the increasingly popular deep-learning enhanced methods. We highlight the semi-automatic methods for single neuron tracing of mammalian whole brains as well as the resulting datasets, each containing thousands of full neuron morphologies. Finally, we exemplify the commonly used datasets and metrics for neuron tracing bench testing.
Collapse
Affiliation(s)
- Yufeng Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Gaoyu Wang
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Jiangning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Chen W, Liu M, Du H, Radojevic M, Wang Y, Meijering E. Deep-Learning-Based Automated Neuron Reconstruction From 3D Microscopy Images Using Synthetic Training Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1031-1042. [PMID: 34847022 DOI: 10.1109/tmi.2021.3130934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Digital reconstruction of neuronal structures from 3D microscopy images is critical for the quantitative investigation of brain circuits and functions. It is a challenging task that would greatly benefit from automatic neuron reconstruction methods. In this paper, we propose a novel method called SPE-DNR that combines spherical-patches extraction (SPE) and deep-learning for neuron reconstruction (DNR). Based on 2D Convolutional Neural Networks (CNNs) and the intensity distribution features extracted by SPE, it determines the tracing directions and classifies voxels into foreground or background. This way, starting from a set of seed points, it automatically traces the neurite centerlines and determines when to stop tracing. To avoid errors caused by imperfect manual reconstructions, we develop an image synthesizing scheme to generate synthetic training images with exact reconstructions. This scheme simulates 3D microscopy imaging conditions as well as structural defects, such as gaps and abrupt radii changes, to improve the visual realism of the synthetic images. To demonstrate the applicability and generalizability of SPE-DNR, we test it on 67 real 3D neuron microscopy images from three datasets. The experimental results show that the proposed SPE-DNR method is robust and competitive compared with other state-of-the-art neuron reconstruction methods.
Collapse
|
6
|
Wang X, Liu M, Wang Y, Fan J, Meijering E. A 3D Tubular Flux Model for Centerline Extraction in Neuron Volumetric Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1069-1079. [PMID: 34826295 DOI: 10.1109/tmi.2021.3130987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Digital morphology reconstruction from neuron volumetric images is essential for computational neuroscience. The centerline of the axonal and dendritic tree provides an effective shape representation and serves as a basis for further neuron reconstruction. However, it is still a challenge to directly extract the accurate centerline from the complex neuron structure with poor image quality. In this paper, we propose a neuron centerline extraction method based on a 3D tubular flux model via a two-stage CNN framework. In the first stage, a 3D CNN is used to learn the latent neuron structure features, namely flux features, from neuron images. In the second stage, a light-weight U-Net takes the learned flux features as input to extract the centerline with a spatial weighted average strategy to constrain the multi-voxel width response. Specifically, the labels of flux features in the first stage are generated by the 3D tubular model which calculates the geometric representations of the flux between each voxel in the tubular region and the nearest point on the centerline ground truth. Compared with self-learned features by networks, flux features, as a kind of prior knowledge, explicitly take advantage of the contextual distance and direction distribution information around the centerline, which is beneficial for the precise centerline extraction. Experiments on two challenging datasets demonstrate that the proposed method outperforms other state-of-the-art methods by 18% and 35.1% in F1-measurement and average distance scores at the most, and the extracted centerline is helpful to improve the neuron reconstruction performance.
Collapse
|
7
|
Chen X, Zhang C, Zhao J, Xiong Z, Zha ZJ, Wu F. Weakly Supervised Neuron Reconstruction From Optical Microscopy Images With Morphological Priors. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3205-3216. [PMID: 33999814 DOI: 10.1109/tmi.2021.3080695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Manually labeling neurons from high-resolution but noisy and low-contrast optical microscopy (OM) images is tedious. As a result, the lack of annotated data poses a key challenge when applying deep learning techniques for reconstructing neurons from noisy and low-contrast OM images. While traditional tracing methods provide a possible way to efficiently generate labels for supervised network training, the generated pseudo-labels contain many noisy and incorrect labels, which lead to severe performance degradation. On the other hand, the publicly available dataset, BigNeuron, provides a large number of single 3D neurons that are reconstructed using various imaging paradigms and tracing methods. Though the raw OM images are not fully available for these neurons, they convey essential morphological priors for complex 3D neuron structures. In this paper, we propose a new approach to exploit morphological priors from neurons that have been reconstructed for training a deep neural network to extract neuron signals from OM images. We integrate a deep segmentation network in a generative adversarial network (GAN), expecting the segmentation network to be weakly supervised by pseudo-labels at the pixel level while utilizing the supervision of previously reconstructed neurons at the morphology level. In our morphological-prior-guided neuron reconstruction GAN, named MP-NRGAN, the segmentation network extracts neuron signals from raw images, and the discriminator network encourages the extracted neurons to follow the morphology distribution of reconstructed neurons. Comprehensive experiments on the public VISoR-40 dataset and BigNeuron dataset demonstrate that our proposed MP-NRGAN outperforms state-of-the-art approaches with less training effort.
Collapse
|
8
|
Chen W, Liu M, Zhan Q, Tan Y, Meijering E, Radojevic M, Wang Y. Spherical-Patches Extraction for Deep-Learning-Based Critical Points Detection in 3D Neuron Microscopy Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:527-538. [PMID: 33055023 DOI: 10.1109/tmi.2020.3031289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Digital reconstruction of neuronal structures is very important to neuroscience research. Many existing reconstruction algorithms require a set of good seed points. 3D neuron critical points, including terminations, branch points and cross-over points, are good candidates for such seed points. However, a method that can simultaneously detect all types of critical points has barely been explored. In this work, we present a method to simultaneously detect all 3 types of 3D critical points in neuron microscopy images, based on a spherical-patches extraction (SPE) method and a 2D multi-stream convolutional neural network (CNN). SPE uses a set of concentric spherical surfaces centered at a given critical point candidate to extract intensity distribution features around the point. Then, a group of 2D spherical patches is generated by projecting the surfaces into 2D rectangular image patches according to the orders of the azimuth and the polar angles. Finally, a 2D multi-stream CNN, in which each stream receives one spherical patch as input, is designed to learn the intensity distribution features from those spherical patches and classify the given critical point candidate into one of four classes: termination, branch point, cross-over point or non-critical point. Experimental results confirm that the proposed method outperforms other state-of-the-art critical points detection methods. The critical points based neuron reconstruction results demonstrate the potential of the detected neuron critical points to be good seed points for neuron reconstruction. Additionally, we have established a public dataset dedicated for neuron critical points detection, which has been released along with this article.
Collapse
|
9
|
Zhao J, Chen X, Xiong Z, Liu D, Zeng J, Xie C, Zhang Y, Zha ZJ, Bi G, Wu F. Neuronal Population Reconstruction From Ultra-Scale Optical Microscopy Images via Progressive Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4034-4046. [PMID: 32746145 DOI: 10.1109/tmi.2020.3009148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reconstruction of neuronal populations from ultra-scale optical microscopy (OM) images is essential to investigate neuronal circuits and brain mechanisms. The noises, low contrast, huge memory requirement, and high computational cost pose significant challenges in the neuronal population reconstruction. Recently, many studies have been conducted to extract neuron signals using deep neural networks (DNNs). However, training such DNNs usually relies on a huge amount of voxel-wise annotations in OM images, which are expensive in terms of both finance and labor. In this paper, we propose a novel framework for dense neuronal population reconstruction from ultra-scale images. To solve the problem of high cost in obtaining manual annotations for training DNNs, we propose a progressive learning scheme for neuronal population reconstruction (PLNPR) which does not require any manual annotations. Our PLNPR scheme consists of a traditional neuron tracing module and a deep segmentation network that mutually complement and progressively promote each other. To reconstruct dense neuronal populations from a terabyte-sized ultra-scale image, we introduce an automatic framework which adaptively traces neurons block by block and fuses fragmented neurites in overlapped regions continuously and smoothly. We build a dataset "VISoR-40" which consists of 40 large-scale OM image blocks from cortical regions of a mouse. Extensive experimental results on our VISoR-40 dataset and the public BigNeuron dataset demonstrate the effectiveness and superiority of our method on neuronal population reconstruction and single neuron reconstruction. Furthermore, we successfully apply our method to reconstruct dense neuronal populations from an ultra-scale mouse brain slice. The proposed adaptive block propagation and fusion strategies greatly improve the completeness of neurites in dense neuronal population reconstruction.
Collapse
|
10
|
Radojević M, Meijering E. Automated Neuron Reconstruction from 3D Fluorescence Microscopy Images Using Sequential Monte Carlo Estimation. Neuroinformatics 2020; 17:423-442. [PMID: 30542954 PMCID: PMC6594993 DOI: 10.1007/s12021-018-9407-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microscopic images of neuronal cells provide essential structural information about the key constituents of the brain and form the basis of many neuroscientific studies. Computational analyses of the morphological properties of the captured neurons require first converting the structural information into digital tree-like reconstructions. Many dedicated computational methods and corresponding software tools have been and are continuously being developed with the aim to automate this step while achieving human-comparable reconstruction accuracy. This pursuit is hampered by the immense diversity and intricacy of neuronal morphologies as well as the often low quality and ambiguity of the images. Here we present a novel method we developed in an effort to improve the robustness of digital reconstruction against these complicating factors. The method is based on probabilistic filtering by sequential Monte Carlo estimation and uses prediction and update models designed specifically for tracing neuronal branches in microscopic image stacks. Moreover, it uses multiple probabilistic traces to arrive at a more robust, ensemble reconstruction. The proposed method was evaluated on fluorescence microscopy image stacks of single neurons and dense neuronal networks with expert manual annotations serving as the gold standard, as well as on synthetic images with known ground truth. The results indicate that our method performs well under varying experimental conditions and compares favorably to state-of-the-art alternative methods.
Collapse
Affiliation(s)
- Miroslav Radojević
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Erik Meijering
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Liu M, Chen W, Wang C, Peng H. A Multiscale Ray-Shooting Model for Termination Detection of Tree-Like Structures in Biomedical Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1923-1934. [PMID: 30668496 DOI: 10.1109/tmi.2019.2893117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Digital reconstruction (tracing) of tree-like structures, such as neurons, retinal blood vessels, and bronchi, from volumetric images and 2D images is very important to biomedical research. Many existing reconstruction algorithms rely on a set of good seed points. The 2D or 3D terminations are good candidates for such seed points. In this paper, we propose an automatic method to detect terminations for tree-like structures based on a multiscale ray-shooting model and a termination visual prior. The multiscale ray-shooting model detects 2D terminations by extracting and analyzing the multiscale intensity distribution features around a termination candidate. The range of scale is adaptively determined according to the local neurite diameter estimated by the Rayburst sampling algorithm in combination with the gray-weighted distance transform. The termination visual prior is based on a key observation-when observing a 3D termination from three orthogonal directions without occlusion, we can recognize it in at least two views. Using this prior with the multiscale ray-shooting model, we can detect 3D terminations with high accuracies. Experiments on 3D neuron image stacks, 2D neuron images, 3D bronchus image stacks, and 2D retinal blood vessel images exhibit average precision and recall rates of 87.50% and 90.54%. The experimental results confirm that the proposed method outperforms other the state-of-the-art termination detection methods.
Collapse
|
12
|
Zhang D, Liu S, Song Y, Feng D, Peng H, Cai W. Automated 3D Soma Segmentation with Morphological Surface Evolution for Neuron Reconstruction. Neuroinformatics 2019; 16:153-166. [PMID: 29344781 DOI: 10.1007/s12021-017-9353-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The automatic neuron reconstruction is important since it accelerates the collection of 3D neuron models for the neuronal morphological studies. The majority of the previous neuron reconstruction methods only focused on tracing neuron fibres without considering the somatic surface. Thus, topological errors often present around the soma area in the results obtained by these tracing methods. Segmentation of the soma structures can be embedded in the existing neuron tracing methods to reduce such topological errors. In this paper, we present a novel method to segment the soma structures with complex geometry. It can be applied along with the existing methods in a fully automated pipeline. An approximate bounding block is firstly estimated based on a geodesic distance transform. Then the soma segmentation is obtained by evolving the surface with a set of morphological operators inside the initial bounding region. By evaluating the methods against the challenging images released by the BigNeuron project, we showed that the proposed method can outperform the existing soma segmentation methods regarding the accuracy. We also showed that the soma segmentation can be used for enhancing the results of existing neuron tracing methods.
Collapse
Affiliation(s)
- Donghao Zhang
- School of Information Technologies, University of Sydney, Sydney, NSW, Australia.
| | - Siqi Liu
- School of Information Technologies, University of Sydney, Sydney, NSW, Australia
| | - Yang Song
- School of Information Technologies, University of Sydney, Sydney, NSW, Australia
| | - Dagan Feng
- School of Information Technologies, University of Sydney, Sydney, NSW, Australia
| | | | - Weidong Cai
- School of Information Technologies, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Skibbe H, Reisert M, Nakae K, Watakabe A, Hata J, Mizukami H, Okano H, Yamamori T, Ishii S. PAT-Probabilistic Axon Tracking for Densely Labeled Neurons in Large 3-D Micrographs. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:69-78. [PMID: 30010551 DOI: 10.1109/tmi.2018.2855736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A major goal of contemporary neuroscience research is to map the structural connectivity of mammalian brain using microscopy imaging data. In this context, the reconstruction of densely labeled axons from two-photon microscopy images is a challenging and important task. The visually overlapping, crossing, and often strongly distorted images of the axons allow many ambiguous interpretations to be made. We address the problem of tracking axons in densely labeled samples of neurons in large image data sets acquired from marmoset brains. Our high-resolution images were acquired using two-photon microscopy and they provided whole brain coverage, occupying terabytes of memory. Both the image distortions and the large data set size frequently make it impractical to apply present-day neuron tracing algorithms to such data due to the optimization of such algorithms to the precise tracing of either single or sparse sets of neurons. Thus, new tracking techniques are needed. We propose a probabilistic axon tracking algorithm (PAT). PAT tackles the tracking of axons in two steps: locally (L-PAT) and globally (G-PAT). L-PAT is a probabilistic tracking algorithm that can tackle distorted, cluttered images of densely labeled axons. L-PAT divides a large micrograph into smaller image stacks. It then processes each image stack independently before mapping the axons in each image to a sparse model of axon trajectories. G-PAT merges the sparse L-PAT models into a single global model of axon trajectories by minimizing a global objective function using a probabilistic optimization method. We demonstrate the superior performance of PAT over standard approaches on synthetic data. Furthermore, we successfully apply PAT to densely labeled axons in large images acquired from marmoset brains.
Collapse
|
14
|
Radojevic M, Meijering E. Automated neuron tracing using probability hypothesis density filtering. Bioinformatics 2017; 33:1073-1080. [PMID: 28065895 DOI: 10.1093/bioinformatics/btw751] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/22/2016] [Indexed: 01/18/2023] Open
Abstract
Motivation The functionality of neurons and their role in neuronal networks is tightly connected to the cell morphology. A fundamental problem in many neurobiological studies aiming to unravel this connection is the digital reconstruction of neuronal cell morphology from microscopic image data. Many methods have been developed for this, but they are far from perfect, and better methods are needed. Results Here we present a new method for tracing neuron centerlines needed for full reconstruction. The method uses a fundamentally different approach than previous methods by considering neuron tracing as a Bayesian multi-object tracking problem. The problem is solved using probability hypothesis density filtering. Results of experiments on 2D and 3D fluorescence microscopy image datasets of real neurons indicate the proposed method performs comparably or even better than the state of the art. Availability and Implementation Software implementing the proposed neuron tracing method was written in the Java programming language as a plugin for the ImageJ platform. Source code is freely available for non-commercial use at https://bitbucket.org/miroslavradojevic/phd . Contact meijering@imagescience.org. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
|