1
|
Dragendorf E, Bültmann E, Wolff D. Quantitative assessment of neurodevelopmental maturation: a comprehensive systematic literature review of artificial intelligence-based brain age prediction in pediatric populations. Front Neuroinform 2024; 18:1496143. [PMID: 39601012 PMCID: PMC11588453 DOI: 10.3389/fninf.2024.1496143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Over the past few decades, numerous researchers have explored the application of machine learning for assessing children's neurological development. Developmental changes in the brain could be utilized to gauge the alignment of its maturation status with the child's chronological age. AI is trained to analyze changes in different modalities and estimate the brain age of subjects. Disparities between the predicted and chronological age can be viewed as a biomarker for a pathological condition. This literature review aims to illuminate research studies that have employed AI to predict children's brain age. Methods The inclusion criteria for this study were predicting brain age via AI in healthy children up to 12 years. The search term was centered around the keywords "pediatric," "artificial intelligence," and "brain age" and was utilized in PubMed and IEEEXplore. The selected literature was then examined for information on data acquisition methods, the age range of the study population, pre-processing, methods and AI techniques utilized, the quality of the respective techniques, model explanation, and clinical applications. Results Fifty one publications from 2012 to 2024 were included in the analysis. The primary modality of data acquisition was MRI, followed by EEG. Structural and functional MRI-based studies commonly used publicly available datasets, while EEG-based studies typically relied on self-recruitment. Many studies utilized pre-processing pipelines provided by toolkit suites, particularly in MRI-based research. The most frequently used model type was kernel-based learning algorithms, followed by convolutional neural networks. Overall, prediction accuracy may improve when multiple acquisition modalities are used, but comparing studies is challenging. In EEG, the prediction error decreases as the number of electrodes increases. Approximately one-third of the studies used explainable artificial intelligence methods to explain the model and chosen parameters. However, there is a significant clinical translation gap as no study has tested their model in a clinical routine setting. Discussion Further research should test on external datasets and include low-quality routine images for MRI. T2-weighted MRI was underrepresented. Furthermore, different kernel types should be compared on the same dataset. Implementing modern model architectures, such as convolutional neural networks, should be the next step in EEG-based research studies.
Collapse
Affiliation(s)
- Eric Dragendorf
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig, Hannover Medical School, Hannover, Germany
| | - Eva Bültmann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Dominik Wolff
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Tang H, Ma G, Zhang Y, Ye K, Guo L, Liu G, Huang Q, Wang Y, Ajilore O, Leow AD, Thompson PM, Huang H, Zhan L. A comprehensive survey of complex brain network representation. META-RADIOLOGY 2023; 1:100046. [PMID: 39830588 PMCID: PMC11741665 DOI: 10.1016/j.metrad.2023.100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Recent years have shown great merits in utilizing neuroimaging data to understand brain structural and functional changes, as well as its relationship to different neurodegenerative diseases and other clinical phenotypes. Brain networks, derived from different neuroimaging modalities, have attracted increasing attention due to their potential to gain system-level insights to characterize brain dynamics and abnormalities in neurological conditions. Traditional methods aim to pre-define multiple topological features of brain networks and relate these features to different clinical measures or demographical variables. With the enormous successes in deep learning techniques, graph learning methods have played significant roles in brain network analysis. In this survey, we first provide a brief overview of neuroimaging-derived brain networks. Then, we focus on presenting a comprehensive overview of both traditional methods and state-of-the-art deep-learning methods for brain network mining. Major models, and objectives of these methods are reviewed within this paper. Finally, we discuss several promising research directions in this field.
Collapse
Affiliation(s)
- Haoteng Tang
- Department of Computer Science, College of Engineering and Computer Science, University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, 78539, TX, USA
| | - Guixiang Ma
- Intel Labs, 2111 NE 25th Ave, Hillsboro, 97124, OR, USA
| | - Yanfu Zhang
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Kai Ye
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Lei Guo
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Guodong Liu
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Qi Huang
- Department of Radiology, Utah Center of Advanced Imaging, University of Utah, 729 Arapeen Drive, Salt Lake City, 84108, UT, USA
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, 699 S Mill Ave., Tempe, 85281, AZ, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois Chicago, 1601 W. Taylor St., Chicago, 60612, IL, USA
| | - Alex D. Leow
- Department of Psychiatry, University of Illinois Chicago, 1601 W. Taylor St., Chicago, 60612, IL, USA
| | - Paul M. Thompson
- Department of Neurology, University of Southern California, 2001 N. Soto St., Los Angeles, 90032, CA, USA
| | - Heng Huang
- Department of Computer Science, University of Maryland, 8125 Paint Branch Dr, College Park, 20742, MD, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| |
Collapse
|
3
|
Nemat H, Khadem H, Elliott J, Benaissa M. Causality analysis in type 1 diabetes mellitus with application to blood glucose level prediction. Comput Biol Med 2023; 153:106535. [PMID: 36640530 DOI: 10.1016/j.compbiomed.2022.106535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/05/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Effective control of blood glucose level (BGL) is the key factor in the management of type 1 diabetes mellitus (T1D). BGL prediction is an important tool to help maximise the time BGL is in the target range and thus minimise both acute and chronic diabetes-related complications. To predict future BGL, histories of variables known to affect BGL, such as carbohydrate intake, injected bolus insulin, and physical activity, are utilised. Due to these identified cause and effect relationships, T1D management can be examined via the causality context. In this respect, this work initially investigates these relations and quantifies the causality strengths of each variable with BGL using the convergent cross mapping method (CCM). Then, considering the extended CCM, the causality strengths of each variable for different lags are quantified. After that, the optimal time lag for each variable is determined according to the quantified causality effects. Subsequently, the feasibility of leveraging causality information as prior knowledge for BGL prediction is investigated by proposing two approaches. In the first approach, causality strengths are used as weights for relevant affecting variables. In the second approach, the optimal causal lags and the corresponding causality strengths are considered the shifts and weights for the variables, respectively. Overall, the evaluation criteria and statistical analysis used for comparing results show the effectiveness of using causality analysis in T1D management.
Collapse
Affiliation(s)
- Hoda Nemat
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 4DE, UK.
| | - Heydar Khadem
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 4DE, UK.
| | - Jackie Elliott
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; Sheffield Teaching Hospitals, Diabetes and Endocrine Centre, Northern General Hospital, Sheffield S5 7AU, UK.
| | - Mohammed Benaissa
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 4DE, UK.
| |
Collapse
|
4
|
Ji J, Liu J, Han L, Wang F. Estimating Effective Connectivity by Recurrent Generative Adversarial Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3326-3336. [PMID: 34038358 DOI: 10.1109/tmi.2021.3083984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Estimating effective connectivity from functional magnetic resonance imaging (fMRI) time series data has become a very hot topic in neuroinformatics and brain informatics. However, it is hard for the current methods to accurately estimate the effective connectivity due to the high noise and small sample size of fMRI data. In this paper, we propose a novel framework for estimating effective connectivity based on recurrent generative adversarial networks, called EC-RGAN. The proposed framework employs the generator that consists of a set of effective connectivity generators based on recurrent neural networks to generate the fMRI time series of each brain region, and uses the discriminator to distinguish between the joint distributions of the real and generated fMRI time series. When the model is well-trained and generated fMRI data is similar to real fMRI data, EC-RGAN outputs the effective connectivity by means of the causal parameters of the effective connectivity generators. Experimental results on both simulated and real-world fMRI time series data demonstrate the efficacy of our proposed framework.
Collapse
|