1
|
Li J, Tuckute G, Fedorenko E, Edlow BL, Dalca AV, Fischl B. JOSA: Joint surface-based registration and atlas construction of brain geometry and function. Med Image Anal 2024; 98:103292. [PMID: 39173411 DOI: 10.1016/j.media.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/21/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Surface-based cortical registration is an important topic in medical image analysis and facilitates many downstream applications. Current approaches for cortical registration are mainly driven by geometric features, such as sulcal depth and curvature, and often assume that registration of folding patterns leads to alignment of brain function. However, functional variability of anatomically corresponding areas across subjects has been widely reported, particularly in higher-order cognitive areas. In this work, we present JOSA, a novel cortical registration framework that jointly models the mismatch between geometry and function while simultaneously learning an unbiased population-specific atlas. Using a semi-supervised training strategy, JOSA achieves superior registration performance in both geometry and function to the state-of-the-art methods but without requiring functional data at inference. This learning framework can be extended to any auxiliary data to guide spherical registration that is available during training but is difficult or impossible to obtain during inference, such as parcellations, architectonic identity, transcriptomic information, and molecular profiles. By recognizing the mismatch between geometry and function, JOSA provides new insights into the future development of registration methods using joint analysis of brain structure and function.
Collapse
Affiliation(s)
- Jian Li
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States of America; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, United States of America.
| | - Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, United States of America; McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States of America
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, United States of America; McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States of America; Program in Speech Hearing Bioscience and Technology, Harvard University, United States of America
| | - Brian L Edlow
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States of America; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Adrian V Dalca
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States of America; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, United States of America
| | - Bruce Fischl
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States of America; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, United States of America
| |
Collapse
|
2
|
Zhao F, Wu Z, Wang L, Lin W, Li G. Longitudinally consistent registration and parcellation of cortical surfaces using semi-supervised learning. Med Image Anal 2024; 96:103193. [PMID: 38823362 PMCID: PMC11292586 DOI: 10.1016/j.media.2024.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Temporally consistent and accurate registration and parcellation of longitudinal cortical surfaces is of great importance in studying longitudinal morphological and functional changes of human brains. However, most existing methods are developed for registration or parcellation of a single cortical surface. When applying to longitudinal studies, these methods independently register/parcellate each surface from longitudinal scans, thus often generating longitudinally inconsistent and inaccurate results, especially in small or ambiguous cortical regions. Essentially, longitudinal cortical surface registration and parcellation are highly correlated tasks with inherently shared constraints on both spatial and temporal feature representations, which are unfortunately ignored in existing methods. To this end, we unprecedentedly propose a novel semi-supervised learning framework to exploit these inherent relationships from limited labeled data and extensive unlabeled data for more robust and consistent registration and parcellation of longitudinal cortical surfaces. Our method utilizes the spherical topology characteristic of cortical surfaces. It employs a spherical network to function as an encoder, which extracts high-level cortical features. Subsequently, we build two specialized decoders dedicated to the tasks of registration and parcellation, respectively. To extract more meaningful spatial features, we design a novel parcellation map similarity loss to utilize the relationship between registration and parcellation tasks, i.e., the parcellation map warped by the deformation field in registration should match the atlas parcellation map, thereby providing extra supervision for the registration task and augmented data for parcellation task by warping the atlas parcellation map to unlabeled surfaces. To enable temporally more consistent feature representation, we additionally enforce longitudinal consistency among longitudinal surfaces after registering them together using their concatenated features. Experiments on two longitudinal datasets of infants and adults have shown that our method achieves significant improvements on both registration/parcellation accuracy and longitudinal consistency compared to existing methods, especially in small and challenging cortical regions.
Collapse
Affiliation(s)
- Fenqiang Zhao
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Ren J, An N, Zhang Y, Wang D, Sun Z, Lin C, Cui W, Wang W, Zhou Y, Zhang W, Hu Q, Zhang P, Hu D, Wang D, Liu H. SUGAR: Spherical ultrafast graph attention framework for cortical surface registration. Med Image Anal 2024; 94:103122. [PMID: 38428270 DOI: 10.1016/j.media.2024.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/25/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Cortical surface registration plays a crucial role in aligning cortical functional and anatomical features across individuals. However, conventional registration algorithms are computationally inefficient. Recently, learning-based registration algorithms have emerged as a promising solution, significantly improving processing efficiency. Nonetheless, there remains a gap in the development of a learning-based method that exceeds the state-of-the-art conventional methods simultaneously in computational efficiency, registration accuracy, and distortion control, despite the theoretically greater representational capabilities of deep learning approaches. To address the challenge, we present SUGAR, a unified unsupervised deep-learning framework for both rigid and non-rigid registration. SUGAR incorporates a U-Net-based spherical graph attention network and leverages the Euler angle representation for deformation. In addition to the similarity loss, we introduce fold and multiple distortion losses to preserve topology and minimize various types of distortions. Furthermore, we propose a data augmentation strategy specifically tailored for spherical surface registration to enhance the registration performance. Through extensive evaluation involving over 10,000 scans from 7 diverse datasets, we showed that our framework exhibits comparable or superior registration performance in accuracy, distortion, and test-retest reliability compared to conventional and learning-based methods. Additionally, SUGAR achieves remarkable sub-second processing times, offering a notable speed-up of approximately 12,000 times in registering 9,000 subjects from the UK Biobank dataset in just 32 min. This combination of high registration performance and accelerated processing time may greatly benefit large-scale neuroimaging studies.
Collapse
Affiliation(s)
| | - Ning An
- Changping Laboratory, Beijing, China
| | | | | | | | - Cong Lin
- Changping Laboratory, Beijing, China
| | - Weigang Cui
- School of Engineering Medicine, Beihang University, Beijing, China
| | | | - Ying Zhou
- Changping Laboratory, Beijing, China
| | - Wei Zhang
- Changping Laboratory, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qingyu Hu
- Changping Laboratory, Beijing, China
| | | | - Dan Hu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hesheng Liu
- Changping Laboratory, Beijing, China; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
| |
Collapse
|
4
|
Li J, Tuckute G, Fedorenko E, Edlow BL, Fischl B, Dalca AV. Joint cortical registration of geometry and function using semi-supervised learning. ARXIV 2023:arXiv:2303.01592v4. [PMID: 37744470 PMCID: PMC10516111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Brain surface-based image registration, an important component of brain image analysis, establishes spatial correspondence between cortical surfaces. Existing iterative and learning-based approaches focus on accurate registration of folding patterns of the cerebral cortex, and assume that geometry predicts function and thus functional areas will also be well aligned. However, structure/functional variability of anatomically corresponding areas across subjects has been widely reported. In this work, we introduce a learning-based cortical registration framework, JOSA, which jointly aligns folding patterns and functional maps while simultaneously learning an optimal atlas. We demonstrate that JOSA can substantially improve registration performance in both anatomical and functional domains over existing methods. By employing a semi-supervised training strategy, the proposed framework obviates the need for functional data during inference, enabling its use in broad neuroscientific domains where functional data may not be observed. The source code of JOSA will be released to the public at https://voxelmorph.net.
Collapse
Affiliation(s)
- Jian Li
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School
| | - Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Program in Speech Hearing Bioscience and Technology, Harvard University
| | - Brian L Edlow
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School
| | - Bruce Fischl
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
- Harvard-MIT Program in Health Sciences and Technology
| | - Adrian V Dalca
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
| |
Collapse
|
5
|
Guo Y, Chen Q, Choi GPT, Lui LM. Automatic landmark detection and registration of brain cortical surfaces via quasi-conformal geometry and convolutional neural networks. Comput Biol Med 2023; 163:107185. [PMID: 37418897 DOI: 10.1016/j.compbiomed.2023.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In medical imaging, surface registration is extensively used for performing systematic comparisons between anatomical structures, with a prime example being the highly convoluted brain cortical surfaces. To obtain a meaningful registration, a common approach is to identify prominent features on the surfaces and establish a low-distortion mapping between them with the feature correspondence encoded as landmark constraints. Prior registration works have primarily focused on using manually labeled landmarks and solving highly nonlinear optimization problems, which are time-consuming and hence hinder practical applications. In this work, we propose a novel framework for the automatic landmark detection and registration of brain cortical surfaces using quasi-conformal geometry and convolutional neural networks. We first develop a landmark detection network (LD-Net) that allows for the automatic extraction of landmark curves given two prescribed starting and ending points based on the surface geometry. We then utilize the detected landmarks and quasi-conformal theory for achieving the surface registration. Specifically, we develop a coefficient prediction network (CP-Net) for predicting the Beltrami coefficients associated with the desired landmark-based registration and a mapping network called the disk Beltrami solver network (DBS-Net) for generating quasi-conformal mappings from the predicted Beltrami coefficients, with the bijectivity guaranteed by quasi-conformal theory. Experimental results are presented to demonstrate the effectiveness of our proposed framework. Altogether, our work paves a new way for surface-based morphometry and medical shape analysis.
Collapse
Affiliation(s)
- Yuchen Guo
- Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
| | - Qiguang Chen
- Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
| | - Gary P T Choi
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lok Ming Lui
- Department of Mathematics, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
6
|
Zhou FY, Weems A, Gihana GM, Chen B, Chang BJ, Driscoll M, Danuser G. Surface-guided computing to analyze subcellular morphology and membrane-associated signals in 3D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536640. [PMID: 37131779 PMCID: PMC10153113 DOI: 10.1101/2023.04.12.536640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.
Collapse
Affiliation(s)
- Felix Y. Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriel M. Gihana
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bingying Chen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meghan Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Current address: Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Zhou FY, Weems A, Gihana GM, Chen B, Chang BJ, Driscoll M, Danuser G. Surface-guided computing to analyze subcellular morphology and membrane-associated signals in 3D. ARXIV 2023:arXiv:2304.06176v1. [PMID: 37090235 PMCID: PMC10120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.
Collapse
Affiliation(s)
- Felix Y. Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriel M. Gihana
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bingying Chen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meghan Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Current address: Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Wang L, Wu Z, Chen L, Sun Y, Lin W, Li G. iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction. Nat Protoc 2023; 18:1488-1509. [PMID: 36869216 DOI: 10.1038/s41596-023-00806-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/03/2022] [Indexed: 03/05/2023]
Abstract
The human cerebral cortex undergoes dramatic and critical development during early postnatal stages. Benefiting from advances in neuroimaging, many infant brain magnetic resonance imaging (MRI) datasets have been collected from multiple imaging sites with different scanners and imaging protocols for the investigation of normal and abnormal early brain development. However, it is extremely challenging to precisely process and quantify infant brain development with these multisite imaging data because infant brain MRI scans exhibit (a) extremely low and dynamic tissue contrast caused by ongoing myelination and maturation and (b) inter-site data heterogeneity resulting from the use of diverse imaging protocols/scanners. Consequently, existing computational tools and pipelines typically perform poorly on infant MRI data. To address these challenges, we propose a robust, multisite-applicable, infant-tailored computational pipeline that leverages powerful deep learning techniques. The main functionality of the proposed pipeline includes preprocessing, brain skull stripping, tissue segmentation, topology correction, cortical surface reconstruction and measurement. Our pipeline can handle both T1w and T2w structural infant brain MR images well in a wide age range (from birth to 6 years of age) and is effective for different imaging protocols/scanners, despite being trained only on the data from the Baby Connectome Project. Extensive comparisons with existing methods on multisite, multimodal and multi-age datasets demonstrate superior effectiveness, accuracy and robustness of our pipeline. We have maintained a website, iBEAT Cloud, for users to process their images with our pipeline ( http://www.ibeat.cloud ), which has successfully processed over 16,000 infant MRI scans from more than 100 institutions with various imaging protocols/scanners.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Liangjun Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Sun
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Chen H, Li H, Yang S, Huang W, Gong Q, Ruan G, Chen S, Liu L. Prognostic potential of a voxelwise invasion risk map of nasopharyngeal carcinoma based on a coordinate system of the nasopharynx. Quant Imaging Med Surg 2023; 13:982-998. [PMID: 36819252 PMCID: PMC9929427 DOI: 10.21037/qims-22-744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Background Tumor invasion risk (TIR) is an important prognostic factor in nasopharyngeal carcinoma (NPC). We propose a novel prognostic analytic method for NPC based on a voxelwise analysis of TIR in a coordinate system of the nasopharynx. Methods A stable nasopharynx coordinate system was constructed based on anatomical landmarks to obtain an accurate TIR profile for NPC. The coordinate system was validated by image registration of the lateral pterygoid muscle (LPM). The tumors were registered to the coordinate system through shift, scale, and rotation transformations. The voxelwise TIR map for NPC was obtained by superposition of all registered and mirrored tumor regions of interest. The minimum risk (MinR) point of the tumor region was used as an independent prognostic factor for NPC. The cutoff value was calculated with density plot and validated with restricted cubic splines (RCSs), and then the patients were divided into 2 groups for overall survival (OS) analysis. Results The first voxelwise TIR map of NPC was obtained based on 778 patients. The OS of patients with a low TIR was 76.8% and was 92.6% for patients with a high TIR [P<0.001; hazard ratio (HR) =1/0.45; 95% CI: 0.27-0.77; adjusted P=0.004]. Thus, patients with a low TIR had a poor prognosis, whereas patients with a high TIR had a good prognosis. The MinR may be better at grading the prognosis of patients compared to the American Joint Committee on Cancer (AJCC) staging or tumor/node (T/N) classification systems. Conclusions The voxelwise TIR map provides a new method for the prognostic analysis of NPC. Potential clinical applications of voxelwise TIR mapping are clinical target volume (CTV) delineation and dose-painting for NPC.
Collapse
Affiliation(s)
- Hongbo Chen
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Haojiang Li
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shixin Yang
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Wenjie Huang
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiong Gong
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Guangying Ruan
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuchao Chen
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Lizhi Liu
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
10
|
Liu Y, Bao S, Englot DJ, Morgan VL, Taylor WD, Wei Y, Oguz I, Landman BA, Lyu I. Hierarchical particle optimization for cortical shape correspondence in temporal lobe resection. Comput Biol Med 2023; 152:106414. [PMID: 36525831 PMCID: PMC9832438 DOI: 10.1016/j.compbiomed.2022.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anterior temporal lobe resection is an effective treatment for temporal lobe epilepsy. The post-surgical structural changes could influence the follow-up treatment. Capturing post-surgical changes necessitates a well-established cortical shape correspondence between pre- and post-surgical surfaces. Yet, most cortical surface registration methods are designed for normal neuroanatomy. Surgical changes can introduce wide ranging artifacts in correspondence, for which conventional surface registration methods may not work as intended. METHODS In this paper, we propose a novel particle method for one-to-one dense shape correspondence between pre- and post-surgical surfaces with temporal lobe resection. The proposed method can handle partial structural abnormality involving non-rigid changes. Unlike existing particle methods using implicit particle adjacency, we consider explicit particle adjacency to establish a smooth correspondence. Moreover, we propose hierarchical optimization of particles rather than full optimization of all particles at once to avoid trappings of locally optimal particle update. RESULTS We evaluate the proposed method on 25 pairs of T1-MRI with pre- and post-simulated resection on the anterior temporal lobe and 25 pairs of patients with actual resection. We show improved accuracy over several cortical regions in terms of ROI boundary Hausdorff distance with 4.29 mm and Dice similarity coefficients with average value 0.841, compared to existing surface registration methods on simulated data. In 25 patients with actual resection of the anterior temporal lobe, our method shows an improved shape correspondence in qualitative and quantitative evaluation on parcellation-off ratio with average value 0.061 and cortical thickness changes. We also show better smoothness of the correspondence without self-intersection, compared with point-wise matching methods which show various degrees of self-intersection. CONCLUSION The proposed method establishes a promising one-to-one dense shape correspondence for temporal lobe resection. The resulting correspondence is smooth without self-intersection. The proposed hierarchical optimization strategy could accelerate optimization and improve the optimization accuracy. According to the results on the paired surfaces with temporal lobe resection, the proposed method outperforms the compared methods and is more reliable to capture cortical thickness changes.
Collapse
Affiliation(s)
- Yue Liu
- College of Information Science and Engineering, Northeastern University, Shenyang, China; Department of Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Shunxing Bao
- Department of Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, TN, USA
| | - Victoria L Morgan
- Department of Radiology & Radiological Science, Vanderbilt University Medical Center, TN, USA
| | - Warren D Taylor
- Department of Psychiatry & Behavioral Science, Vanderbilt University Medical Center, TN, USA
| | - Ying Wei
- College of Information Science and Engineering, Northeastern University, Shenyang, China; Information Technology R&D Innovation Center of Peking University, Shaoxing, China; Changsha Hisense Intelligent System Research Institute Co., Ltd, China
| | - Ipek Oguz
- Department of Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, UNIST, Ulsan, South Korea.
| |
Collapse
|
11
|
Jo JW, Gahm JK. G-RMOS: GPU-accelerated Riemannian Metric Optimization on Surfaces. Comput Biol Med 2022; 150:106167. [PMID: 37859279 DOI: 10.1016/j.compbiomed.2022.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/20/2022]
Abstract
Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer's disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace-Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS.
Collapse
Affiliation(s)
- Jeong Won Jo
- Department of Information Convergence Engineering, Pusan National University, 2, Busandaehak-ro 63, Busan, 46241, Republic of Korea
| | - Jin Kyu Gahm
- School of Computer Science and Engineering, Pusan National University, 2, Busandaehak-ro 63, Busan, 46241, Republic of Korea.
| |
Collapse
|
12
|
Zhao F, Wu Z, Wang L, Lin W, Li G. Fast Spherical Mapping of Cortical Surface Meshes Using Deep Unsupervised Learning. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2022; 13436:163-173. [PMID: 37325260 PMCID: PMC10266716 DOI: 10.1007/978-3-031-16446-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Spherical mapping of cortical surface meshes provides a more convenient and accurate space for cortical surface registration and analysis and thus has been widely adopted in neuroimaging field. Conventional approaches typically first inflate and project the original cortical surface mesh onto a sphere to generate an initial spherical mesh which contains large distortions. Then they iteratively reshape the spherical mesh to minimize the metric (distance), area or angle distortions. However, these methods suffer from two major issues: 1) the iterative optimization process is computationally expensive, making them not suitable for large-scale data processing; 2) when metric distortion cannot be further minimized, either area or angle distortion is minimized at the expense of the other, which is not flexible to generate application-specific meshes based on both of them. To address these issues, for the first time, we propose a deep learning-based algorithm to learn the mapping between the original cortical surface and spherical surface meshes. Specifically, we take advantage of the Spherical U-Net model to learn the spherical diffeomorphic deformation field for minimizing the distortions between the icosahedron-reparameterized original surface and spherical surface meshes. The end-to-end unsupervised learning scheme is very flexible to incorporate various optimization objectives. We further integrate it into a coarse-to-fine multi-resolution framework for better correcting fine-scaled distortions. We have validated our method on 800+ cortical surfaces, demonstrating reduced distortions than FreeSurfer (the most popularly used tool), while speeding up the process from 20 min to 5 s.
Collapse
Affiliation(s)
- Fenqiang Zhao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Wilms M, Bannister JJ, Mouches P, MacDonald ME, Rajashekar D, Langner S, Forkert ND. Invertible Modeling of Bidirectional Relationships in Neuroimaging With Normalizing Flows: Application to Brain Aging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2331-2347. [PMID: 35324436 DOI: 10.1109/tmi.2022.3161947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many machine learning tasks in neuroimaging aim at modeling complex relationships between a brain's morphology as seen in structural MR images and clinical scores and variables of interest. A frequently modeled process is healthy brain aging for which many image-based brain age estimation or age-conditioned brain morphology template generation approaches exist. While age estimation is a regression task, template generation is related to generative modeling. Both tasks can be seen as inverse directions of the same relationship between brain morphology and age. However, this view is rarely exploited and most existing approaches train separate models for each direction. In this paper, we propose a novel bidirectional approach that unifies score regression and generative morphology modeling and we use it to build a bidirectional brain aging model. We achieve this by defining an invertible normalizing flow architecture that learns a probability distribution of 3D brain morphology conditioned on age. The use of full 3D brain data is achieved by deriving a manifold-constrained formulation that models morphology variations within a low-dimensional subspace of diffeomorphic transformations. This modeling idea is evaluated on a database of MR scans of more than 5000 subjects. The evaluation results show that our bidirectional brain aging model (1) accurately estimates brain age, (2) is able to visually explain its decisions through attribution maps and counterfactuals, (3) generates realistic age-specific brain morphology templates, (4) supports the analysis of morphological variations, and (5) can be utilized for subject-specific brain aging simulation.
Collapse
|
14
|
Hoopes A, Iglesias JE, Fischl B, Greve D, Dalca AV. TopoFit: Rapid Reconstruction of Topologically-Correct Cortical Surfaces. PROCEEDINGS OF MACHINE LEARNING RESEARCH 2022; 172:508-520. [PMID: 37220495 PMCID: PMC10201930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mesh-based reconstruction of the cerebral cortex is a fundamental component in brain image analysis. Classical, iterative pipelines for cortical modeling are robust but often time-consuming, mostly due to expensive procedures that involve topology correction and spherical mapping. Recent attempts to address reconstruction with machine learning methods have accelerated some components in these pipelines, but these methods still require slow processing steps to enforce topological constraints that comply with known anatomical structure. In this work, we introduce a novel learning-based strategy, TopoFit, which rapidly fits a topologically-correct surface to the white-matter tissue boundary. We design a joint network, employing image and graph convolutions and an efficient symmetric distance loss, to learn to predict accurate deformations that map a template mesh to subject-specific anatomy. This technique encompasses the work of current mesh correction, fine-tuning, and inflation processes and, as a result, offers a 150× faster solution to cortical surface reconstruction compared to traditional approaches. We demonstrate that TopoFit is 1.8× more accurate than the current state-of-the-art deep-learning strategy, and it is robust to common failure modes, such as white-matter tissue hypointensities.
Collapse
Affiliation(s)
- Andrew Hoopes
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Juan Eugenio Iglesias
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Department of Radiology, Harvard Medical School
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology
- Centre for Medical Image Computing, University College London
| | - Bruce Fischl
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Department of Radiology, Harvard Medical School
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology
- Harvard-MIT Division of Health, Sciences, and Technology
| | - Douglas Greve
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Department of Radiology, Harvard Medical School
| | - Adrian V Dalca
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Department of Radiology, Harvard Medical School
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology
| |
Collapse
|
15
|
Zhao F, Wu Z, Wang L, Lin W, Xia S, Li G. A Deep Network for Joint Registration and Parcellation of Cortical Surfaces. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2021; 12904:171-181. [PMID: 35994035 PMCID: PMC9387764 DOI: 10.1007/978-3-030-87202-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cortical surface registration and parcellation are two essential steps in neuroimaging analysis. Conventionally, they are performed independently as two tasks, ignoring the inherent connections of these two closely-related tasks. Essentially, both tasks rely on meaningful cortical feature representations, so they can be jointly optimized by learning shared useful cortical features. To this end, we propose a deep learning framework for joint cortical surface registration and parcellation. Specifically, our approach leverages the spherical topology of cortical surfaces and uses a spherical network as the shared encoder to first learn shared features for both tasks. Then we train two task-specific decoders for registration and parcellation, respectively. We further exploit the more explicit connection between them by incorporating the novel parcellation map similarity loss to enforce the boundary consistency of regions, thereby providing extra supervision for the registration task. Conversely, parcellation network training also benefits from the registration, which provides a large amount of augmented data by warping one surface with manual parcellation map to another surface, especially when only few manually-labeled surfaces are available. Experiments on a dataset with more than 600 cortical surfaces show that our approach achieves large improvements on both parcellation and registration accuracy (over separately trained networks) and enables training high-quality parcellation and registration models using much fewer labeled data.
Collapse
Affiliation(s)
- Fenqiang Zhao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Zhao F, Wu Z, Wang L, Lin W, Xia S, Li G. Learning 4D Infant Cortical Surface Atlas with Unsupervised Spherical Networks. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2021; 12902:262-272. [PMID: 36053245 PMCID: PMC9432861 DOI: 10.1007/978-3-030-87196-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spatiotemporal (4D) cortical surface atlas during infancy plays an important role for surface-based visualization, normalization and analysis of the dynamic early brain development. Conventional atlas construction methods typically rely on classical group-wise registration on sub-populations and ignore longitudinal constraints, thus having three main issues: 1) constructing templates at discrete time points; 2) resulting in longitudinal inconsistency among different age's atlases; and 3) taking extremely long runtime. To address these issues, in this paper, we propose a fast unsupervised learning-based surface atlas construction framework incorporating longitudinal constraints to enforce the within-subject temporal correspondence in the atlas space. To well handle the difficulties of learning large deformations, we propose a multi-level multimodal spherical registration network to perform cortical surface registration in a coarse-to-fine manner. Thus, only small deformations need to be estimated at each resolution level using the registration network, which further improves registration accuracy and atlas quality. Our constructed 4D infant cortical surface atlas based on 625 longitudinal scans from 291 infants is temporally continuous, in contrast to the state-of-the-art UNC 4D Infant Surface Atlas, which only provides the atlases at a few discrete sparse time points. By evaluating the intra- and inter-subject spatial normalization accuracy after alignment onto the atlas, our atlas demonstrates more detailed and fine-grained cortical patterns, thus leading to higher accuracy in surface registration.
Collapse
Affiliation(s)
- Fenqiang Zhao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China gang
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Chen L, Wu Z, Hu D, Wang F, Smith JK, Lin W, Wang L, Shen D, Li G, Consortium FUBCP. ABCnet: Adversarial bias correction network for infant brain MR images. Med Image Anal 2021; 72:102133. [PMID: 34225011 PMCID: PMC8316417 DOI: 10.1016/j.media.2021.102133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022]
Abstract
Automatic correction of intensity nonuniformity (also termed as the bias correction) is an essential step in brain MR image analysis. Existing methods are typically developed for adult brain MR images based on the assumption that the image intensities within the same brain tissue are relatively uniform. However, this assumption is not valid in infant brain MR images, due to the dynamic and regionally-heterogeneous image contrast and appearance changes, which are caused by the underlying spatiotemporally-nonuniform myelination process. Therefore, it is not appropriate to directly use existing methods to correct the infant brain MR images. In this paper, we propose an end-to-end 3D adversarial bias correction network (ABCnet), tailored for direct prediction of bias fields from the input infant brain MR images for bias correction. The "ground-truth" bias fields for training our network are carefully defined by an improved N4 method, which integrates manually-corrected tissue segmentation maps as anatomical prior knowledge. The whole network is trained alternatively by minimizing generative and adversarial losses. To handle the heterogeneous intensity changes, our generative loss includes a tissue-aware local intensity uniformity term to reduce the local intensity variation in the corrected image. Besides, it also integrates two additional terms to enhance the smoothness of the estimated bias field and to improve the robustness of the proposed method, respectively. Comprehensive experiments with different sizes of training datasets have been carried out on a total of 1492 T1w and T2w MR images from neonates, infants, and adults, respectively. Both qualitative and quantitative evaluations on simulated and real datasets consistently demonstrate the superior performance of our ABCnet in both accuracy and efficiency, compared with popularly available methods.
Collapse
Affiliation(s)
- Liangjun Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Hu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fan Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Keith Smith
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|