1
|
Lee JS, Lee MS. Advancements in Positron Emission Tomography Detectors: From Silicon Photomultiplier Technology to Artificial Intelligence Applications. PET Clin 2024; 19:1-24. [PMID: 37802675 DOI: 10.1016/j.cpet.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This review article focuses on PET detector technology, which is the most crucial factor in determining PET image quality. The article highlights the desired properties of PET detectors, including high detection efficiency, spatial resolution, energy resolution, and timing resolution. Recent advancements in PET detectors to improve these properties are also discussed, including the use of silicon photomultiplier technology, advancements in depth-of-interaction and time-of-flight PET detectors, and the use of artificial intelligence for detector development. The article provides an overview of PET detector technology and its recent advancements, which can significantly enhance PET image quality.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea; Brightonix Imaging Inc., Seoul 04782, South Korea
| | - Min Sun Lee
- Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea.
| |
Collapse
|
2
|
Sang Z, Kuang Z, Wang X, Ren N, Wu S, Niu M, Cong L, Liu Z, Hu Z, Sun T, Liang D, Liu X, Zheng H, Li Y, Yang Y. Mutual interferences between SIAT aPET insert and a 3 T uMR 790 MRI scanner. Phys Med Biol 2023; 68. [PMID: 36549011 DOI: 10.1088/1361-6560/acae17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Dual-modality small animal PET/MR imaging provides temporally correlated information on two biochemical processes of a living object. An magnetic resonance imaging (MRI)-compatible small animal PET insert named Shenzhen Institutes of Advanced Technology (SIAT) aPET was developed by using dual-ended readout depth encoding detectors to simultaneously achieve a uniform high spatial resolution and high sensitivity at the SIAT. In this work, the mutual interferences between SIAT aPET and the 3 T uMR 790 MRI scanner of United Imaging was quantitatively evaluated.Approach.To minimize the mutual interferences, only the PET detectors and the readout electronics were placed inside the MRI scanner, the major signal processing electronic was placed in the corner of the MRI room and the auxiliary unit was placed in the MRI technical room. A dedicated mouse radio fRequency (RF) coil with a transmitter and receiver was developed for the PET insert. The effects of PET scanner on theB0andB1field of the MRI scanner and the quality of the MRI images were measured. The effects of MRI imaging on the performance of both the PET detectors and scanner were also measured.Main results.The electronic and mechanical components of the PET insert affected the homogeneity of theB0field. The PET insert had no effect on the homogeneity ofB1produced by the dedicated mouse coil but slightly reduced the strength ofB1. The mean and standard deviation of the RF noise map were increased by 2.2% and 11.6%, respectively, while the PET insert was placed in the MRI scanner and powered on. Eddy current was produced while the PET insert was placed in the MRI scanner, and it was further increased while the PET insert was powered on. Despite the above-mentioned interferences from the PET insert, the MR images of a uniform cylindrical water phantom showed that the changes in the signal-to-noise ratio (SNR) and homogeneity as the PET insert was placed in the MRI scanner were acceptable regardless of whether the PET insert was powered off or powered on. The maximum reduction of SNR was less than 11%, and the maximum reduction of homogeneity was less than 2.5% while the PET insert was placed inside the MRI scanner and powered on for five commonly used MRI sequences. MRI using gradient echo (GRE), spin echo (SE) and fast spin echo (FSE) sequences had negligible effects on the flood histograms and energy resolution of the PET detectors, as well as the spatial resolution and sensitivity of the PET scanner.Significance.The mutual interference between the SIAT aPET and the 3 T uMR 790 MRI scanner are acceptable. Simultaneous PET/MRI imaging of small animals can be performed with the two scanners.
Collapse
Affiliation(s)
- Ziru Sang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhonghua Kuang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Wang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ning Ren
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - San Wu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ming Niu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Longhan Cong
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zheng Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhanli Hu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Tao Sun
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ye Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
3
|
Courteau A, McGrath J, Walker PM, Presles B, Garipov R, Cochet A, Brunotte F, Vrigneaud JM. A Practical Quality Assurance Procedure for Data Acquisitions in Preclinical Simultaneous PET/MR Systems. Mol Imaging Biol 2022; 25:450-463. [PMID: 36478075 PMCID: PMC10172259 DOI: 10.1007/s11307-022-01787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
AbstractThe availability of preclinical simultaneous PET/MR imaging systems has been increasing in recent years. Therefore, this technique is progressively moving from the hands of pure physicists towards those of scientists more involved in pharmacology and biology. Unfortunately, these combined scanners can be prone to artefacts and deviation of their characteristics under the influence of external factors or mutual interference between subsystems. This may compromise the image quality as well as the quantitative aspects of PET and MR data. Hence, quality assurance is crucial to avoid loss of animals and experiments. A possible risk to the acceptance of quality control by preclinical teams is that the complexity and duration of this quality control are increased by the addition of MR and PET tests. To avoid this issue, we have selected over the past 5 years, simple tests that can be easily and quickly performed each day before starting an animal PET/MR acquisition. These tests can be performed by the person in charge of the experiment even if this person has a limited expertise in instrumentation and performance evaluation. In addition to these daily tests, other tests are suggested for an advanced system follow-up at a lower frequency. In the present paper, the proposed tests are sorted by periodicity from daily to annual. Besides, we have selected test materials that are available at moderate cost either commercially or through 3D printing.
Collapse
Affiliation(s)
- Alan Courteau
- ImViA Laboratory, EA 7535, University of Burgundy, 21000, Dijon, France.
- Georges-François Leclerc Cancer Centre, Unicancer, 21000, Dijon, France.
| | | | - Paul Michael Walker
- ImViA Laboratory, EA 7535, University of Burgundy, 21000, Dijon, France
- University Hospital Centre François Mitterrand, 21000, Dijon, France
| | - Benoît Presles
- ImViA Laboratory, EA 7535, University of Burgundy, 21000, Dijon, France
| | | | - Alexandre Cochet
- ImViA Laboratory, EA 7535, University of Burgundy, 21000, Dijon, France
- Georges-François Leclerc Cancer Centre, Unicancer, 21000, Dijon, France
- University Hospital Centre François Mitterrand, 21000, Dijon, France
| | - François Brunotte
- ImViA Laboratory, EA 7535, University of Burgundy, 21000, Dijon, France
| | - Jean-Marc Vrigneaud
- ImViA Laboratory, EA 7535, University of Burgundy, 21000, Dijon, France
- Georges-François Leclerc Cancer Centre, Unicancer, 21000, Dijon, France
| |
Collapse
|
4
|
Dahan T, Nassar S, Yajuk O, Steinberg E, Benny O, Abudi N, Plaschkes I, Benyamini H, Gozal D, Abramovitch R, Gileles-Hillel A. Chronic Intermittent Hypoxia during Sleep Causes Browning of Interscapular Adipose Tissue Accompanied by Local Insulin Resistance in Mice. Int J Mol Sci 2022; 23:ijms232415462. [PMID: 36555109 PMCID: PMC9779339 DOI: 10.3390/ijms232415462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent condition, characterized by intermittent hypoxia (IH), sleep disruption, and altered autonomic nervous system function. OSA has been independently associated with dyslipidemia, insulin resistance, and metabolic syndrome. Brown adipose tissue (BAT) has been suggested as a modulator of systemic glucose tolerance through adaptive thermogenesis. Reductions in BAT mass have been associated with obesity and metabolic syndrome. No studies have systematically characterized the effects of chronic IH on BAT. Thus, we aimed to delineate IH effects on BAT and concomitant metabolic changes. C57BL/6J 8-week-old male mice were randomly assigned to IH during sleep (alternating 90 s cycles of 6.5% FIO2 followed by 21% FIO2) or normoxia (room air, RA) for 10 weeks. Mice were subjected to glucose tolerance testing and 18F-FDG PET-MRI towards the end of the exposures followed by BAT tissues analyses for morphological and global transcriptomic changes. Animals exposed to IH were glucose intolerant despite lower total body weight and adiposity. BAT tissues in IH-exposed mice demonstrated characteristic changes associated with "browning"-smaller lipids, increased vascularity, and a trend towards higher protein levels of UCP1. Conversely, mitochondrial DNA content and protein levels of respiratory chain complex III were reduced. Pro-inflammatory macrophages were more abundant in IH-exposed BAT. Transcriptomic analysis revealed increases in fatty acid oxidation and oxidative stress pathways in IH-exposed BAT, along with a reduction in pathways related to myogenesis, hypoxia, and IL-4 anti-inflammatory response. Functionally, IH-exposed BAT demonstrated reduced absorption of glucose on PET scans and reduced phosphorylation of AKT in response to insulin. Current studies provide initial evidence for the presence of a maladaptive response of interscapular BAT in response to chronic IH mimicking OSA, resulting in a paradoxical divergence, namely, BAT browning but tissue-specific and systemic insulin resistance. We postulate that oxidative stress, mitochondrial dysfunction, and inflammation may underlie these dichotomous outcomes in BAT.
Collapse
Affiliation(s)
- Tehila Dahan
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Shahd Nassar
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Olga Yajuk
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eliana Steinberg
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ofra Benny
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nathalie Abudi
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Gozal
- Division of Pediatric Pulmonology, Allergy and Immunology, Comprehensive Sleep Medicine Center, Department of Child Health and Child Health Research Institute, MU Children’s Hospital, University of Missouri School of Medicine, Columbia, MO 65201, USA
| | - Rinat Abramovitch
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alex Gileles-Hillel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Pediatric Pulmonology and Sleep Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem 91120, Israel
- Correspondence:
| |
Collapse
|
5
|
Adler SS, Seidel J, Choyke PL. Advances in Preclinical PET. Semin Nucl Med 2022; 52:382-402. [PMID: 35307164 PMCID: PMC9038721 DOI: 10.1053/j.semnuclmed.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
The classical intent of PET imaging is to obtain the most accurate estimate of the amount of positron-emitting radiotracer in the smallest possible volume element located anywhere in the imaging subject at any time using the least amount of radioactivity. Reaching this goal, however, is confounded by an enormous array of interlinked technical issues that limit imaging system performance. As a result, advances in PET, human or animal, are the result of cumulative innovations across each of the component elements of PET, from data acquisition to image analysis. In the report that follows, we trace several of these advances across the imaging process with a focus on small animal PET.
Collapse
Affiliation(s)
- Stephen S Adler
- Frederick National Laboratory for Cancer Research, Frederick, MD; Molecular Imaging Branch, National Cancer Institute, Bethesda MD
| | - Jurgen Seidel
- Contractor to Frederick National Laboratory for Cancer Research, Leidos biodical Research, Inc., Frederick, MD; Molecular Imaging Branch, National Cancer Institute, Bethesda MD
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, Bethesda MD.
| |
Collapse
|
6
|
Hinden L, Ahmad M, Hamad S, Nemirovski A, Szanda G, Glasmacher S, Kogot-Levin A, Abramovitch R, Thorens B, Gertsch J, Leibowitz G, Tam J. Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function. Nat Commun 2022; 13:1783. [PMID: 35379807 PMCID: PMC8980033 DOI: 10.1038/s41467-022-29124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions. Renal proximal tubules modulate whole-body homeostasis by sensing various nutrients. Here the authors describe the existence and importance of a unique CB1/mTORC1/GLUT2 signaling axis in regulating nutrient homeostasis in healthy and diseased kidney.
Collapse
|
7
|
Emvalomenos G, Trajanovska S, Pham BTT, Doughty P, Burnet J, Smith I, Garipov R, Gregoire MC, Sunn N, McGrath J, Meikle SR. Performance evaluation of a PET insert for preclinical MRI in stand-alone PET and simultaneous PET-MRI modes. EJNMMI Phys 2021; 8:68. [PMID: 34626239 PMCID: PMC8502182 DOI: 10.1186/s40658-021-00415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to evaluate the performance of a preclinical PET insert in three configurations: as a stand-alone unit outside the MRI bore, inside the bore of a cryogen-free 3T MRI and, finally, while performing simultaneous PET/MRI studies. Methods The PET insert consists of two rings of six detectors, each detector comprising 8 × 12 SiPMs reading out dual offset layers of pixelated LYSO crystals with a 1.4-mm pitch. The inner diameter is 60 mm, transaxial field of view (FoV) 40 mm and axial FoV 98 mm. Evaluation was based on NEMA NU 4-2008 guidelines with appropriate modifications. Spatial resolution and sensitivity were measured inside and outside the MR bore. Image quality, count rate and quantitative performance were measured in all three configurations. The effect of temperature stability on PET sensitivity during fast spin echo sequences was also evaluated. B0 field homogeneity and T1 and T2 relaxation times were measured using a water-filled phantom, with and without simultaneous PET operation. Finally, PET and MRI scans of a mouse injected with 10 MBq [18F]NaF and a mouse injected with 16 MBq [18F]FDG were performed in sequential and simultaneous modes. Results Peak absolute sensitivity was 10.15% with an energy window of 250–750 keV. Absolute sensitivity values outside and inside the MR bore with MR idle agreed to within 0.1%. Outside the MR bore, spatial resolution was 1.21/1.59 mm FWHM (radial/tangential) 5 mm from the centre of the FoV which compared well with 1.19/1.26 mm FWHM inside the MR bore. There were no substantial differences between all three scan configurations in terms of peak NEC rate (175 kcps at 17 MBq), scatter or random fractions. Uniformity and recovery coefficients were also consistent between scanning modes. B0 field homogeneity and T1 and T2 relaxation times were unaltered by the presence of the PET insert. No significant differences were observed between sequential and simultaneous scans of the animals. Conclusions We conclude that the performance of the PET insert and MRI system is not significantly affected by the scanning mode.
Collapse
Affiliation(s)
- Gaelle Emvalomenos
- Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, 2050, Australia. .,Brain and Mind Centre, The University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia.
| | - Sofie Trajanovska
- Sydney Imaging Core Research Facility, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Binh T T Pham
- Sydney Imaging Core Research Facility, The University of Sydney, Camperdown, NSW, 2050, Australia
| | | | | | - Isabelle Smith
- School of Physics, The University of Sydney, Camperdown, NSW, 2050, Australia
| | | | - Marie-Claude Gregoire
- Brain and Mind Centre, The University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia.,Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
| | - Nana Sunn
- Sydney Imaging Core Research Facility, The University of Sydney, Camperdown, NSW, 2050, Australia
| | | | - Steven R Meikle
- Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, 2050, Australia.,Brain and Mind Centre, The University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| |
Collapse
|
8
|
Oudot A, Courteau A, Guillemin M, Vrigneaud JM, Walker PM, Brunotte F, Cochet A, Collin B. [ 123I]MIBG is a better early marker of anthracycline cardiotoxicity than [ 18F]FDG: a preclinical SPECT/CT and simultaneous PET/MR study. EJNMMI Res 2021; 11:92. [PMID: 34542689 PMCID: PMC8452816 DOI: 10.1186/s13550-021-00835-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background During anthracycline treatment of cancer, there is a lack for biomarkers of cardiotoxicity besides the cardiac dysfunction. The objective of the present study was to compare [18F]FDG and [123I]MIBG (metaiodobenzylguanidine) in a longitudinal study in a doxorubicin-induced cardiotoxicity rat model. Methods Male Wistar Han rats were intravenously administered 3 times at 10 days’ interval with saline or doxorubicin (5 mg/kg). [123I]MIBG SPECT/CT (single photon emission computed tomography-computed tomography) and simultaneous [18F]FDG PET (positron emission tomography)/7 Tesla cardiac MR (magnetic resonance) imaging acquisitions were performed at 24 h interval before first doxorubicin / saline injection and every 2 weeks during 6 weeks. At 6 weeks, the heart tissue was collected for histomorphometry measurements. Results At week 4, left ventricle (LV) end-diastolic volume was significantly reduced in the doxorubicin group. At week 6, the decreased LV end-diastolic volume was maintained, and LV end-systolic volume was increased resulting in a significant reduction of LV ejection fraction (47 ± 6% vs. 70 ± 3%). At weeks 4 and 6, but not at week 2, myocardial [18F]FDG uptake was decreased compared with the control group (respectively, 4.2 ± 0.5%ID/g and 9.2 ± 0.8%ID/g at week 6). Moreover, [18F]FDG cardiac uptake correlated with cardiac function impairment. In contrast, from week 2, a significant decrease of myocardial [123I]MIBG heart to mediastinum ratio was detected in the doxorubicin group and was maintained at weeks 4 and 6 with a 45.6% decrease at week 6. Conclusion This longitudinal study precises that after doxorubicin treatment, cardiac [123I]MIBG uptake is significantly reduced as early as 2 weeks followed by the decrease of the LV end-diastolic volume and [18F]FDG uptake at 4 weeks and finally by the increase of LV end-systolic volume and decrease of LV ejection fraction at 6 weeks. Cardiac innervation imaging should thus be considered as an early key feature of anthracycline cardiac toxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00835-1.
Collapse
Affiliation(s)
- Alexandra Oudot
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France.
| | - Alan Courteau
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France.,ImVIA, EA 7535, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Mélanie Guillemin
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France
| | - Jean-Marc Vrigneaud
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France.,ImVIA, EA 7535, Université de Bourgogne-Franche-Comté, Dijon, France
| | | | - François Brunotte
- ImVIA, EA 7535, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Alexandre Cochet
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France.,ImVIA, EA 7535, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Bertrand Collin
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France.,ICMUB, UMR CNRS 6302, Université de Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
9
|
Performance Evaluation of SimPET-X, a PET Insert for Simultaneous Mouse Total-Body PET/MR Imaging. Mol Imaging Biol 2021; 23:703-713. [PMID: 33768465 DOI: 10.1007/s11307-021-01595-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE In this study, a small animal PET insert (SimPET-X, Brightonix Imaging Inc.) for simultaneous PET/MR imaging studies is presented. This insert covers an 11-cm-long axial field-of-view (FOV) and enables imaging of mouse total-bodies and rat heads. PROCEDURES SimPET-X comprises 16 detector modules to yield a ring diameter of 63 mm and an axial FOV of 110 mm. The detector module supports four detector blocks, each comprising two 4 × 4 SiPM arrays coupled with a 20 × 9 array of LSO crystals (1.2 × 1.2 × 10 mm3). The physical characteristics of SimPET-X were measured in accordance with the NEMA NU4-2008 standard protocol. In addition, we assessed the compatibility of SimPET-X with a small animal-dedicated MRI (M7, Aspect Imaging) and conducted phantom and animal studies. RESULTS The radial spatial resolutions at the center based on 3D OSEM without and with the warm background were 0.73 mm and 0.99 mm, respectively. The absolute peak sensitivity of the system was 10.44% with an energy window of 100-900 keV and 8.27% with an energy window of 250-750 keV. The peak NECR and scatter fraction for the mouse phantom were 348 kcps at 26.2 MBq and 22.1% with an energy window of 250-750 keV, respectively. The standard deviation of pixel value in the uniform region of an NEMA IQ phantom was 4.57%. The spillover ratios for air- and water-filled chambers were 9.0% and 11.0%, respectively. In the hot-rod phantom image reconstructed using 3D OSEM-PSF, all small rods were resolved owing to the high spatial resolution of the SimPET-X system. There was no notable interference between SimPET-X and M7 MRI. SimPET-X provided high-quality mouse images with superior spatial resolution, sensitivity, and counting rate performance. CONCLUSION SimPET-X yielded a remarkably improved sensitivity and NECR compared with SimPETTM.
Collapse
|