1
|
Guo L, Zou Z, Smeets R, Kluwe L, Hartjen P, Gosau M, Henningsen A. Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces. MATERIALS 2022; 15:ma15062225. [PMID: 35329678 PMCID: PMC8950369 DOI: 10.3390/ma15062225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Ultraviolet (UV) light and non-thermal plasma (NTP) treatment are chairside methods that can efficiently improve the biological aging of implant material surfaces caused by customary storage. However, the behaviors of stem cells on these treated surfaces of the implant are still unclear. This study aimed to investigate the effects of UV light and NTP treated surfaces of titanium, zirconia and modified polyetheretherketone (PEEK, BioHPP) on the attachment and osteogenic potential of human dental pulp stem cells (DPSCs) in vitro. Machined disks were treated using UV light and argon or oxygen NTP for 12 min each. Untreated disks were set as controls. DPSCs were cultured from the wisdom teeth of adults that gave informed consent. After 24 h of incubation, the attachment and viability of cells on surfaces were assessed. Cells were further osteogenically induced, alkaline phosphatase (ALP) activity was detected via a p-Nitrophenyl phosphate assay (day 14 and 21) and mineralization degree was measured using a Calcium Assay kit (day 21). UV light and NTP treated titanium, zirconia and BioHPP surfaces improved the early attachment and viability of DPSCs. ALP activity and mineralization degree of osteoinductive DPSCs were significantly increased on UV light and NTP treated surfaces of titanium, zirconia and also oxygen plasma treated Bio-HPP (p < 0.05). In conclusion, UV light and NTP treatments may improve the attachment of DPSCs on titanium, zirconia and BioHPP surfaces. Osteogenic differentiation of DPSCs can be enhanced on UV light and NTP treated surfaces of titanium and zirconia, as well as on oxygen plasma treated Bio-HPP.
Collapse
Affiliation(s)
- Linna Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
- Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Correspondence:
| | - Ziang Zou
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
- Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
- Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
| | - Anders Henningsen
- Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Private Practice ELBE MKG, 22587 Hamburg, Germany
| |
Collapse
|
2
|
Benefits of Residual Aluminum Oxide for Sand Blasting Titanium Dental Implants: Osseointegration and Bactericidal Effects. MATERIALS 2021; 15:ma15010178. [PMID: 35009326 PMCID: PMC8746027 DOI: 10.3390/ma15010178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The purpose of this work was to determine the influence of residual alumina after sand blasting treatment in titanium dental implants. This paper studied the effect of alumina on physico-chemical surface properties, such as: surface wettability, surface energy. Osseointegration and bacteria adhesion were determined in order to determine the effect of the abrasive particles. MATERIALS AND METHODS Three surfaces were studied: (1) as-received, (2) rough surface with residual alumina from sand blasting on the surface and (3) with the same roughness but without residual alumina. Roughness was determined by white light interferometer microscopy. Surface wettability was evaluated with a contact angle video-based system and the surface free energy by means of Owens and Wendt equation. Scanning electron microscopy equipped with microanalysis was used to study the morphology and determine the chemical composition of the surfaces. Bacteria (Lactobacillus salivarius and Streptococcus sanguinis) were cultured in each surface. In total, 110 dental implants were placed into the bone of eight minipigs in order to compare the osseointegration. The percentage of bone-to-implant contact was determined after 4 and 6 weeks of implantation with histometric analysis. RESULTS The surfaces with residual alumina presented a lower surface free energy than clean surfaces. The in vivo studies demonstrated that the residual alumina accelerated bone tissue growth at different implantation times, in relation to clean dental implants. In addition, residual alumina showed a bactericidal effect by decreasing the quantity of bacteria adhering to the titanium. CONCLUSIONS It is possible to verify the benefits that the alumina (percentages around 8% in weight) produces on the surface of titanium dental implants. CLINICAL RELEVANCE Clinicians should be aware of the benefits of sand-blasted alumina due to the physico-chemical surface changes demonstrated in in vivo tests.
Collapse
|
3
|
El Hassanin A, Quaremba G, Sammartino P, Adamo D, Miniello A, Marenzi G. Effect of Implant Surface Roughness and Macro- and Micro-Structural Composition on Wear and Metal Particles Released. MATERIALS 2021; 14:ma14226800. [PMID: 34832201 PMCID: PMC8620958 DOI: 10.3390/ma14226800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Background: Considerations about implant surface wear and metal particles released during implant placement have been reported. However, little is known about implant surface macro- and microstructural components, which can influence these events. The aim of this research was to investigate accurately the surface morphology and chemical composition of commercially available dental implants, by means of multivariate and multidimensional statistical analysis, in order to predict their effect on wear onset and particle release during implant placement. Methods: The implant surface characterization (roughness, texture) was carried out through Confocal Microscopy and SEM-EDS analysis; the quantitative surface quality variables (amplitude and hybrid roughness parameters) were statistically analyzed through post hoc Bonferroni’s test for pair comparisons. Results: The parameters used by discriminant analysis evidenced several differences in terms of implant surface roughness between the examined fixtures. In relation to the observed surface quality, some of the investigated implants showed the presence of residuals due to the industrial surface treatments. Conclusions: Many structural components of the dental implant surface can influence the wear onset and particles released during the implant placement.
Collapse
Affiliation(s)
- Andrea El Hassanin
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, P.le Tecchio 80, 80125 Naples, Italy;
| | - Giuseppe Quaremba
- Department of Industrial Engineering, University of Naples “Federico II”, Via Claudio 21, 80125 Naples, Italy;
| | - Pasquale Sammartino
- School of Specialization in Oral Surgery, University of Campania “L. Vanvitelli”, Via L. De Crecchio 6, 80100 Naples, Italy;
| | - Daniela Adamo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Alessandra Miniello
- School of Specialization in Oral Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Gaetano Marenzi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-817462118
| |
Collapse
|
4
|
Dittler ML, Zelís PM, Beltrán AM, Destch R, Grillo CA, Gonzalez MC, Boccaccini AR. Magnetic 3D scaffolds for tissue engineering applications: bioactive glass (45S5) coated with iron-loaded hydroxyapatite nanoparticles. Biomed Mater 2021; 16. [PMID: 34265757 DOI: 10.1088/1748-605x/ac14cc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/15/2021] [Indexed: 11/11/2022]
Abstract
Magnetic 45S5 bioactive glass (BG) based scaffolds covered with iron-loaded hydroxyapatite (Fe-HA-BG) nanoparticles were obtained and its cytotoxicity investigated. Fe-HA nanoparticles were synthesized by a wet chemical method involving the simultaneous addition of Fe2+/Fe3+ions. BG based scaffolds were prepared by the foam replica procedure and covered with Fe-HA by dip-coating. Fe-HA-BG magnetic saturation values of 0.049 emu g-1and a very low remanent magnetization of 0.01 emu g-1were observed. The mineralization assay in simulated body fluid following Kokubo's protocol indicated that Fe-HA-BG scaffolds exhibited improved hydroxyapatite formation in comparison to uncoated scaffolds at shorter immersion times. The biocompatibility of the materialin vitrowas assessed using human osteoblast-like MG-63 cell cultures and mouse bone marrow-derived stroma cell line ST-2. Overall, the results herein discussed suggest that magnetic Fe-HA coatings seem to enhance the biological performance of 45S5 BG based scaffolds. Thus, this magnetic Fe-HA coated scaffold is an interesting system for bone tissue engineering applications and warrant further investigation.
Collapse
Affiliation(s)
- María Laura Dittler
- INIFTA-CCT CONICET (La Plata), Chemistry Department, Faculty of Science, National University of La Plata, La Plata, Argentina
| | - Pedro Mendoza Zelís
- IFLP CONICET (La Plata), Department of Physics, National University of La Plata, La Plata, Argentina
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Rainer Destch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Claudia A Grillo
- INIFTA-CCT CONICET (La Plata), Chemistry Department, Faculty of Science, National University of La Plata, La Plata, Argentina
| | - Mónica C Gonzalez
- INIFTA-CCT CONICET (La Plata), Chemistry Department, Faculty of Science, National University of La Plata, La Plata, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Albashari AA, He Y, Albaadani MA, Xiang Y, Ali J, Hu F, Zhang Y, Zhang K, Luo L, Wang J, Ye Q. Titanium Nanotube Modified With Silver Cross-Linked Basic Fibroblast Growth Factor Improves Osteoblastic Activities of Dental Pulp Stem Cells and Antibacterial Effect. Front Cell Dev Biol 2021; 9:654654. [PMID: 33869214 PMCID: PMC8047219 DOI: 10.3389/fcell.2021.654654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Titanium modifications with different silver loading methods demonstrate excellent antibacterial properties. Yet pure silver nanoparticles with limited bioactive properties may delay regeneration of bone surrounding the dental implant. Therefore, loading silver with bioactive drugs on titanium surfaces seems to be a very promising strategy. Herein, we designed a silver (Ag) step-by-step cross-linking with the basic fibroblast growth factor (bFGF) by polydopamine (PDA) and heparin on titanium nanotube (TNT) as its cargo (TNT/PDA/Ag/bFGF) to improve the implant surface. Our results showed that TNT/PDA/Ag/bFGF significantly enhanced the osteogenic differentiation of dental pulp stem cells (DPSCs). It also showed an excellent effect in bacterial inhibition and a reduction of pro-inflammatory factors through inhibition of M1 macrophage activity. These results showed that bFGF cross-linked silver coating on TNTs presented good osteogenic differentiation and early anti-infiammatory and antibacterial properties. Together, this novel design on titanium provides a promising therapeutic for dental implants.
Collapse
Affiliation(s)
| | - Yan He
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | | | - Yangfan Xiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jihea Ali
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yuan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jianming Wang
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Yan S, Li M, Komasa S, Agariguchi A, Yang Y, Zeng Y, Takao S, Zhang H, Tashiro Y, Kusumoto T, Kobayashi Y, Chen L, Kashiwagi K, Matsumoto N, Okazaki J, Kawazoe T. Decontamination of Titanium Surface Using Different Methods: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2287. [PMID: 32429186 PMCID: PMC7287776 DOI: 10.3390/ma13102287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
Contamination of implants is inevitable during different steps of production as well as during the clinical use. We devised a new implant cleaning strategy to restore the bioactivities on dental implant surfaces. We evaluated the efficiency of the Finevo cleaning system, and Ultraviolet and Plasma treatments to decontaminate hydrocarbon-contaminated titanium disks. The surfaces of the contaminated titanium disks cleaned using the Finevo cleaning system were similar to those of the uncontaminated titanium disks in scanning electron microscopy and X-ray photoelectron spectroscopy analysis, but no obvious change in the roughness was observed in the scanning probe microscopy analysis. The rat bone marrow mesenchymal stem cells (rBMMSCs) cultured on the treated titanium disks attached to and covered the surfaces of disks cleaned with the Finevo cleaning system. The alkaline phosphatase activity, calcium deposition, and osteogenesis-related gene expression in rBMMSCs on disks cleaned using the Finevo cleaning system were higher compared to those in the ultraviolet and plasma treatments, displaying better cell functionality. Thus, the Finevo cleaning system can enhance the attachment, differentiation, and mineralization of rBMMSCs on treated titanium disk surfaces. This research provides a new strategy for cleaning the surface of contaminated titanium dental implants and for restoration of their biological functions.
Collapse
Affiliation(s)
- Sifan Yan
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Min Li
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Akinori Agariguchi
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Yuanyuan Yang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Yuhao Zeng
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Seiji Takao
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Honghao Zhang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Yuichiro Tashiro
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Tetsuji Kusumoto
- Department of Oral Health Engineering, Faculty of Health Sciences, Osaka Dental University, Osaka 573-1121, Japan;
| | - Yasuyuki Kobayashi
- Osaka Research Institute of Industrial Science and Technology Morinomiya Center, 1-6-50, Morinomiya, Joto-ku, Osaka-shi 536-8553, Japan;
| | - Liji Chen
- Department of Orthodntics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (L.C.); (N.M.)
| | - Kosuke Kashiwagi
- Department of Fixed Prosthodontics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (K.K.); (T.K.)
| | - Naoyuki Matsumoto
- Department of Orthodntics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (L.C.); (N.M.)
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Takayoshi Kawazoe
- Department of Fixed Prosthodontics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (K.K.); (T.K.)
| |
Collapse
|
7
|
Dittler ML, Unalan I, Grünewald A, Beltrán AM, Grillo CA, Destch R, Gonzalez MC, Boccaccini AR. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids Surf B Biointerfaces 2019; 182:110346. [PMID: 31325780 DOI: 10.1016/j.colsurfb.2019.110346] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Bioactive glass (BG)-based scaffolds of 45S5 composition covered with hydroxyapatite nanoparticles loaded with Mg2+, Zn2+ and, both Mg2+ and Zn2+ ions, were developed and tested as materials for tissue engineering applications. The scaffolds were prepared by the foam replica technique and mono- and bi-metal loaded and unloaded hydroxyapatite nanoparticles (HA, Zn-HA, Mg-HA and Mg-Zn-HA) were obtained by an adaptation of the wet chemical deposition method. Coating of BG with these nanoparticles was performed by dip-coating to obtain HA-BG, Zn-HA-BG, Mg-HA-BG and Mg-Zn-HA-BG scaffolds. As predictor of the bone bonding ability of the produced scaffolds, in this study we investigated the formation of an apatite layer on the scaffold surfaces in the presence of simulated body fluid. The cytotoxicity and osteogenic properties of the materials in vitro was evaluated using human osteoblast-like MG-63 cell cultures. The mineralization assay following Kokubo's protocol indicated that bi-metal loaded Mg-Zn-HA-BG scaffolds exhibited higher/faster bioactivity than mono-metal loaded scaffolds while mineralization of HA-BG, Zn-HA-BG and Mg-HA-BG was similar to that of uncoated scaffolds. Moreover, an increase of proliferation of MG-63 cells after 48 h and 7 days was measured by BrdU assays for Mg-Zn-HA-BG scaffolds. In agreement with these results, SEM images confirmed increased interaction between these scaffolds and cells, in comparison to that observed for mono-metal-loaded HA-coated scaffolds. Altogether, the obtained results suggest that nanocrystalline Mg-Zn-HA coatings enhance the biological performance of standard scaffolds of 45S5 BG composition. Thus these novel ion doped HA coated scaffolds are attractive systems for bone tissue engineering.
Collapse
Affiliation(s)
- Maria Laura Dittler
- INIFTA-CCT CONICET (La Plata), Department of Chemistry, National University of La Plata, Argentina
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Alina Grünewald
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Claudia A Grillo
- INIFTA-CCT CONICET (La Plata), Department of Chemistry, National University of La Plata, Argentina
| | - Rainer Destch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Monica C Gonzalez
- INIFTA-CCT CONICET (La Plata), Department of Chemistry, National University of La Plata, Argentina.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
8
|
Maintenance and Restoration Effect of the Surface Hydrophilicity of Pure Titanium by Sodium Hydroxide Treatment and its Effect on the Bioactivity of Osteoblasts. COATINGS 2019. [DOI: 10.3390/coatings9040222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, studies on the surface of titanium implants have shown that hydrophilic properties have a positive effect on bone binding, warranting further investigation into the maintenance and restoration of hydrophilic properties. In this work, a hydrophilic surface was obtained by plasma oxidation on the surface of sandblasted and acid-etched (SLA) titanium discs. We aimed to determine the effect of sodium hydroxide (NaOH) treatment on the maintenance and restoration of the surface hydrophilicity of titanium discs, as well as the relationship between the changes in hydrophilic properties on titanium surfaces and their biological properties. The results show that the treatment of hydrophilic surfaces with SLA, plasma oxidation, and NaOH treatments tend to enhance the early stages of cell adhesion, proliferation, and differentiation. Those results provide important guidance that SLA, plasma oxidation, and NaOH treatments can be used to restore the hydrophilic property of Ti that has been stored under room temperature and atmospheric pressure conditions.
Collapse
|
9
|
Hydroxyl radicals generated by hydrogen peroxide photolysis recondition biofilm-contaminated titanium surfaces for subsequent osteoblastic cell proliferation. Sci Rep 2019; 9:4688. [PMID: 30886168 PMCID: PMC6423011 DOI: 10.1038/s41598-019-41126-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/27/2019] [Indexed: 12/31/2022] Open
Abstract
Titanium dental implants have been successfully used for decades; however, some implants are affected by peri-implantitis due to bacterial infection, resulting in loss of supporting bone. This study aimed to evaluate the effect of an antimicrobial chemotherapy employing H2O2 photolysis-developed to treat peri-implantitis-on biofilm-contaminated titanium surfaces in association with osteoblastic cell proliferation on the treated surface. Titanium discs were sandblasted and acid-etched, followed by contamination with a three-species biofilm composed of Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mitis. This biofilm model was used as a simplified model of clinical peri-implantitis biofilm. The discs were subjected to ultrasound scaling, followed by H2O2 photolysis, wherein 365-nm LED irradiation of the disc immersed in 3% H2O2 was performed for 5 min. We analysed proliferation of mouse osteoblastic cells (MC3T3-E1) cultured on the treated discs. Compared with intact discs, biofilm contamination lowered cell proliferation on the specimen surface, whereas H2O2 photolysis recovered cell proliferation. Thus, H2O2 photolysis can recover the degraded biocompatibility of biofilm-contaminated titanium surfaces and can potentially be utilised for peri-implantitis treatment. However, to verify the findings of this study in relation to clinical settings, assessment using a more clinically relevant multi-species biofilm model is necessary.
Collapse
|
10
|
Elkhidir Y, Lai R, Feng Z. The impact of photofunctionalized gold nanoparticles on osseointegration. Heliyon 2018; 4:e00662. [PMID: 30094359 PMCID: PMC6077240 DOI: 10.1016/j.heliyon.2018.e00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/10/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The aims of this study were to create a new surface topography using simulated body fluids (SBF) and Gold Nanoparticles (GNPs) and then to assess the influence of UV Photofunctionalization (PhF) on the osteogenic capacity of these surfaces. MATERIALS AND METHODS Titanium plates were divided into six groups All were acid etched with 67% Sulfuric acid, 4 were immersed in SBF and 2 of these were treated with 10 nm GNPs. Half of the TiO2 plates were photofunctionalized to be compared with the non-PhF ones. Rat's bone marrow stem cells were seeded into the plates and then CCK8 assay, cell viability assay, immunofluorescence, and Scanning electron microscopy (SEM) were done after 24 hours. Gene expression analysis was done using real time quantitative PCR (qPCR) one week later to check for the mRNA expression of Collagen-1, Osteopontin and Osteocalcin. Alkaline phosphatase (ALP) activity was assessed after 2 weeks of cell seeding. RESULTS Our new topography has shown remarkable osteogenic potential. The new surface was the most biocompatible, and the 10 nm GNPs did not show any cytotoxicity. There was a significant increase in bioactivity, enhanced gene expressions and ALP activity. CONCLUSIONS GNPs enhances osteogenic differentiation of stem cells and Photofunctionalizing GNPs highly increases this. We have further created a novel highly efficient topography which highly enhances the speed and extent of osseointegration. This may have great potential for improving treatment outcomes for implant, maxillofacial as well as orthopedic patients.
Collapse
Affiliation(s)
| | | | - Zhiqiang Feng
- Implant Department – Suihua, The First Affiliated Stomatological Hospital of Jinan University, PR China
| |
Collapse
|
11
|
Dental implant surfaces after insertion in bone: an in vitro study in four commercial implant systems. Clin Oral Investig 2017; 22:1593-1600. [DOI: 10.1007/s00784-017-2262-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/17/2017] [Indexed: 11/26/2022]
|
12
|
Abstract
PURPOSE The aim of this study was to investigate the earlier phase of the osseointegration of a laser-treated implant surface in terms of human protein adsorption. MATERIALS AND METHODS Titanium surfaces were divided into machined (M), sandblasted (SB), and laser-treated (LT). The LT surfaces were created with an Nd diode-pumped laser in Q-switching, whereas the SB were treated with Al2O3. An x-ray photoelectron spectroscopy (XPS) analysis of titanium surface was performed. Titanium discs were used for albumin and fibronectin adsorption evaluation through fluorescence intensity. Fibronectin evaluation was also made with Western Blot analysis on experimental implants. RESULTS LT discs appeared to trigger a higher albumin and fibronectin adsorption with a regular pattern. The mean count of albumin adsorption was 0.29 and 3.8 for SB and LT, respectively (P = 0.016), whereas fibronectin values were 0.67 and 4.9 for (SB) and (LT) titanium (P = 0.02). XPS analysis showed that titanium, oxygen, carbon, and nitrogen were found on all 3 surfaces. CONCLUSION Laser-engineered porous titanium surface seems to promote, in vitro, the adsorption of albumin and fibronectin more than sandblasted (SB) or machined (M) implants.
Collapse
|
13
|
Abstract
Despite the substantial contribution of titanium implants in the field of dental and orthopedic reconstructive therapy, there is a crucial unaddressed question of why bone-implant contact does not reach the ideal 100%. This review article introduces the recently reported time-dependent reduction in osteoconductivity and other biological capabilities of titanium since processing. This phenomenon is defined as the biological aging of titanium and provides insight to significantly advance the understanding of osseointegration and to further improve implant surfaces in the future.
Collapse
|
14
|
Kohavi D, Badihi L, Rosen G, Steinberg D, Sela MN. An in vivo method for measuring the adsorption of plasma proteins to titanium in humans. BIOFOULING 2013; 29:1215-1224. [PMID: 24088083 DOI: 10.1080/08927014.2013.834332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel method of collecting in vivo plasma proteins of humans from osteotomies prepared during insertion of an oral implant is described. A rod containing a collecting portion with a predetermined surface is introduced into the osteomy, removed, and transferred for enzyme-linked immunosorbent assay analysis. Two experiments were used to examine the feasibility of the method. In the first, titanium (Ti) rods with different roughness were exposed for 10 min to the blood. Blasted and acid-etched surfaces adsorbed four times more and acid-etched surfaces adosorbed two times more plasma proteins as compared to machined surfaces. In the second experiment, blasted and acid-etched rods were wetted for 10 s prior to the insertion. The adsorption for fibronectin, albumin, fibrinogen, and IgG was enhanced significantly compared with nonwetted rods. These results are discussed in the light of previous methods used in studies on adsorption. Thus, use of the collecting instrument enables aspects of human plasma-implant interface to be studied in a more realistic manner.
Collapse
Affiliation(s)
- D Kohavi
- a Department of Oral Rehabilitation , The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University , Tel Aviv , Israel
| | | | | | | | | |
Collapse
|
15
|
Gao Y, Liu Y, Zhou L, Guo Z, Rong M, Liu X, Lai C, Ding X. The effects of different wavelength UV photofunctionalization on micro-arc oxidized titanium. PLoS One 2013; 8:e68086. [PMID: 23861853 PMCID: PMC3702557 DOI: 10.1371/journal.pone.0068086] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/25/2013] [Indexed: 01/04/2023] Open
Abstract
Many challenges exist in improving early osseointegration, one of the most critical factors in the long-term clinical success of dental implants. Recently, ultraviolet (UV) light-mediated photofunctionalization of titanium as a new potential surface treatment has aroused great interest. This study examines the bioactivity of titanium surfaces treated with UV light of different wavelengths and the underlying associated mechanism. Micro-arc oxidation (MAO) titanium samples were pretreated with UVA light (peak wavelength of 360 nm) or UVC light (peak wavelength of 250 nm) for up to 24 h. UVC treatment promoted the attachment, spread, proliferation and differentiation of MG-63 osteoblast-like cells on the titanium surface, as well as the capacity for apatite formation in simulated body fluid (SBF). These biological influences were not observed after UVA treatment, apart from a weaker effect on apatite formation. The enhanced bioactivity was substantially correlated with the amount of Ti-OH groups, which play an important role in improving the hydrophilicity, along with the removal of hydrocarbons on the titanium surface. Our results showed that both UVA and UVC irradiation altered the chemical properties of the titanium surface without sacrificing its excellent physical characteristics, suggesting that this technology has extensive potential applications and merits further investigation.
Collapse
Affiliation(s)
- Yan Gao
- Center of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ying Liu
- Department of Stomatology, Nanfang Hospital, and College of Stomatology, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Center of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
- * E-mail:
| | - Zehong Guo
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiangning Liu
- Department of Prosthodontics, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou, China
| | - Chunhua Lai
- Center of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xianglong Ding
- Center of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Ding X, Yang X, Zhou L, Lu H, Li S, Gao Y, Lai C, Jiang Y. Titanate nanowire scaffolds decorated with anatase nanocrystals show good protein adsorption and low cell adhesion capacity. Int J Nanomedicine 2013; 8:569-79. [PMID: 23430236 PMCID: PMC3573809 DOI: 10.2147/ijn.s39593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND METHODS In this report, layered microporous titanate nanowire scaffolds (TiNWs) were constructed via a hydrothermal route and then decorated with anatase nanocrystals (ANs@TiNWs) by immersion in TiCl(4) solution. The diameter and specific surface area of the ANs@TiNWs was measured. The TiNWs and ANs@TiNWs were then compared for their ability to adsorb protein and adhere to MG63 cells. RESULTS The diameter and specific surface area of the ANs@TiNWs were significantly larger than for TiNWs, and the ANs@TiNWs had an enhanced protein-adsorbing effect. It was found that the MG63 cells were less able to adhere to the flat titanium substrate than the TiNWs and ANs@TiNWs, and that this cell-repellant ability was greater with ANs@TiNWs. Other MG63 cell functions, proliferation in particular, were also inhibited by ANs@TiNWs. CONCLUSION ANs@TiNWs show a high protein adsorption and cell-repellant capacity which would be useful in drug delivery.
Collapse
Affiliation(s)
- Xianglong Ding
- Center of Oral Implantology, Southern Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lu H, Zhou L, Wan L, Li S, Rong M, Guo Z. Effects of storage methods on time-related changes of titanium surface properties and cellular response. Biomed Mater 2012; 7:055002. [PMID: 22781962 DOI: 10.1088/1748-6041/7/5/055002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Titanium implants are sold in the market as storable medical devices. All the implants have a certain shelf life during which they maintain their sterility, but variations of the surface properties through this duration have not been subject to a comprehensive assessment. The aim of this study was to investigate the effects of storage methods on time-related changes of titanium surface properties. Acid-etched titanium discs (Sa = 0.82 µm) were placed in a sealed container (tradition method) or submerged in the ddH(2)O/NaCl solution (0.15 mol L(-1))/CaCl(2) solution (0.15 mol L(-1)), and new titanium discs were used as a control group. SEM and optical profiler showed that surface morphology and roughness did not change within different groups, but the XPS analysis confirmed that the surface chemistry altered by different storage protocols as the storage duration increased, and the contact angle also varied with storage methods. The storage method also affected the protein adsorption capacity and cellular response on the titanium surface. All titanium discs stored in the solution maintained their excellent bioactivity even after four weeks storage time, but titanium discs stored in a traditional manner decreased substantially in an age-dependent manner. Much effort is needed to improve the storage methods in order to maintain the bioactivity of a titanium dental implant.
Collapse
Affiliation(s)
- Haibin Lu
- Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Kohavi D, Badihi Hauslich L, Rosen G, Steinberg D, Sela MN. Wettability versus electrostatic forces in fibronectin and albumin adsorption to titanium surfaces. Clin Oral Implants Res 2012; 24:1002-8. [PMID: 22697368 DOI: 10.1111/j.1600-0501.2012.02508.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Although the enhancement of plasma protein adsorption to titanium ( Ti ) following wetting has been recognized, the relationship between wettability and electrostatic forces has remained unclear. Thus, we have carried out a series of studies to determine the role of wettability and electrostatic forces on protein adsorption. METHODS Titanium disks with different surfaces were wetted with a range of solutions, two of which contained divalent positive ions ( Ca and Mg ). Unwetted disks served as a control. Subsequently, the wetted disks were subjected to three treatment regimes: (1) incubation in human serum albumin (HSA) or human serum fibronectin (HSF); (2) drying the wetted disks, followed by incubation in HSA or HSF; and (3) following protein adsorption, the Ca originating in the wetting solutions was removed by divalent positive ions chelator treatment (EGTA), and the remaining quantities were assessed. The quantity of the adsorbed proteins was determined by ELISA. RESULTS It was found that in the case of HSA, adsorption was enhanced by the wettability, the presence of Ca and Mg in the wetting solution, and the existence of rough surfaces. For HSF, the wettability and rough surfaces enhanced adsorption. CONCLUSION The results demonstrate that in addition to wettability, the composition of the wetting solution affects the protein adsorption. While wetting reduces the time for the HSA and HSF adsorption to reach saturation, the electrostatic forces enhance the amount of HSA adsorption. Thus, the protein adsorption capacity of titanium rough surfaces can be selectively manipulated by changing of the wetting solution.
Collapse
Affiliation(s)
- David Kohavi
- Oral Implant Center, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
19
|
Caffrey PO, Nayak BK, Gupta MC. Ultrafast laser-induced microstructure/nanostructure replication and optical properties. APPLIED OPTICS 2012; 51:604-609. [PMID: 22330293 DOI: 10.1364/ao.51.000604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
This paper demonstrates replication of ultrafast laser-induced micro/nano surface textures on poly(dimethylsiloxane) (PDMS). The surface texture replication process reduces the processing steps for microtexturing while improving light trapping. Two methods are demonstrated to replicate surface microtexture, a simple mold method and an embossing method. The laser microtextured silicon and titanium surfaces with micro to nanoscale features have been successfully replicated. Optical characterization of the replicated microtextured PDMS surfaces is performed and the results agree with model predictions. The replicated microtextured PDMS film is applied on a silicon surface and optical characterization shows that surface reflectance can be suppressed over 55% compared to the control value.
Collapse
Affiliation(s)
- Paul O Caffrey
- Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | |
Collapse
|
20
|
KUWABARA A, HORI N, SAWADA T, HOSHI N, WATAZU A, KIMOTO K. Enhanced biological responses of a hydroxyapatite/TiO 2 hybrid structure when surface electric charge is controlled using radiofrequency sputtering. Dent Mater J 2012; 31:368-76. [DOI: 10.4012/dmj.2011-220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Lahiri D, Benaduce AP, Kos L, Agarwal A. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique. NANOTECHNOLOGY 2011; 22:355703. [PMID: 21817784 DOI: 10.1088/0957-4484/22/35/355703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper explores the nano-scratch technique for measuring the adhesion strength of a single osteoblast cell on a hydroxyapatite (HA) surface reinforced with carbon nanotubes (CNTs). This technique efficiently separates out the contribution of the environment (culture medium and substrate) from the measured adhesion force of the cell, which is a major limitation of the existing techniques. Nano-scratches were performed on plasma sprayed hydroxyapatite (HA) and HA-CNT coatings to quantify the adhesion of the osteoblast. The presence of CNTs in HA coating promotes an increase in the adhesion of osteoblasts. The adhesion force and energy of an osteoblast on a HA-CNT surface are 17 ± 2 µN/cell and 78 ± 14 pJ/cell respectively, as compared to 11 ± 2 µN/cell and 45 ± 10 pJ/cell on a HA surface after 1 day of incubation. The adhesion force and energy of the osteoblasts increase on both the surfaces with culture periods of up to 5 days. This increase is more pronounced for osteoblasts cultured on HA-CNT. Staining of actin filaments revealed a higher spreading and attachment of osteoblasts on a surface containing CNTs. The affinity of CNTs to conjugate with integrin and other proteins is responsible for the enhanced attachment of osteoblasts. Our results suggest that the addition of CNTs to surfaces used in medical applications may be beneficial when stronger adhesion of osteoblasts is desired.
Collapse
Affiliation(s)
- Debrupa Lahiri
- Nanomechanics and Nanotribology Laboratory, Florida International University, Miami, FL 33174, USA
| | | | | | | |
Collapse
|
22
|
Moisenovich MM, Pustovalova OL, Yu Arhipova A, Vasiljeva TV, Sokolova OS, Bogush VG, Debabov VG, Sevastianov VI, Kirpichnikov MP, Agapov II. In vitro and in vivo biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds. J Biomed Mater Res A 2010; 96:125-31. [DOI: 10.1002/jbm.a.32968] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 12/22/2022]
|
23
|
Electrostatic control of protein adsorption on UV-photofunctionalized titanium. Acta Biomater 2010; 6:4175-80. [PMID: 20466081 DOI: 10.1016/j.actbio.2010.05.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/22/2010] [Accepted: 05/06/2010] [Indexed: 11/23/2022]
Abstract
Ultraviolet (UV)-photofunctionalization of titanium to enable the establishment of a nearly complete bone-implant contact was reported recently. However, the underlying mechanism for this is unknown. We hypothesized that UV-treated titanium surfaces acquire distinct electrostatic properties that may play important roles in determining the bioactivity of these surfaces. The objective of this study was to determine the protein adsorption capability of UV-treated titanium surfaces under various electrostatic environments. The amount of albumin adsorbed on UV-treated and untreated titanium disks was evaluated under different pH conditions above and below the isoelectric points of albumin and titanium. The effects of additional treatment with various ionic solutions were also examined. Albumin adsorption on UV-treated surfaces at pH 7.0 was considerably greater (6-fold after 3h of incubation and 2.5-fold after 24h) than that to UV-untreated surfaces. UV-enhanced albumin adsorption was abrogated at pH 3.0 or when these titanium surfaces were treated with anions, while maintaining UV-induced superhydrophilicity. Albumin adsorption on UV-untreated titanium surfaces increased after treating these surfaces with divalent cations but not after treating them with monovalent cations. These results indicated that UV-treated titanium surfaces are electropositively charged as opposed to electronegatively charged UV-untreated titanium surfaces. This distinct UV-induced electrostatic property predominantly regulates the protein adsorption capability of titanium, superseding the effect of hydrophilic status, and converts titanium surfaces from bioinert to bioactive. As a result, direct titanium-protein interactions take place exclusively on UV-treated titanium surfaces without the aid of bridging ions.
Collapse
|
24
|
Iwasa F, Hori N, Ueno T, Minamikawa H, Yamada M, Ogawa T. Enhancement of osteoblast adhesion to UV-photofunctionalized titanium via an electrostatic mechanism. Biomaterials 2010; 31:2717-27. [DOI: 10.1016/j.biomaterials.2009.12.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/07/2009] [Indexed: 11/25/2022]
|
25
|
Miyauchi T, Yamada M, Yamamoto A, Iwasa F, Suzawa T, Kamijo R, Baba K, Ogawa T. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Biomaterials 2010; 31:3827-39. [PMID: 20153521 DOI: 10.1016/j.biomaterials.2010.01.133] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 01/25/2010] [Indexed: 11/15/2022]
Abstract
Recently, UV photofunctionalization of titanium has been shown to be effective in enhancing osteogenic environment around this functional surface, in particular for the use of endosseous implants. However, the underlying mechanism remains unknown and its potential application to other tissue engineering materials has never been explored. We determined whether adhesion of a single osteoblast is enhanced on UV-treated nano-thin TiO(2) layer with virtually no surface roughness or topographical features. Rat bone marrow-derived osteoblasts were cultured on UV-treated or untreated 200-nm thick TiO(2) sputter-coated glass plates. After an incubation of 3 h, the mean critical shear force required to initiate detachment of a single osteoblast was determined to be 1280 +/- 430 nN on UV-treated TiO(2) surfaces, which was 2.5-fold greater than the force required on untreated TiO(2) surfaces. The total energy required to complete the detachment was 37.0 +/- 23.2 pJ on UV-treated surfaces, 3.5-fold greater than that required on untreated surfaces. Such substantial increases in single cell adhesion were also observed for osteoblasts cultured for 24 h. Osteoblasts on UV-treated TiO(2) surfaces were larger and characterized with increased levels of vinculin expression and focal contact formation. However, the density of vinculin or focal contact was not influenced by UV treatment. In contrast, both total expression and density of actin fibers increased on UV-treated surfaces. Thin layer TiO(2) coating and UV treatment of Co-Cr alloy and PTFE membrane synergistically resulted in a significant increase in the ability of cell attachment and osteoblastic production of alkaline phosphatase. These results indicated that the adhesive nature of a single osteoblast is substantially enhanced on UV-treated TiO(2) surfaces, providing the first evidence showing that each individual cell attached to these surfaces is substantially more resistant to exogenous load potentially from blood and fluid flow and mechanical force in the initial stage of in vivo biological environment. This enhanced osteoblast adhesion was supported synergistically but disproportionately by enhancement in focal adhesion and cytoskeletal developments. Also, this study demonstrated that UV treatment is effective on nano-thin TiO(2) depositioned onto non-Ti materials to enhance their bioactivity, providing a basis for TiO(2)-mediated photofunctionalization of biomaterials, a new method of developing functional biomaterials.
Collapse
Affiliation(s)
- Tomohiko Miyauchi
- Department of Prosthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Suzuki T, Hori N, Att W, Kubo K, Iwasa F, Ueno T, Maeda H, Ogawa T. Ultraviolet treatment overcomes time-related degrading bioactivity of titanium. Tissue Eng Part A 2010; 15:3679-88. [PMID: 19397472 DOI: 10.1089/ten.tea.2008.0568] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The shelf life of titanium implant products, that is, a possible time-related change of their bioactivity, has rarely been addressed. The objective of this study was to examine the bioactivity of newly processed and aged titanium surfaces and determine whether ultraviolet (UV) light treatment of the titanium surface restores the possible adverse effects of titanium aging. Titanium disks, either acid-etched or sandblasted, were used immediately after processing (fresh surface) or after storing in dark for 4 weeks (aged surface). Some disks were treated with UV light for 48 h after 4 weeks of storage. Albumin adsorbed to the aged surfaces was only 15% of that adsorbed to the fresh surfaces during 2-h incubation, whereas UV-treated aged surfaces adsorbed equivalent amount of albumin to that for the fresh surfaces. During 24-h incubation, the number of human mesenchymal stem cells attached to the aged surfaces was less than half of that for the fresh surfaces, whereas UV treatment of the aged surfaces increased the number three times. Proliferation, alkaline phosphatase activity, and calcium deposition of the cells were substantially lower on the aged surfaces than on the fresh surfaces, while those on the UV-treated aged surfaces were higher than on the fresh surfaces. The strength of bone-implant integration evaluated at week 2 of healing in a rat femur model was reduced to half after 4 weeks of titanium aging, whereas UV treatment of the aged implants increased the strength to the level equivalent to or even higher than the freshly prepared implants. Fresh and UV-treated aged surfaces were superhydrophilic, while the aged surface was hydrophobic. The data suggest that bioactivity of titanium surfaces degrades with time and that UV treatment of the aged surface increases the bioactivity over the level of the freshly prepared surface.
Collapse
Affiliation(s)
- Takeo Suzuki
- Laboratory for Bone and Implant Sciences, Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095-1668, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pashkuleva I, Marques AP, Vaz F, Reis RL. Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:21-32. [PMID: 19639265 DOI: 10.1007/s10856-009-3831-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/16/2009] [Indexed: 05/28/2023]
Abstract
Radiation is widely used in biomaterials science for surface modification and sterilization. Herein, we describe the use of plasma and UV-irradiation to improve the biocompatibility of different starch-based blends in terms of cell adhesion and proliferation. Physical and chemical changes, introduced by the used methods, were evaluated by complementary techniques for surface analysis such as scanning electron microscopy, atomic force microscopy, contact angle analysis and X-ray photoelectron spectroscopy. The effect of the changed surface properties on the adhesion of osteoblast-like cells was studied by a direct contact assay. Generally, both treatments resulted in higher number of cells adhered to the modified surfaces. The importance of the improved biocompatibility resulting from the irradiation methods is further supported by the knowledge that both UV and plasma treatments can be used as cost-effective methods for sterilization of biomedical materials and devices.
Collapse
Affiliation(s)
- Iva Pashkuleva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Taipas, Guimarães, Portugal.
| | | | | | | |
Collapse
|
28
|
Hori N, Iwasa F, Ueno T, Takeuchi K, Tsukimura N, Yamada M, Hattori M, Yamamoto A, Ogawa T. Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Dent Mater 2009; 26:275-87. [PMID: 20006380 DOI: 10.1016/j.dental.2009.11.077] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 11/13/2009] [Accepted: 11/18/2009] [Indexed: 01/25/2023]
Abstract
OBJECTIVE There is a great demand for dental implant surfaces to accelerate the process of peri-implant bone generation to reduce its healing time and enable early loading. To this end, an inverse correlation between the proliferation and functional maturation (differentiation) in osteoblasts presents a challenge for the rapid generation of greater amounts of bone. For instance, osteoblasts exhibit faster differentiation but slower proliferation on micro-roughened titanium surfaces. Using a unique micro-nano-hierarchical topography of TiO(2) that mimics biomineralized matrices, this study demonstrates that this challenge can be overcome without the use of biological agents. METHODS Titanium disks of grade 2 commercially pure titanium were prepared by machining (smooth surface). To create a microtexture with peaks and valleys (micropit surface), titanium disks were acid-etched. To create 200-nm TiO(2) nanonodules within the micropits (nanonodule-in-micropit surface), TiO(2) was sputter-deposited onto the acid-etched surface. Rat bone marrow-derived osteoblasts and NIH3T3 fibroblasts were cultured on machined smooth, micropit, and nanonodule-in-micropit surfaces. RESULTS Despite the substantially increased surface roughness, the addition of 200-nm nanonodules to micropits increased osteoblast proliferation while enhancing their functional differentiation. In contrast, this nanonodule-in-micropit surface decreased proliferation and function in fibroblasts. SIGNIFICANCE The data suggest the establishment of cell-selectively functionalized nano-in-micro smart titanium surfaces that involve a regulatory effect on osteoblast proliferation, abrogating the inhibitory mechanism on the micropitted surface, while enhancing their functional differentiation. Biomimetic and controllable nature of this nanonodules-in-micropits surface may offer a novel micro-to-nanoscale hierarchical platform to biologically optimize nanofeatures of biomaterials. Particularly, this micro-nano-hybrid surface may be an effective approach to improve current dental implant surfaces for accelerated bone integration.
Collapse
Affiliation(s)
- Norio Hori
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Myllymaa K, Myllymaa S, Korhonen H, Lammi MJ, Saarenpää H, Suvanto M, Pakkanen TA, Tiitu V, Lappalainen R. Improved adherence and spreading of Saos-2 cells on polypropylene surfaces achieved by surface texturing and carbon nitride coating. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:2337-47. [PMID: 19507005 DOI: 10.1007/s10856-009-3792-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/21/2009] [Indexed: 05/09/2023]
Abstract
The adhesion and contact guidance of human primary osteogenic sarcoma cells (Saos-2) were characterized on smooth, microstructured (MST) and micro- and nano-structured (MNST) polypropylene (PP) and on the same samples with a silicon-doped carbon nitride (C(3)N(4)-Si) coating. Injection molding was used to pattern the PP surfaces and the coating was obtained by using ultra-short pulsed laser deposition (USPLD). Surfaces were characterized using atomic force microscopy and surface energy components were calculated according to the Owens-Wendt model. The results showed C(3)N(4)-Si coated surfaces to be significantly more hydrophilic than uncoated ones. In addition, there were 86% more cells in the smooth C(3)N(4)-Si coated PP compared to smooth uncoated PP and 551%/476% more cells with MST/MNST C(3)N(4)-Si coated PP than could be obtained with MST/MNST uncoated PP. Thus the adhesion, spreading and contact guidance of osteoblast-like cells was effectively improved by combining surface texturing and deposition of osteocompatible C(3)N(4)-Si coating.
Collapse
Affiliation(s)
- Katja Myllymaa
- Department of Physics, University of Kuopio, PO Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hori N, Att W, Ueno T, Sato N, Yamada M, Saruwatari L, Suzuki T, Ogawa T. Age-dependent degradation of the protein adsorption capacity of titanium. J Dent Res 2009; 88:663-7. [PMID: 19641155 DOI: 10.1177/0022034509339567] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reported bone-implant contact percentages are far below the ideal 100%. We tested a hypothesis that the protein adsorption capability of titanium, which is critical to the process of osseointegration, changes over time before its use. Machined, acid-etched, and sandblasted surfaces were prepared and stored under dark ambient conditions for 3 days, 1 week, or 4 weeks. For all surfaces, protein adsorption decreased as the storage time increased, and their decreasing rates were dependent on titanium topography. After 4 weeks, the amounts of albumin and fibronectin adsorbed by the acid-etched surface were only 20% and 35%, respectively, of that adsorbed by the fresh surface after 2 hours of incubation, and remained substantially low even after 24 hours. This time-dependent degradation in protein adsorption of titanium correlated with its naturally decreasing hydrophilicity, which was not observed for the nickel and chromium surfaces, indicating a titanium-specific biological aging.
Collapse
Affiliation(s)
- N Hori
- Laboratory for Bone and Implant Sciences, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mata A, Kim EJ, Boehm CA, Fleischman AJ, Muschler GF, Roy S. A three-dimensional scaffold with precise micro-architecture and surface micro-textures. Biomaterials 2009; 30:4610-7. [PMID: 19524292 DOI: 10.1016/j.biomaterials.2009.05.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/10/2009] [Indexed: 11/29/2022]
Abstract
A three-dimensional (3D) structure comprising precisely defined micro-architecture and surface micro-textures, designed to present specific physical cues to cells and tissues, may provide an efficient scaffold in a variety of tissue engineering and regenerative medicine applications. We report a fabrication technique based on microfabrication and soft lithography that permits for the development of 3D scaffolds with both precisely engineered architecture and tailored surface topography. The scaffold fabrication technique consists of three key steps starting with microfabrication of a mold using an epoxy-based photoresist (SU-8), followed by dual-sided molding of a single layer of polydimethylsiloxane (PDMS) using a mechanical jig for precise motion control; and finally, alignment, stacking, and adhesion of multiple PDMS layers to achieve a 3D structure. This technique was used to produce 3D Texture and 3D Smooth PDMS scaffolds, where the surface topography comprised 10 microm diameter/height posts and smooth surfaces, respectively. The potential utility of the 3D microfabricated scaffolds, and the role of surface topography, were subsequently investigated in vitro with a combined heterogeneous population of adult human stem cells and their resultant progenitor cells, collectively termed connective tissue progenitors (CTPs), under conditions promoting the osteoblastic phenotype. Examination of bone-marrow derived CTPs cultured on the 3D Texture scaffold for 9 days revealed cell growth in three dimensions and increased cell numbers compared to those on the 3D Smooth scaffold. Furthermore, expression of alkaline phosphatase mRNA was higher on the 3D Texture scaffold, while osteocalcin mRNA expression was comparable for both types of scaffolds.
Collapse
Affiliation(s)
- Alvaro Mata
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
32
|
Fissell WH, Manley S, Westover A, Humes HD, Fleischman AJ, Roy S. Differentiated Growth of Human Renal Tubule Cells on Thin-Film and Nanostructured Materials. ASAIO J 2006; 52:221-7. [PMID: 16760708 DOI: 10.1097/01.mat.0000205228.30516.9c] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Over 300,000 Americans are dependent on hemodialysis as treatment for renal failure, and kidney transplantation is limited by scarcity of donor organs. This shortage has prompted research into tissue engineering of renal replacement therapy. Existing bioartificial kidneys are large and their use labor intensive, but they have shown improved survival compared to conventional therapy in preclinical studies and an US Food and Drug Administration-approved phase 2 clinical trial. This hybrid technology will require miniaturization of hemofilters, cell culture substrates, sensors, and integration of control electronics. Using the same harvesting and isolation techniques used in preparing bioartificial kidneys for clinical use, we characterized human renal tubule cell growth on a variety of silicon and related thin-film material substrates commonly used in the construction of microelectromechanical systems (MEMS), as well as novel silicon nanopore membranes (SNMs). Human cortical tubular epithelial cells (HCTC) were seeded onto samples of single-crystal silicon, polycrystalline silicon, silicon dioxide, silicon nitride, SU-8 photoresist, SNMs, and polyester tissue culture inserts, and grown to confluence. The cells formed confluent monolayers with tight junctions and central cilia. Transepithelial resistances were similar between SNMs and polyester membranes. The differentiated growth of human tubular epithelial cells on MEMS materials strongly suggests that miniaturization of the existing bioartificial kidney will be feasible, paving the way for widespread application of this novel technology.
Collapse
Affiliation(s)
- William H Fissell
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
33
|
Mata A, Fleischman AJ, Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 2006; 7:281-93. [PMID: 16404506 DOI: 10.1007/s10544-005-6070-2] [Citation(s) in RCA: 533] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polydimethylsiloxane (PDMS Sylgard 184, Dow Corning Corporation) pre-polymer was combined with increasing amounts of cross-linker (5.7, 10.0, 14.3, 21.4, and 42.9 wt.%) and designated PDMS1, PDMS2, PDMS3, PDMS4, and PDMS5, respectively. These materials were processed by spin coating and subjected to common micro-fabrication, micro-machining, and biomedical processes: chemical immersion, oxygen plasma treatment, sterilization, and exposure to tissue culture media. The PDMS formulations were analyzed by gravimetry, goniometry, tensile testing, nano-indentation, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Spin coating of PDMS was formulation dependent with film thickness ranging from 308 microm on PDMS1 to 171 microm on PDMS5 at 200 revolutions per minute (rpm). Ultimate tensile stress (UTS) increased from 3.9 MPa (PDMS1) to 10.8 MPa (PDMS3), and then decreased down to 4.0 MPa (PDMS5). Autoclave sterilization (AS) increased the storage modulus (sigma) and UTS in all formulations, with the highest increase in UTS exhibited by PDMS5 (218%). PDMS surface hydrophilicity and micro-textures were generally unaffected when exposed to the different chemicals, except for micro-texture changes after immersion in potassium hydroxide and buffered hydrofluoric, nitric, sulfuric, and hydrofluoric acids; and minimal changes in contact angle after immersion in hexane, hydrochloric acid, photoresist developer, and toluene. Oxygen plasma treatment decreased the contact angle of PDMS2 from 109 degrees to 60 degrees. Exposure to tissue culture media resulted in increased PDMS surface element concentrations of nitrogen and oxygen.
Collapse
Affiliation(s)
- Alvaro Mata
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115
| | | | | |
Collapse
|