1
|
Dayavansha EGS, Gross GJ, Ehrman MC, Grimm PD, Mast TD. Reconstruction of shear wave speed in tissue-mimicking phantoms from aliased pulse-echo imaging of high-frequency wavefields. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4128. [PMID: 34972294 DOI: 10.1121/10.0008901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Quantitative elasticity estimation in medical and industrial applications may benefit from advancements in reconstruction of shear wave speed with enhanced resolution. Here, shear wave speed is reconstructed from pulse-echo ultrasound imaging of elastic waves induced by high-frequency (>400 Hz), time-harmonic mechanical excitation. Particle displacement in shear wavefields is mapped from measured interframe phase differences with compensation for timing of multiple scan lines, then processed by spatial Fourier analysis to estimate the predominant wave speed and analyzed by algebraic wavefield inversion to reconstruct wave speed maps. Reconstructions of shear wave speed from simulated wavefields illustrate the accuracy and spatial resolution available with both methods, as functions of signal-to-noise ratio and sizes of windows used for Fourier analysis or wavefield smoothing. The methods are applied to shear wavefields with frequencies up to six times the Nyquist rate, thus extending the frequency range measurable by a given imaging system. Wave speed measurements in tissue-mimicking phantoms are compared with supersonic shear imaging and mechanical tensile testing, demonstrating feasibility of the wavefield measurement and wave speed reconstruction methods employed.
Collapse
Affiliation(s)
| | - Gary J Gross
- The Procter & Gamble Company, Mason, Ohio 45040, USA
| | | | - Peter D Grimm
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
2
|
Chen PY, Yang TH, Kuo LC, Hsu HY, Su FC, Huang CC. Evaluation of Hand Tendon Elastic Properties During Rehabilitation Through High-Frequency Ultrasound Shear Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2716-2726. [PMID: 33956629 DOI: 10.1109/tuffc.2021.3077891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tendon injuries lead to tendon stiffness, which impairs skeletal muscle movement. Most studies have focused on patellar or Achilles tendons by using ultrasound elastography. Only a few studies have measured the stiffness of hand tendons because their thickness is only 1-2 mm, rendering clinical ultrasound elastography unsuitable for mapping hand tendon stiffness. In this study, a high-frequency ultrasound shear elastography (HFUSE) system was proposed to map the shear wave velocity (SWV) of hand flexor tendons. A handheld vibration system that was coaxially mounted with an external vibrator on a high-frequency ultrasound (HFUS) array transducer allowed the operators to scan hand tendons freely. To quantify the performance of HFUSE, six parameters were comprehensively measured from homogeneous, two-sided, and three-sided gelatin phantom experiments: bias, precision, lateral resolution, contrast, contrast-to-noise ratio (CNR), and accuracy. HFUSE demonstrated an excellent resolution of [Formula: see text] to distinguish the local stiffness of thin phantom (thickness: 1.2 mm) without compromising bias, precision, contrast, CNR, and accuracy, which has been noted with previous systems. Human experiments involved four patients with hand tendon injuries who underwent ≥2 months of rehabilitation. Using HFUSE, two-dimensional SWV images of flexor tendons could be clearly mapped for healthy and injured tendons, respectively. The findings demonstrate that HFUSE can be a promising tool for evaluating the elastic properties of the injured hand tendon after surgery and during rehabilitation and thus help monitor progress.
Collapse
|
3
|
Lok UW, Huang C, Zhou C, Yang L, Ling W, Tang S, Gong P, Madson TJ, Jensen MA, Gay RE, Chen S. Quantitative Shear Wave Speed Assessment for Muscles with the Diagnosis of Taut Bands and/or Myofascial Trigger Points Using Probe Oscillation Shear Wave Elastography: A Pilot Study. JOURNAL OF ULTRASOUND IN MEDICINE 2021; 41:845-854. [PMID: 34085301 DOI: 10.1002/jum.15764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/09/2021] [Accepted: 05/22/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To use probe oscillation shear wave elastography (PROSE) with two vibration sources to generate two shear waves in the imaging plane to quantitatively assess the shear wave speeds (SWSs) of muscles with and without the diagnosis of taut bands (TB) and/or myofascial trigger points (MTrPs). METHODS Thirty-three patients were scanned with the PROSE technique. Shear waves were generated through continuous vibration of the ultrasound probe, while the shear wave motions were detected using the same probe. SWSs for the sides with and without TBs and/or MTrPs were computed and compared. The pressure pain thresholds (PPTs) were measured as an indicator of maximum pain tolerance of patients. The statistical differences between the SWSs with and without TBs and/or MTrPs with different PPT values were analyzed using the nonparametric Wilcoxon rank-sum test. RESULTS The mean SWSs for the sides with TBs and/or MTrPs are faster than that of the contralateral side without TBs and/or MTrPs. A significant difference was observed between mean SWSs with and without TBs and/or MTrPs without any information of PPT, with rank-sum test P < .005. Additionally, with the information of PPT, a significant difference was observed between mean SWSs for the sides with and without TBs and/or MTrPs, for PPT values between 0 and 50 N/cm2 (P < .005), but for PPT values between 50 and 90 N/cm2 , it was difficult to differentiate mean SWSs with and without TBs and/or MTrPs. CONCLUSION Our preliminary results show that SWSs measured from patients had a significant difference between the mean SWSs with and without TBs and/or MTrPs.
Collapse
Affiliation(s)
- U-Wai Lok
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chenyun Zhou
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lulu Yang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenwu Ling
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ping Gong
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy J Madson
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark A Jensen
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Ralph E Gay
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Zeng Q, Honarvar M, Schneider C, Mohammad SK, Lobo J, Pang EHT, Lau KT, Hu C, Jago J, Erb SR, Rohling R, Salcudean SE. Three-Dimensional Multi-Frequency Shear Wave Absolute Vibro-Elastography (3D S-WAVE) With a Matrix Array Transducer: Implementation and Preliminary In Vivo Study of the Liver. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:648-660. [PMID: 33108283 DOI: 10.1109/tmi.2020.3034065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic resonance elastography (MRE) is commonly regarded as the imaging-based gold-standard for liver fibrosis staging, comparable to biopsy. While ultrasound-based elastography methods for liver fibrosis staging have been developed, they are confined to a 1D or a 2D region of interest and to a limited depth. 3D Shear Wave Absolute Vibro-Elastography (S-WAVE) is a steady-state, external excitation, volumetric elastography technique that is similar to MRE, but has the additional advantage of multi-frequency excitation. We present a novel ultrasound matrix array implementation of S-WAVE that takes advantage of 3D imaging. We use a matrix array transducer to sample axial multi-frequency steady-state tissue motion over a volume, using a Color Power Angiography sequence. Tissue motion with the frequency components {40,50,60} and {45,55,65} Hz are acquired over a (90° lateral) × (40° elevational) × (16 cm depth) sector with an acquisition time of 12 seconds. We compute the elasticity map in 3D using local spatial frequency estimation. We characterize this new approach in tissue phantoms against measurements obtained with transient elastography and MRE. Six healthy volunteers and eight patients with chronic liver disease were imaged. Their MRE and S-WAVE volumes were aligned using T1 to B-mode registration for direct comparison in common regions of interest. S-WAVE and MRE results are correlated with R2 = 0.92, while MRE and TE results are correlated with R2 = 0.71. Our findings show that S-WAVE with matrix array has the potential to deliver a similar assessment of liver fibrosis as MRE in a more accessible, inexpensive way, to a broader set of patients.
Collapse
|
5
|
Huang C, Song P, Mellema DC, Gong P, Lok UW, Tang S, Ling W, Meixner DD, Urban MW, Manduca A, Greenleaf JF, Chen S. Three-dimensional shear wave elastography on conventional ultrasound scanners with external vibration. Phys Med Biol 2020; 65:215009. [PMID: 32663816 DOI: 10.1088/1361-6560/aba5ea] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two-dimensional (2D) ultrasound shear wave elastography (SWE) has been widely used for soft tissue properties assessment. Given that shear waves propagate in three dimensions (3D), extending SWE from 2D to 3D is important for comprehensive and accurate stiffness measurement. However, implementation of 3D SWE on a conventional ultrasound scanner is challenging due to the low volume rate (tens of Hertz) associated with limited parallel receive capability of the scanner's hardware beamformer. Therefore, we developed an external mechanical vibration-based 3D SWE technique allowing robust 3D shear wave tracking and speed reconstruction for conventional scanners. The aliased shear wave signal detected with a sub-Nyquist sampling frequency was corrected by leveraging the cyclic nature of the sinusoidal shear wave generated by the external vibrator. Shear wave signals from different sub-volumes were aligned in temporal direction to correct time delays from sequential pulse-echo events, followed by 3D speed reconstruction using a 3D local frequency estimation algorithm. The technique was validated on liver fibrosis phantoms with different stiffness, showing good correlation (r = 0.99, p < 0.001) with values measured from a state-of-the-art SWE system (GE LOGIQ E9). The phantoms with different stiffnesses can be well-differentiated regardless of the external vibrator position, indicating the feasibility of the 3D SWE with regard to different shear wave propagation scenarios. Finally, shear wave speed calculated by the 3D method correlated well with magnetic resonance elastography performed on human liver (r = 0.93, p = 0.02), demonstrating the in vivo feasibility. The proposed technique relies on low volume rate imaging and can be implemented on the widely available clinical ultrasound scanners, facilitating its clinical translation to improve liver fibrosis evaluation.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yang H, Carrascal CA, Xie H, Shamdasani V, Anthony BW. 2-D Ultrasound Shear Wave Elastography With Multi-Sphere-Source External Mechanical Vibration: Preliminary Phantom Results. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2505-2519. [PMID: 32513435 DOI: 10.1016/j.ultrasmedbio.2020.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound shear wave elastography (SWE) imaging is emerging as a quantitative and non-invasive tissue characterization modality. Shear wave generation using external mechanical vibration (EMV) has received extensive research interest over acoustic radiation force impulse (ARFI) because of its low cost and potential for portability. In this paper, we propose an EMV concept with multiple spherical sources that can be easily reconfigured in three configurations to induce unique shear wave propagation patterns. We introduce two design embodiments of this concept bench test design for proof of concept and a clinically deployable design. The latter is designed to incorporate size, ergonomics, portability and power consumption considerations and constraints. Experimental validation on elasticity phantoms using both EMV designs demonstrates shear wave generation and elasticity reconstruction comparable in performance to ElastQ, a commercial ARFI-based shear elastography technology from Philips. In addition, the local displacement amplitude induced by EMV is 10 times greater than that induced by ARFI at the same given depth. Finally, the multiple configurations of the presented EMV design would allow exploration of advanced elastography methods such as tissue anisotropic elasticity.
Collapse
Affiliation(s)
- Heng Yang
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Hua Xie
- Philips Research North America, Cambridge, Massachusetts, USA
| | | | - Brian W Anthony
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
7
|
Lin CY. Ramp-Creep Ultrasound Viscoelastography for Measuring Viscoelastic Parameters of Materials. MATERIALS 2020; 13:ma13163593. [PMID: 32823881 PMCID: PMC7475984 DOI: 10.3390/ma13163593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
Several ultrasound-based methods have been developed to evaluate the viscoelastic properties of materials. The purpose of this study is to introduce a novel viscoelastography method based on ultrasound acoustic radiation force for measuring the parameters relevant to the viscoelastic properties of materials, named ramp-creep ultrasound viscoelastography (RC viscoelastography). RC viscoelastography uses two different ultrasound excitation modes to cause ramp and creep strain responses in the material. By combining and analyzing the information obtained from these two modes of excitation, the viscoelastic parameters of the material can be quantitatively evaluated. Finite element computer simulation demonstrated that RC viscoelastography can accurately evaluate the viscoelastic parameters of the material, including the relaxation and creep time constants as well as the ratio of viscous fluids to solids in the material, except for the region near the top surface of the material. The novelty of RC viscoelastography is that there is no need to know the magnitude of acoustic radiation force and induced stress in the material in order to evaluate the viscoelastic parameters. In the future, experiments are necessary to test the performance of RC viscoelastography in real biomaterials and biological tissues.
Collapse
Affiliation(s)
- Che-Yu Lin
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Chen PY, Yang TH, Kuo LC, Shih CC, Huang CC. Characterization of Hand Tendons Through High-Frequency Ultrasound Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:37-48. [PMID: 31478846 DOI: 10.1109/tuffc.2019.2938147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tendon stiffness plays an important role in the tendon healing process, and many studies have indicated that measuring the shear wave velocity (SWV) on tendons relates to their stiffness. Because the thickness of hand tendons is a few millimeters, high-resolution imaging is required for visualizing hand tissues. However, the resolution of current ultrasound elastography systems is insufficient. In this study, a high-frequency (HF) ultrasound elastography system is proposed for measuring the SWVs of hand tendons. The HF ultrasound elastography system uses an external vibrator to create shear waves on hand tendons. Then, it uses a 40-MHz HF ultrasound array transducer with ultrafast ultrasound imaging technology to measure the SWV for characterizing hand tendons. A handheld device that combines a transducer and a vibrator allows the user to scan hand tissues. The biases of HF ultrasound elastography were measured in gelatin phantom experiments and were less than 6% compared to standard mechanical testing approach. Human experiments showed the ability to use HF ultrasound elastography to distinguish different SWVs of hand tendons. The SWVs were 0.73 ± 0.65 m/s and 1 ± 0.54 m/s for flexor digitorum superficialis (FDS) and flexor digitorum profundus (FDP), respectively, and 0.52 ± 0.14 m/s and 4.02 ± 0.77 m/s for extensor tendon under stretch and contraction conditions, respectively. The simplicity and convenience of the HF ultrasound elastography system for measuring hand tendon stiffness make it a promising tool for evaluating the severity of hand injuries and the performance of rehabilitation after hand injuries.
Collapse
|