1
|
Tacca JR, Colvin ZA, Grabowski AM. Greater than recommended stiffness and power setting of a stance-phase powered leg prosthesis can improve step-to-step transition work and effective foot length ratio during walking in people with transtibial amputation. Front Bioeng Biotechnol 2024; 12:1336520. [PMID: 39011154 PMCID: PMC11246994 DOI: 10.3389/fbioe.2024.1336520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
People with unilateral transtibial amputation (TTA) using a passive-elastic prosthesis exhibit lower positive affected leg trailing work (ALtrail Wpos) and a greater magnitude of negative unaffected leg leading work (ULlead Wneg) during walking than non-amputees, which may increase joint pain and osteoarthritis risk in the unaffected leg. People with TTA using a stance-phase powered prosthesis (e.g., BiOM, Ottobock, Duderstadt, Germany) walk with increased ALtrail Wpos and potentially decreased magnitude of ULlead Wneg compared to a passive-elastic prosthesis. The BiOM includes a passive-elastic prosthesis with a manufacturer-recommended stiffness category and can be tuned to different power settings, which may change ALtrail Wpos, ULlead Wneg, and the prosthesis effective foot length ratio (EFLR). Thirteen people with TTA walked using 16 different prosthetic stiffness category and power settings on a level treadmill at 0.75-1.75 m/s. We constructed linear mixed effects models to determine the effects of stiffness category and power settings on ALtrail Wpos, ULlead Wneg, and EFLR and hypothesized that decreased stiffness and increased power would increase ALtrail Wpos, not change and decrease ULlead Wneg magnitude, and decrease and not change prosthesis EFLR, respectively. We found there was no significant effect of stiffness category on ALtrail Wpos but increased stiffness reduced ULlead Wneg magnitude, perhaps due to a 0.02 increase in prosthesis EFLR compared to the least stiff category. Furthermore, we found that use of the BiOM with 10% and 20% greater than recommended power increased ALtrail Wpos and decreased ULlead Wneg magnitude at 0.75-1.00 m/s. However, prosthetic power setting depended on walking speed so that use of the BiOM increased ULlead Wneg magnitude at 1.50-1.75 m/s compared to a passive-elastic prosthesis. Ultimately, our results suggest that at 0.75-1.00 m/s, prosthetists should utilize the BiOM attached to a passive-elastic prosthesis with an increased stiffness category and power settings up to 20% greater than recommended based on biological ankle values. This prosthetic configuration can allow people with unilateral transtibial amputation to increase ALtrail Wpos and minimize ULlead Wneg magnitude, which could reduce joint pain and osteoarthritis risk in the unaffected leg and potentially lower the metabolic cost of walking.
Collapse
Affiliation(s)
- Joshua R Tacca
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, United States
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| | - Zane A Colvin
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| | - Alena M Grabowski
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Denver, CO, United States
| |
Collapse
|
2
|
Kobayashi T, Jor A, He Y, Hu M, Koh MWP, Hisano G, Hara T, Hobara H. Transfemoral prosthetic simulators versus amputees: ground reaction forces and spatio-temporal parameters in gait. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231854. [PMID: 38545618 PMCID: PMC10966393 DOI: 10.1098/rsos.231854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 04/26/2024]
Abstract
This study aimed to compare the ground reaction forces (GRFs) and spatio-temporal parameters as well as their asymmetry ratios in gait between individuals wearing a transfemoral prosthetic simulator (TFSim) and individuals with unilateral transfemoral amputation (TFAmp) across a range of walking speeds (2.0-5.5 km h-1). The study recruited 10 non-disabled individuals using TFSim and 10 individuals with unilateral TFAmp using a transfemoral prosthesis. Data were collected using an instrumented treadmill with built-in force plates, and subsequently, the GRFs and spatio-temporal parameters, as well as their asymmetry ratios, were analysed. When comparing the TFSim and TFAmp groups, no significant differences were found among the gait parameters and asymmetry ratios of all tested metrics except the vertical GRFs. The TFSim may not realistically reproduce the vertical GRFs during the weight acceptance and push-off phases. The structural and functional variations in prosthetic limbs and components between the TFSim and TFAmp groups may be primary contributors to the difference in the vertical GRFs. These results suggest that TFSim might be able to emulate the gait of individuals with TFAmp regarding the majority of spatio-temporal and GRF parameters. However, the vertical GRFs of TFSim should be interpreted with caution.
Collapse
Affiliation(s)
- Toshiki Kobayashi
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Abu Jor
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
| | - Yufan He
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Mingyu Hu
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Mark W. P. Koh
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Genki Hisano
- Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Takeshi Hara
- Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hiroaki Hobara
- Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
3
|
Kreter N, Fino PC. Consequences of changing planned foot placement on balance control and forward progress. J R Soc Interface 2024; 21:20230577. [PMID: 38350615 PMCID: PMC10864096 DOI: 10.1098/rsif.2023.0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
While walking humans generally plan foot placement two steps in advance. However, it is often necessary to rapidly alter foot placement position just before stepping due to the appearance of a new obstacle. While humans are quite capable of rapidly altering foot placement position, such changes can have major effects on centre of mass dynamics. We investigated how rapid changes to planned foot placement impact centre of mass dynamics, and how such changes influence the control of balance and forward progress, during both straight- and turning-gait. Thirteen young adults walked along a virtually projected walkway with precision footholds oriented either in a straight line or with a single 60°, 90° or 120° turn. On a subset of trials, participants were required to rapidly avoid stepping on select footholds. We found that if the centre of mass was disrupted such that it interfered with task success (i.e. staying upright and continuing along the planned path), walkers were more likely to sacrifice forward progress than the upright stability. Further, walkers appear to control centre of mass dynamics differently following inhibited steps during step turns than during spin turns, which may reflect a larger threat to task success when spin turns are interrupted.
Collapse
Affiliation(s)
- Nicholas Kreter
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Peter C. Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Ármannsdóttir AL, Lecomte C, Lemaire E, Brynjólfsson S, Briem K. Perceptions and biomechanical effects of varying prosthetic ankle stiffness during uphill walking: A case series. Gait Posture 2024; 108:354-360. [PMID: 38227995 DOI: 10.1016/j.gaitpost.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Prosthetic foot stiffness, which is typically invariable for commercially available prosthetic feet, needs to be considered when prescribing a prosthetic foot. While a biological foot adapts its function according to the movement task, an individual with lower limb amputation may be limited during more functionally demanding gait tasks by their conventional energy storing and return prosthetic foot. RESEARCH QUESTION How do changes in prosthetic foot stiffness during incline walking affect biomechanical measures as well as perception of participants. METHODS Kinetic and kinematic data were collected during incline walking, for five participants with trans-tibial amputation. A mixed model analysis of variance was used to analyse the effects of changing the stiffness during incline walking, using a novel variable-stiffness unit built on a commercially available prosthetic foot. Biomechanical results were also analysed on an individual level alongside the participant feedback, for a better understanding of the various strategies and perceptions exhibited during incline walking. RESULTS Statistically significant effects were only observed on the biomechanical parameters directly related to prosthetic ankle kinematics and kinetics (i.e., peak prosthetic ankle dorsiflexion, peak prosthetic ankle power, dynamic joint stiffness during controlled dorsiflexion). Participant perception during walking was affected by changes in stiffness. Individual analyses revealed varied perceptions and varied biomechanical responses among participants. SIGNIFICANCE While changes in prosthesis mechanical properties influenced the amputee's experience, minimal immediate effects were found with the overall gait pattern. The reported inter-participant variability may be due to the person's physical characteristics or habitual gait pattern, which may influence prosthesis function. The ability to vary prosthetic foot stiffness during the assessment phase of setting up a prosthesis could provide useful information to guide selection of the appropriate prosthetic device for acceptable performance across a range of activities.
Collapse
Affiliation(s)
- Anna Lára Ármannsdóttir
- Research Centre of Movement Science, University of Iceland, Reykjavík, Iceland; Össur hf., Grjótháls 5, 110 Reykjavik, Iceland.
| | - Christophe Lecomte
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland; Össur hf., Grjótháls 5, 110 Reykjavik, Iceland
| | - Edward Lemaire
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Kristín Briem
- Research Centre of Movement Science, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
5
|
Sedran L, Bonnet X, Thomas-Pohl M, Loiret I, Martinet N, Pillet H, Paysant J. Quantification of push-off and collision work during step-to-step transition in amputees walking at self-selected speed: Effect of amputation level. J Biomech 2024; 163:111943. [PMID: 38244403 DOI: 10.1016/j.jbiomech.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
Maintaining forward walking during human locomotion requires mechanical joint work, mainly provided by the ankle-foot in non-amputees. In lower-limb amputees, their metabolic overconsumption is generally attributed to reduced propulsion. However, it remains unclear how altered walking patterns resulting from amputation affect energy exchange. The purpose of this retrospective study was to investigate the impact of self-selected walking speed (SSWS) on mechanical works generated by the ankle-foot and by the entire lower limbs depending on the level of amputation. 155 participants, including 47 non-amputees (NAs), 40 unilateral transtibial amputees (TTs) and 68 unilateral transfemoral amputees (TFs), walked at their SSWS. Positive push-off work done by the trailing limb (WStS+) and its associated ankle-foot (Wankle-foot+), as well as negative collision work done by the leading limb (WStS-) were analysed during the transition from prosthetic limb to contralateral limb. An ANCOVA was performed to assess the effect of amputation level on mechanical works, while controlling for SSWS effect. After adjusting for SSWS, NAs produce more push-off work with both their biological ankle-foot and trailing limb than amputees do on prosthetic side. Using the same type of prosthetic feet, TTs and TFs can generate the same amount of prosthetic Wankle-foot+, while prosthetic WStS+ is significantly higher for TTs and remains constant with SSWS for TFs. Surprisingly and contrary to theoretical expectations, the lack of propulsion at TFs' prosthetic limb did not affect their contralateral WStS-, for which a difference is significant only between NAs and TTs. Further studies should investigate the relationship between the TFs' inability to increase prosthetic limb push-off work and metabolic expenditure.
Collapse
Affiliation(s)
- L Sedran
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Sciences et Technologies, Paris, France; Proteor, Recherche & Développement, Dijon, France.
| | - X Bonnet
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Sciences et Technologies, Paris, France
| | - M Thomas-Pohl
- Service de Médecine Physique et de Réadaptation, Hôpital d'Instruction des Armées Percy, Clamart, France; Service de Médecine Physique et de Réadaptation, Centre hospitalier de Cayenne Andrée Rosemon, Cayenne, France
| | - I Loiret
- Centre de médecine physique et de réadaptation Louis Pierquin IRR-UGECAM, Nord-Est 54042 Nancy Cedex, France
| | - N Martinet
- Centre de médecine physique et de réadaptation Louis Pierquin IRR-UGECAM, Nord-Est 54042 Nancy Cedex, France
| | - H Pillet
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Sciences et Technologies, Paris, France
| | - J Paysant
- Centre de médecine physique et de réadaptation Louis Pierquin IRR-UGECAM, Nord-Est 54042 Nancy Cedex, France
| |
Collapse
|
6
|
Shi QQ, Yick KL, Wu J, Huang X, Tse CY, Chan MK. A Scientometric Analysis and Visualization of Prosthetic Foot Research Work: 2000 to 2022. Bioengineering (Basel) 2023; 10:1138. [PMID: 37892868 PMCID: PMC10604169 DOI: 10.3390/bioengineering10101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to highlight recent research work on topics around prosthetic feet through a scientometric analysis and historical review. The most cited publications from the Clarivate Analytics Web of Science Core Collection database were identified and analyzed from 1 January 2000 to 31 October 2022. Original articles, reviews with full manuscripts, conference proceedings, early access documents, and meeting abstracts were included. A scientometric visualization analysis of the bibliometric information related to the publications, including the countries, institutions, journals, references, and keywords, was conducted. A total of 1827 publications met the search criteria in this study. The related publications grouped by year show an overall trend of increase during the two decades from 2000 to 2022. The United States is ranked first in terms of overall influence in this field (n = 774). The Northwestern University has published the most papers on prosthetic feet (n = 84). Prosthetics and Orthotics International has published the largest number of studies on prosthetic feet (n = 151). During recent years, a number of studies with citation bursts and burst keywords (e.g., diabetes, gait, pain, and sensor) have provided clues on the hotspots of prosthetic feet and prosthetic foot trends. The findings of this study are based on a comprehensive analysis of the literature and highlight the research topics on prosthetic feet that have been primarily explored. The data provide guidance to clinicians and researchers to further studies in this field.
Collapse
Affiliation(s)
- Qiu-Qiong Shi
- Laboratory for Artificial Intelligence in Design, Hong Kong, China;
| | - Kit-Lun Yick
- Laboratory for Artificial Intelligence in Design, Hong Kong, China;
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Jinlong Wu
- College of Physical Education, Southwest University, Chongqing 400715, China;
| | - Xujia Huang
- School of Recreational Sports and Tourism, Beijing Sport University, Beijing 100084, China;
| | - Chi-Yung Tse
- Centre for Orthopaedic Surgery, Hong Kong, China;
| | - Mei-Ki Chan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China;
| |
Collapse
|
7
|
Nichols KM, Adamczyk PG. Sensitivity of lower-limb joint mechanics to prosthetic forefoot stiffness with a variable stiffness foot in level-ground walking. J Biomech 2023; 147:111436. [PMID: 36701959 PMCID: PMC11286132 DOI: 10.1016/j.jbiomech.2023.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
This paper presents the effectsof the Variable Stiffness Foot (VSF) on lower-limb joint mechanics in level-ground walking. Persons with transtibial amputations use lower-limb prostheses to restore level-ground walking, and foot stiffness and geometry have been shown to be the main factors for evaluating foot prostheses. Previous studies have validated the semi-active and stiffness modulation capabilities of the VSF. The core aim of this study is to investigate the mechanical effects of adjusting stiffness on knee and ankle mechanics for prosthetic users wearing the VSF. For this study, seven human participants walked with three different stiffnesses (compliant, medium, stiff) of the VSF across two force plates in a motion capture lab. Linear mixed models were utilized to estimate the significance and coefficients of determinations for the regression of stiffness on several biomechanical metrics. A stiffer VSF led to decreased ankle dorsiflexion angle (p < 0.0001, r2 = 0.90), increased ankle plantarflexor moment (p = 0.016, r2 = 0.40), increased knee extension (p = 0.021, r2 = 0.37), increased knee flexor moment (p = 0.0007, r2 = 0.63), and decreased magnitudes of prosthetic energy storage (p < 0.0001, r2 = 0.90), energy return (p = 0.0003, r2 = 0.67), and power (p < 0.0001, r2 = 0.74). These results imply lower ankle, knee, and hip moments, and more ankle angle range of motion using a less stiff VSF, which may be advantageous to persons walking with lower-limb prostheses. Responsive modulation of the VSF stiffness, according to these findings, could help overcome gait deviations associated with different slopes, terrain characteristics, or footwear.
Collapse
Affiliation(s)
- Kieran M Nichols
- University of Wisconsin-Madison Department of Mechanical Engineering, Room 3034, Mechanical Engineering Building, 1513 University Ave., Madison, WI 53706-1539, United States.
| | - Peter G Adamczyk
- University of Wisconsin-Madison Department of Mechanical Engineering, Room 3039, Mechanical Engineering Building, 1513 University Ave., Madison, WI 53706-1539, United States.
| |
Collapse
|
8
|
Electromyography as a surrogate for estimating metabolic energy expenditure during locomotion. Med Eng Phys 2022; 109:103899. [DOI: 10.1016/j.medengphy.2022.103899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
|
9
|
Vaca M, Stine R, Hammond P, Cavanaugh M, Major MJ, Gard SA. The Effect of Prosthetic Ankle Dorsiflexion Stiffness on Standing Balance and Gait Biomechanics in Individuals with Unilateral Transtibial Amputation. JOURNAL OF PROSTHETICS AND ORTHOTICS : JPO 2022; 34:10.1097/JPO.0000000000000451. [PMID: 36407034 PMCID: PMC9670249 DOI: 10.1097/jpo.0000000000000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Miguel Vaca
- Department of Biomedical Engineering - Northwestern University, Evanston, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Northwestern University Prosthetics-Orthotics Center, Dept. of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Chicago, IL
| | | | | | - Michael Cavanaugh
- Jesse Brown VA Medical Center, Chicago, IL
- Northwestern University Prosthetics-Orthotics Center, Dept. of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Chicago, IL
| | - Matthew J. Major
- Department of Biomedical Engineering - Northwestern University, Evanston, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Northwestern University Prosthetics-Orthotics Center, Dept. of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Chicago, IL
| | - Steven A. Gard
- Department of Biomedical Engineering - Northwestern University, Evanston, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Northwestern University Prosthetics-Orthotics Center, Dept. of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
10
|
Ruxin TR, Halsne EG, Turner AT, Curran CS, Caputo JM, Hansen AH, Hafner BJ, Morgenroth DC. Comparing forefoot and heel stiffnesses across commercial prosthetic feet manufactured for individuals with varying body weights and foot sizes. Prosthet Orthot Int 2022; 46:425-431. [PMID: 35426860 DOI: 10.1097/pxr.0000000000000131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/15/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Despite the effects of prosthetic foot mechanical properties on gait of people with lower limb amputation, scant forefoot and heel stiffness data exist to help guide prosthetic foot prescription. OBJECTIVE To measure forefoot and heel linear stiffness properties across commonly prescribed commercial prosthetic foot models and to describe variations in stiffness across feet targeted for users with different body weights and foot sizes. STUDY DESIGN Mechanical testing of five types of commercial prosthetic feet across nine user body weight and foot size combinations. METHODS Linear forefoot and heel stiffness (force vs. displacement) data were collected for 41 prosthetic feet. Quasistatic testing was conducted at -15 and +20 degrees to isolate loading of the heel and forefoot, respectively. RESULTS Overall, there was a significant relationship between user body weight and both forefoot and heel stiffness, when adjusted for foot size and type ( P < 0.001). However, there were a substantial number of inconsistencies across foot type within example user body weight and foot sizes combination. Furthermore, the relative order of forefoot stiffness across foot type differed from the relative order of heel stiffness across foot type. CONCLUSIONS The inconsistencies and differences in relative order of forefoot and heel stiffness across commercial foot type suggest the importance of publishing objective stiffness and other mechanical properties of prosthetic feet. These data can aid clinicians in better matching mechanical properties of prosthetic feet with the functional goals and abilities of prosthesis users.
Collapse
Affiliation(s)
- Talia R Ruxin
- VA RR&D Center for Limb Loss and Mobility (CLiMB), VA Puget Sound Health Care System, Seattle, WA, USA
| | - Elizabeth G Halsne
- VA RR&D Center for Limb Loss and Mobility (CLiMB), VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Anne T Turner
- VA RR&D Center for Limb Loss and Mobility (CLiMB), VA Puget Sound Health Care System, Seattle, WA, USA
| | - Carl S Curran
- Human Motion Technologies LLC d/b/a Humotech, Pittsburgh, PA, USA
| | - Joshua M Caputo
- Human Motion Technologies LLC d/b/a Humotech, Pittsburgh, PA, USA
| | - Andrew H Hansen
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Departments of Rehabilitation Medicine & Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brian J Hafner
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - David C Morgenroth
- VA RR&D Center for Limb Loss and Mobility (CLiMB), VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Hu D, Xiong C, Wang T, Zhou T, Liang J, Li Y. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1961-1970. [PMID: 35793296 DOI: 10.1109/tnsre.2022.3188870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Over the course of both evolution and development, the human musculoskeletal system has been well shaped for the cushion function of the foot during foot-strike and the impulsive function of the ankle joint during push-off. Nevertheless, an efficient energy interaction between foot structure and ankle joint is still lacking in the human body itself, which may limit the further potential of economical walking. Here we showed the metabolic expenditure of walking can be lessened by an unpowered exoskeleton robot that modulates energy among the foot-ankle complex towards a more effective direction. The unpowered exoskeleton recycles negative mechanical energy of the foot that is normally dissipated in heel-strike, retains the stored energy before mid-stance, and then transfers the energy to the ankle joint to assist the push-off. The modulation process of the exoskeleton consumes no input energy, yet reduces the metabolic cost of walking by 8.19 ± 0.96 % (mean ± s.e.m) for healthy subjects. The electromyography measurements demonstrate the activities of target ankle plantarflexors decreased significantly without added effort for the antagonistic muscle, suggesting the exoskeleton enhanced the subjects' energy efficiency of the foot-ankle complex in a natural manner. Furthermore, the exoskeleton also provides cushion assistance for walking, which leads to significantly decreased activity of the quadriceps muscle during heel-strike. Rather than strengthening the functions of existing biological structures, developing the complementary energy loop that does not exist in the human body itself also shows its potential for gait assistance.
Collapse
|
12
|
Foot contact forces can be used to personalize a wearable robot during human walking. Sci Rep 2022; 12:10947. [PMID: 35768457 PMCID: PMC9243054 DOI: 10.1038/s41598-022-14776-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Individuals with below-knee amputation (BKA) experience increased physical effort when walking, and the use of a robotic ankle-foot prosthesis (AFP) can reduce such effort. The walking effort could be further reduced if the robot is personalized to the wearer using human-in-the-loop (HIL) optimization of wearable robot parameters. The conventional physiological measurement, however, requires a long estimation time, hampering real-time optimization due to the limited experimental time budget. This study hypothesized that a function of foot contact force, the symmetric foot force-time integral (FFTI), could be used as a cost function for HIL optimization to rapidly estimate the physical effort of walking. We found that the new cost function presents a reasonable correlation with measured metabolic cost. When we employed the new cost function in HIL ankle-foot prosthesis stiffness parameter optimization, 8 individuals with simulated amputation reduced their metabolic cost of walking, greater than 15% (p < 0.02), compared to the weight-based and control-off conditions. The symmetry cost using the FFTI percentage was lower for the optimal condition, compared to all other conditions (p < 0.05). This study suggests that foot force-time integral symmetry using foot pressure sensors can be used as a cost function when optimizing a wearable robot parameter.
Collapse
|
13
|
Halsne EG, Curran C, Caputo JM, Hansen A, Hafner BJ, Morgenroth D. Emulating the Effective Ankle Stiffness of Commercial Prosthetic Feet Using a Robotic Prosthetic Foot Emulator. J Biomech Eng 2022; 144:1141731. [PMID: 35722979 DOI: 10.1115/1.4054834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/08/2022]
Abstract
Prosthetic foot selection for individuals with lower limb amputation relies primarily on clinician judgment. The prosthesis user rarely has an opportunity to provide experiential input into the decision by trying different feet. A prosthetic foot emulator (PFE) is a robotic prosthetic foot that could facilitate prosthesis users' ability to trial feet with different mechanical characteristics. Here, we introduce a procedure by which a robotic PFE is configured to emulate the sagittal plane effective ankle stiffness of a range of commercial prosthetic forefeet. Mechanical testing was used to collect data on five types of commercial prosthetic feet across a range of foot sizes and intended user body weights. Emulated forefoot profiles were parameterized using Bezier curve fitting on ankle torque-angle data. Mechanical testing was repeated with the PFE, across a subset of emulated foot conditions, to assess the accuracy of the emulation. Linear mixed-effects regression and Bland-Altman Limits of Agreement analyses were used to compare emulated and commercial ankle torque-angle data. Effective ankle stiffness of the emulated feet was significantly associated with the corresponding commercial prosthetic feet (p<.001). On average, the emulated forefeet reproduced the effective ankle stiffness of corresponding commercial feet within 1%. Furthermore, differences were independent of prosthetic foot type, foot size, or user body weight. These findings suggest a PFE could be an effective tool for emulating commercial prosthetic feet, enabling prosthesis users to quickly trial different feet and provide experiential input as part of a prosthetic foot prescription.
Collapse
Affiliation(s)
- Elizabeth G Halsne
- Center for Limb Loss and Mobility, VA Puget Sound Health Care System, 1660 S Columbian Way (MS 151), Seattle, WA 98108; Department of Rehabilitation Medicine, University of Washington, 1959 NE Pacific Street, Box 356490, Seattle, WA 98195
| | - Carl Curran
- Human Motion Technologies LLC d/b/a Humotech, 630 William Pitt Way, U-PARC, Building A2, Pittsburgh, PA 15238
| | - Joshua M Caputo
- Human Motion Technologies LLC d/b/a Humotech, 630 William Pitt Way, U-PARC, Building A2, Pittsburgh, PA 15238
| | - Andrew Hansen
- Minneapolis Adaptive Design & Engineering (MADE) Program, Minneapolis VA Health Care System, 1 Veterans Dr (MS 151), Minneapolis, MN 55417; Departments of Rehabilitation Medicine & Biomedical Engineering, University of Minnesota, Rehabilitation Science Program, MMC 388, 420 Delaware St. SE, Minneapolis, MN 55455
| | - Brian J Hafner
- Department of Rehabilitation Medicine, University of Washington, 1959 NE Pacific Street, Box 356490, Seattle, WA 98195
| | - David Morgenroth
- Center for Limb Loss and Mobility, VA Puget Sound Health Care System, 1660 S Columbian Way (MS 151), Seattle, WA 98108; Department of Rehabilitation Medicine, University of Washington, 1959 NE Pacific Street, Box 356490, Seattle, WA 98195
| |
Collapse
|
14
|
Turner AT, Halsne EG, Caputo JM, Curran CS, Hansen AH, Hafner BJ, Morgenroth DC. Prosthetic forefoot and heel stiffness across consecutive foot stiffness categories and sizes. PLoS One 2022; 17:e0268136. [PMID: 35536854 PMCID: PMC9089881 DOI: 10.1371/journal.pone.0268136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Prosthetic foot stiffness plays a key role in the functional mobility of lower limb prosthesis users. However, limited objective data exists to guide selection of the optimal prosthetic foot stiffness category for a given individual. Clinicians often must rely solely on manufacturer recommendations, which are typically based on the intended user’s weight and general activity level. Availability of comparable forefoot and heel stiffness data would allow for a better understanding of differences between different commercial prosthetic feet, and also between feet of different stiffness categories and foot sizes. Therefore, this study compared forefoot and heel linear stiffness properties across manufacturer-designated stiffness categories and foot sizes. Mechanical testing was completed for five types of commercial prosthetic feet across a range of stiffness categories and three foot-sizes. Data were collected for 56 prosthetic feet, in total. Testing at two discrete angles was conducted to isolate loading of the heel and forefoot components, respectively. Each prosthetic foot was loaded for six cycles while force and displacement data were collected. Forefoot and heel measured stiffness were both significantly associated with stiffness category (p = .001). There was no evidence that the relationships between stiffness category and measured stiffness differed by foot size (stiffness category by size interaction p = .80). However, there were inconsistencies between the expected and measured stiffness changes across stiffness categories (i.e., magnitude of stiffness changes varied substantially between consecutive stiffness categories of the same feet). While statistical results support that, on average, measured stiffness is positively correlated with stiffness category, force-displacement data suggest substantial variation in measured stiffness across consecutive categories. Published objective mechanical property data for commercial prosthetic feet would likely therefore be helpful to clinicians during prescription.
Collapse
Affiliation(s)
- Anne T. Turner
- VA RR&D Center for Limb Loss and Mobility (CLiMB), VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Elizabeth G. Halsne
- VA RR&D Center for Limb Loss and Mobility (CLiMB), VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, United States of America
| | - Joshua M. Caputo
- Human Motion Technologies LLC d/b/a Humotech, Pittsburgh, Pennsylvania, United States of America
| | - Carl S. Curran
- Human Motion Technologies LLC d/b/a Humotech, Pittsburgh, Pennsylvania, United States of America
| | - Andrew H. Hansen
- Minneapolis VA Health Care System, Minneapolis, Minnesota, United States of America
- University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian J. Hafner
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, United States of America
| | - David C. Morgenroth
- VA RR&D Center for Limb Loss and Mobility (CLiMB), VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
15
|
Effects of shear force reduction during mechanical testing and day-to-day variation on stiffness of commercial prosthetic feet: a technical note. Prosthet Orthot Int 2022; 46:206-211. [PMID: 35412527 DOI: 10.1097/pxr.0000000000000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mechanical testing is the principal method used to quantify properties of commercial prosthetic feet in a controlled and standardized manner. To test feet in a mechanical testing machine without overconstraining the system, tangential shear forces must be minimized. However, there is scant published information comparing techniques for reducing shear forces during mechanical testing. Furthermore, there are no data on variability in linear stiffness across testing sessions. OBJECTIVES To compare techniques for reducing shear forces during mechanical testing of prosthetic feet and to evaluate variation in linear stiffness across testing sessions. STUDY DESIGN Repeated measures. TECHNIQUE Force-displacement data were collected at two pylon progression angles, one for the forefoot and one for the heel, and compared across three conditions: roller plate (RoPl), low-friction interface on the shoe (SB), and no method for reducing shear forces (NoSB). Data were collected for a range of commercial prosthetic foot models and sizes. Select data were collected over multiple days to assess variation over test sessions. RESULTS Differences in stiffness between RoPl and SB test conditions ranged from -0.9% to +2.6% across foot models. By contrast, differences between RoPl and no method for reducing shear conditions ranged from -2.9% to +14.6%. Differences in linear stiffness between test sessions ranged from -2.2% to +3.6%. CONCLUSIONS Methods for reducing shear force in this study demonstrated roughly equivalent effects. Thus, a low-friction interface may be used as a less expensive and less complex method for reducing shear force in prosthetic foot testing. In addition, mechanical testing results were relatively consistent across multiple test sessions, lending confidence to test consistency.
Collapse
|
16
|
Kobayashi T, Koh MWP, Hu M, Murata H, Hisano G, Ichimura D, Hobara H. Effects of step frequency during running on the magnitude and symmetry of ground reaction forces in individuals with a transfemoral amputation. J Neuroeng Rehabil 2022; 19:33. [PMID: 35321725 PMCID: PMC8944140 DOI: 10.1186/s12984-022-01012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Individuals with unilateral transfemoral amputation are prone to developing health conditions such as knee osteoarthritis, caused by additional loading on the intact limb. Such individuals who can run again may be at higher risk due to higher ground reaction forces (GRFs) as well as asymmetric gait patterns. The two aims of this study were to investigate manipulating step frequency as a method to reduce GRFs and its effect on asymmetric gait patterns in individuals with unilateral transfemoral amputation while running. METHODS This is a cross-sectional study. Nine experienced track and field athletes with unilateral transfemoral amputation were recruited for this study. After calculation of each participant's preferred step frequency, each individual ran on an instrumented treadmill for 20 s at nine different metronome frequencies ranging from - 20% to + 20% of the preferred frequency in increments of 5% with the help of a metronome. From the data collected, spatiotemporal parameters, three components of peak GRFs, and the components of GRF impulses were computed. The asymmetry ratio of all parameters was also calculated. Statistical analyses of all data were conducted with appropriate tools based on normality analysis to investigate the main effects of step frequency. For parameters with significant main effects, linear regression analyses were further conducted for each limb. RESULTS Significant main effects of step frequency were found in multiple parameters (P < 0.01). Both peak GRF and GRF impulse parameters that demonstrated significant main effects tended towards decreasing magnitude with increasing step frequency. Peak vertical GRF in particular demonstrated the most symmetric values between the limbs from - 5% to 0% metronome frequency. All parameters that demonstrated significant effects in asymmetry ratio became more asymmetric with increasing step frequency. CONCLUSIONS For runners with a unilateral transfemoral amputation, increasing step frequency is a viable method to decrease the magnitude of GRFs. However, with the increase of step frequency, further asymmetry in gait is observed. The relationships between step frequency, GRFs, and the asymmetry ratio in gait may provide insight into the training of runners with unilateral transfemoral amputation for the prevention of injury.
Collapse
Affiliation(s)
- Toshiki Kobayashi
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mark W P Koh
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mingyu Hu
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hiroto Murata
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Waterfront 3F, 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Department of Mechanical Engineering, Tokyo University of Science, Chiba, Japan
| | - Genki Hisano
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Waterfront 3F, 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Department of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Daisuke Ichimura
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Waterfront 3F, 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hiroaki Hobara
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Waterfront 3F, 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
17
|
Bartlett HL, King ST, Goldfarb M, Lawson BE. Model Based Design of a Low Cost and Compliant Low Profile Prosthetic Foot. J Biomech Eng 2022; 144:1119454. [PMID: 34505139 DOI: 10.1115/1.4052369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/08/2022]
Abstract
This paper describes the design of a simple and low-cost compliant low-profile prosthetic foot based on a cantilevered beam of uniform strength. The prosthetic foot is developed such that the maximum stress experienced by the beam is distributed approximately evenly across the length of the beam. Due to this stress distribution, the prosthetic foot exhibits compliant behavior not achievable through standard design approaches (e.g., designs based on simple cantilevered beams). Additionally, due to its simplicity and use of flat structural members, the foot can be manufactured at low cost. An analytical model of the compliant behavior of the beam is developed that facilitates rapid design changes to vary foot size and stiffness. A characteristic prototype was designed and constructed to be used in both a benchtop quasi-static loading test as well as a dynamic walking test for validation. The model predicted the rotational stiffness of the prototype with 5% error. Furthermore, the prototype foot was tested alongside two commercially available prosthetic feet (a low profile foot and an energy storage and release foot) in level walking experiments with a single study participant. The prototype foot displayed the lowest stiffness of the three feet (6.0, 7.1, and 10.4 Nm/deg for the prototype foot, the commercial low profile foot, and the energy storage and release foot, respectively). This foot design approach and accompanying model may allow for compliant feet to be developed for individuals with long residual limbs.
Collapse
Affiliation(s)
| | - Shane T King
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212
| | - Michael Goldfarb
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212
| | | |
Collapse
|
18
|
Waterval NFJ, Brehm MA, Harlaar J, Nollet F. Energy cost optimized dorsal leaf ankle-foot-orthoses reduce impact forces on the contralateral leg in people with unilateral plantar flexor weakness. Gait Posture 2022; 92:71-76. [PMID: 34826696 DOI: 10.1016/j.gaitpost.2021.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND In individuals with unilateral plantar flexor weakness, the second peak of the vertical ground reaction force (GRF) is decreased. This leads to a higher ground reaction force, e.g. impact, of the contralateral leg, potentially explaining quadriceps muscle and/or knee joint pain. Energy cost optimized dorsal leaf ankle-foot-orthoses (AFOs) may increase the push-off ground reaction force, which in turn could lead to lower impact forces on the contralateral leg. RESEARCH QUESTIONS 1) Are impact forces increased in the contralateral leg of people with unilateral plantar flexor weakness compared to healthy subjects? 2) Do energy cost optimized AFOs reduce impact forces and improve leg impact symmetry compared to walking without AFO in people with unilateral plantar flexor weakness? METHODS Nine subjects with unilateral plantar flexor weakness were provided a dorsal leaf AFO with a stiffness primarily optimized for energy cost. Using 3D gait analyses peak vertical GRF during loading response with and without AFO, and the symmetry between the legs in peak GRF were calculated. Peak GRF and symmetry were compared with reference data of 23 healthy subjects. RESULTS The contralateral leg showed a significant higher peak vertical GRF (12.0 ± 0.9 vs 11.2 ± 0.6 N/kg, p = 0.005) compared to healthy reference data. When walking with AFO, the peak vertical GRF of the contralateral leg significantly reduced (from 12.0 ± 0.9 to 11.4 ± 0.7 N/kg, p = 0.017) and symmetry improved compared to no AFO (from 0.93 ± 0.06 to 1.01 ± 0.05, p < 0.001). CONCLUSION In subjects with unilateral plantar flexor weakness, impact force on the contralateral leg was increased when compared to healthy subjects and dorsal leaf AFOs optimized for energy cost substantially reduced this force and improved impact symmetry when compared to walking without AFO. This indicates that dorsal leaf AFOs may reduce pain resulting from increased impact forces during gait in the contralateral leg in people with unilateral plantar flexor weakness.
Collapse
Affiliation(s)
- N F J Waterval
- Amsterdam UMC, University of Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, The Netherlands.
| | - M A Brehm
- Amsterdam UMC, University of Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| | - J Harlaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands; Department of Orthopaedics, Erasmus Medical Center, Rotterdam, Netherlands
| | - F Nollet
- Amsterdam UMC, University of Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Cavallaro L, Tessari F, Milandri G, De Benedictis C, Ferraresi C, Laffranchi M, De Michieli L. Finite element modeling of an energy storing and return prosthetic foot and implications of stiffness on rollover shape. Proc Inst Mech Eng H 2021; 236:218-227. [PMID: 34693815 DOI: 10.1177/09544119211044556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Energy storing and return (ESAR) prosthetic feet showed continuous improvements during the last 30 years. Despite this, standard guidelines are still missing to achieve an optimal foot design in terms of performances. One of the most important design parameters in ESAR feet is the Rollover Shape (RoS). This represents the foot Center of Pressure (CoP) path in a shank-based coordinate system during stance. RoS objectively describes the foot behavior according to its stiffness, which depends on foot geometry and material. This work presents the development of a finite element modeling methodology able to predict the stiffness characteristic of an ESAR foot and its RoS. The validation of the model is performed on a well-known commercially available prosthetic foot both in bench tests and realistic walking scenario. The obtained results confirm an error of +6.1% on stiffness estimation and +10.2% on RoS evaluation, which underlines that the proposed method is a powerful tool able to replicate the mechanical behavior of a prosthetic foot.
Collapse
Affiliation(s)
| | - Federico Tessari
- Rehab Technologies, Italian Institute of Technology, Genova, Italy.,Department of Mechanical and Aerospace Engineering, DIMEAS, Politecnico di Torino, Turin, Italy
| | | | - Carlo De Benedictis
- Department of Mechanical and Aerospace Engineering, DIMEAS, Politecnico di Torino, Turin, Italy
| | - Carlo Ferraresi
- Department of Mechanical and Aerospace Engineering, DIMEAS, Politecnico di Torino, Turin, Italy
| | | | | |
Collapse
|
20
|
Ziemnicki DM, Caputo JM, McDonald KA, Zelik KE. Development and Evaluation of a Prosthetic Ankle Emulator With an Artificial Soleus and Gastrocnemius. J Med Device 2021. [DOI: 10.1115/1.4052518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
In individuals with transtibial limb loss, a contributing factor to mobility-related challenges is the disruption of biological calf muscle function due to transection of the soleus and gastrocnemius. Powered prosthetic ankles can restore primary function of the mono-articular soleus muscle, which contributes to ankle plantarflexion. In effect, a powered ankle acts like an artificial soleus (AS). However, the biarticular gastrocnemius connection that simultaneously contributes to ankle plantarflexion and knee flexion torques remains missing, and there are currently no commercially available prosthetic ankles that incorporate an artificial gastrocnemius (AG). The goal of this work is to describe the design of a novel emulator capable of independently controlling artificial soleus and gastrocnemius behaviors for transtibial prosthesis users during walking. To evaluate the emulator's efficacy in controlling the artificial gastrocnemius behaviors, a case series walking study was conducted with four transtibial prosthesis users. Data from this case series showed that the emulator exhibits low resistance to the user's leg swing, low hysteresis during passive spring emulation, and accurate force tracking for a range of artificial soleus and gastrocnemius behaviors. The emulator presented in this paper is versatile and can facilitate experiments studying the effects of various artificial soleus and gastrocnemius dynamics on gait or other movement tasks. Using this system, it is possible to address existing knowledge gaps and explore a wide range of artificial soleus and gastrocnemius behaviors during gait and potentially other activities of daily living.
Collapse
Affiliation(s)
- David M. Ziemnicki
- Department of Mechanical Engineering, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235
| | - Joshua M. Caputo
- Human Motion Technologies LLC, 630 William Pitt Way U-PARC Building A2, Pittsburgh, PA 15238
| | - Kirsty A. McDonald
- Department of Exercise Physiology, School of Health Sciences, University of New South Wales, Level 2, Wallace Wurth Building, UNSW, Sydney, NSW 2052, Australia
| | - Karl E. Zelik
- Department of Mechanical Engineering, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235; Department of Biomedical Engineering, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235; Department of Physical Medicine and Rehabilitation, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235
| |
Collapse
|
21
|
Needham L, Evans M, Cosker DP, Wade L, McGuigan PM, Bilzon JL, Colyer SL. The accuracy of several pose estimation methods for 3D joint centre localisation. Sci Rep 2021; 11:20673. [PMID: 34667207 PMCID: PMC8526586 DOI: 10.1038/s41598-021-00212-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Human movement researchers are often restricted to laboratory environments and data capture techniques that are time and/or resource intensive. Markerless pose estimation algorithms show great potential to facilitate large scale movement studies 'in the wild', i.e., outside of the constraints imposed by marker-based motion capture. However, the accuracy of such algorithms has not yet been fully evaluated. We computed 3D joint centre locations using several pre-trained deep-learning based pose estimation methods (OpenPose, AlphaPose, DeepLabCut) and compared to marker-based motion capture. Participants performed walking, running and jumping activities while marker-based motion capture data and multi-camera high speed images (200 Hz) were captured. The pose estimation algorithms were applied to 2D image data and 3D joint centre locations were reconstructed. Pose estimation derived joint centres demonstrated systematic differences at the hip and knee (~ 30-50 mm), most likely due to mislabeling of ground truth data in the training datasets. Where systematic differences were lower, e.g., the ankle, differences of 1-15 mm were observed depending on the activity. Markerless motion capture represents a highly promising emerging technology that could free movement scientists from laboratory environments but 3D joint centre locations are not yet consistently comparable to marker-based motion capture.
Collapse
Affiliation(s)
- Laurie Needham
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, UK.
| | - Murray Evans
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, UK
| | - Darren P Cosker
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, UK
| | - Logan Wade
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, UK
| | - Polly M McGuigan
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, UK
| | - James L Bilzon
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, UK
| | - Steffi L Colyer
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, UK
| |
Collapse
|
22
|
Ármannsdóttir AL, Lecomte C, Brynjólfsson S, Briem K. Task dependent changes in mechanical and biomechanical measures result from manipulating stiffness settings in a prosthetic foot. Clin Biomech (Bristol, Avon) 2021; 89:105476. [PMID: 34517194 DOI: 10.1016/j.clinbiomech.2021.105476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adaptation of lower limb function to different gait tasks is inherently not as effective among individuals with lower limb amputation as compared to able-bodied individuals. Varying stiffness of a prosthetic foot may be a way of facilitating gait tasks that require larger ankle joint range of motion. METHODS Three stiffness settings of a novel prosthetic foot design were tested for level walking at three speeds as well as for 7,5° incline and decline walking. Outcome measures, describing ankle range of motion and ankle dynamic joint stiffness were contrasted across the three stiffness settings. Standardized mechanical tests were done for the hindfoot and forefoot. FINDINGS Dorsiflexion angle was incrementally increased with a softer foot and a faster walking speed / higher degree of slope. The concurrent dynamic joint stiffness exhibited a less systematic change, especially during INCLINE and DECLINE walking. The small difference seen between the stiffness settings for hindfoot loading limits analysis for the effects of stiffness during weight acceptance, however, a stiffer foot significantly restricted plantarflexion during DECLINE. INTERPRETATIONS Varying stiffness settings within a prosthetic foot does have an effect on prosthetic foot dynamics, and differences are task dependent, specifically in parameters involving kinetic attributes. When considering the need for increased ankle range of motion while performing more demanding gait tasks, a foot that allows the users themselves to adjust stiffness according to the task at hand may be of benefit for active individuals, possibly enhancing the user's satisfaction and comfort during various daily activities.
Collapse
Affiliation(s)
- Anna L Ármannsdóttir
- Research Centre of Movement Science, University of Iceland, Sæmundargata 2, 102 Reykjavík, Iceland.
| | - Christophe Lecomte
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Sæmundargata 2, 102 Reykjavík, Iceland; Össur hf., Grjótháls 5, 110 Reykjavik, Iceland
| | | | - Kristín Briem
- Research Centre of Movement Science, University of Iceland, Sæmundargata 2, 102 Reykjavík, Iceland
| |
Collapse
|
23
|
Miller RH, Russell Esposito E. Transtibial limb loss does not increase metabolic cost in three-dimensional computer simulations of human walking. PeerJ 2021; 9:e11960. [PMID: 34430088 PMCID: PMC8349165 DOI: 10.7717/peerj.11960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Loss of a lower limb below the knee, i.e., transtibial limb loss, and subsequently walking with a prosthesis, is generally thought to increase the metabolic cost of walking vs. able-bodied controls. However, high-functioning individuals with limb loss such as military service members often walk with the same metabolic cost as controls. Here we used a 3-D computer model and optimal control simulation approach to test the hypothesis that transtibial limb loss in and of itself causes an increase in metabolic cost of walking. We first generated N = 36 simulations of walking at 1.45 m/s using a “pre-limb loss” model, with two intact biological legs, that minimized deviations from able-bodied experimental walking mechanics with minimum muscular effort. We then repeated these simulations using a “post-limb loss” model, with the right leg’s ankle muscles and joints replaced with a simple model of a passive transtibial prosthesis. No other changes were made to the post-limb loss model’s remaining muscles or musculoskeletal parameters compared to the pre-limb loss case. Post-limb loss, the gait deviations on average increased by only 0.17 standard deviations from the experimental means, and metabolic cost did not increase (3.58 ± 0.10 J/m/kg pre-limb loss vs. 3.59 ± 0.12 J/m/kg post-limb loss, p = 0.65). The results suggest that transtibial limb loss does not directly lead to an increase in metabolic cost, even when deviations from able-bodied gait mechanics are minimized. High metabolic costs observed in individuals with transtibial limb loss may be due to secondary changes in strength or general fitness after limb loss, modifiable prosthesis issues, or to prioritization of factors that affect locomotor control other than gait deviations and muscular effort.
Collapse
Affiliation(s)
- Ross H Miller
- Department of Kinesiology, University of Maryland, College Park, MD, United States of America.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, United States of America
| | - Elizabeth Russell Esposito
- Extremity Trauma and Amputation Center of Excellence, Fort Sam Houston, TX, United States of America.,Center for Limb Loss and Mobility, Seattle, WA, United States of America.,Department of Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
24
|
Clites TR, Shepherd MK, Ingraham KA, Wontorcik L, Rouse EJ. Understanding patient preference in prosthetic ankle stiffness. J Neuroeng Rehabil 2021; 18:128. [PMID: 34433472 PMCID: PMC8390224 DOI: 10.1186/s12984-021-00916-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND User preference has the potential to facilitate the design, control, and prescription of prostheses, but we do not yet understand which physiological factors drive preference, or if preference is associated with clinical benefits. METHODS Subjects with unilateral below-knee amputation walked on a custom variable-stiffness prosthetic ankle and manipulated a dial to determine their preferred prosthetic ankle stiffness at three walking speeds. We evaluated anthropomorphic, metabolic, biomechanical, and performance-based descriptors at stiffness levels surrounding each subject's preferred stiffness. RESULTS Subjects preferred lower stiffness values at their self-selected treadmill walking speed, and elected to walk faster overground with ankle stiffness at or above their preferred stiffness. Preferred stiffness maximized the kinematic symmetry between prosthetic and unaffected joints, but was not significantly correlated with body mass or metabolic rate. CONCLUSION These results imply that some physiological factors are weighted more heavily when determining preferred stiffness, and that preference may be associated with clinically relevant improvements in gait.
Collapse
Affiliation(s)
- Tyler R Clites
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Neurobionics Lab, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Max K Shepherd
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Shirley Ryan Ability Lab, Chicago, IL, 60611, USA
- Neurobionics Lab, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kimberly A Ingraham
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Neurobionics Lab, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Leslie Wontorcik
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan Orthotics and Prosthetics Center, Ann Arbor, MI, 48104, USA
| | - Elliott J Rouse
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Neurobionics Lab, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
Hafner BJ, Halsne EG, Morgan SJ, Morgenroth DC, Humbert AT. Effects of prosthetic feet on metabolic energy expenditure in people with transtibial amputation: a systematic review and meta-analysis. PM R 2021; 14:1099-1115. [PMID: 34390623 DOI: 10.1002/pmrj.12693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To assess the effects of different prosthetic feet on energy costs associated with walking and running in people with transtibial amputation. LITERATURE SURVEY The Pubmed, CINAHL, and Web-of-Science bibliographic databases were searched for original research published through June 30, 2018. References from identified articles were also reviewed. METHODOLOGY Two reviewers screened titles, abstracts, and articles for pertinent studies. Details were extracted with a standardized template. Risk of bias was assessed using domain-based methods. Prosthetic feet were grouped into categories, and compared according to energy costs associated with walking or running over various terrain conditions. Meta-analyses were conducted when data quantity and homogeneity permitted. Evidence statements were formed when results were consistent or undisputed. SYNTHESIS 15 studies were included. Participants (n = 144) were predominantly male (88.2%), had unilateral amputation (95.8%) from non-dysvascular causes (87.5%), and were classified as unlimited community ambulators or active adults (56.9%). Participants were often young, but varied in age (mean age 24.8-66.6 years). Available evidence indicates that feet with powered dorsiflexion reduce energy costs relative to dynamic response feet in unlimited community ambulators or active adults when walking on level or declined surfaces. Dynamic response feet do not significantly reduce energy costs compared to energy storing, flexible keel, or solid ankle feet when walking on level terrain. Running feet do not reduce energy costs relative to dynamic response in active adults when running. Select feet may reduce energy costs under specific conditions, but additional research is needed to confirm preliminary results. CONCLUSIONS The overall body of evidence is based on small samples, comprised mostly of participants who may not well represent the population of prosthesis users, and test conditions that may not well reflect how prostheses are used in daily life. However, evidence suggests energy costs are affected by prosthetic foot type, but only under select conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Elizabeth G Halsne
- University of Washington, Seattle, WA, USA.,VA RR&D Center for Limb Loss and Mobility (CLiMB), VA Puget Sound Health Care System, Seattle, WA, USA
| | | | - David C Morgenroth
- University of Washington, Seattle, WA, USA.,VA RR&D Center for Limb Loss and Mobility (CLiMB), VA Puget Sound Health Care System, Seattle, WA, USA
| | | |
Collapse
|
26
|
McGeehan MA, Adamczyk PG, Nichols KM, Hahn ME. A Reduced-Order Computational Model of a Semi-Active Variable-Stiffness Foot Prosthesis. J Biomech Eng 2021; 143:074503. [PMID: 33704375 PMCID: PMC8086177 DOI: 10.1115/1.4050456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Passive energy storage and return (ESR) feet are current performance standard in lower limb prostheses. A recently developed semi-active variable-stiffness foot (VSF) prosthesis balances the simplicity of a passive ESR device with the adaptability of a powered design. The purpose of this study was to model and simulate the ESR properties of the VSF prosthesis. The ESR properties of the VSF were modeled as a lumped parameter overhung beam. The overhung length is variable, allowing the model to exhibit variable ESR stiffness. Foot-ground contact was modeled using sphere-to-plane contact models. Contact parameters were optimized to represent the geometry and dynamics of the VSF and its foam base. Static compression tests and gait were simulated. Simulation outcomes were compared to corresponding experimental data. Stiffness of the model matched that of the physical VSF (R2: 0.98, root-mean-squared error (RMSE): 1.37 N/mm). Model-predicted resultant ground reaction force (GRFR) matched well under optimized parameter conditions (R2: 0.98, RMSE: 5.3% body weight,) and unoptimized parameter conditions (R2: 0.90, mean RMSE: 13% body weight). Anterior-posterior center of pressure matched well with R2 > 0.94 and RMSE < 9.5% foot length in all conditions. The ESR properties of the VSF were accurately simulated under benchtop testing and dynamic gait conditions. These methods may be useful for predicting GRFR arising from gait with novel prostheses. Such data are useful to optimize prosthesis design parameters on a user-specific basis.
Collapse
Affiliation(s)
- Michael A. McGeehan
- Department of Human Physiology, University of Oregon, 181 Esslinger Hall, 1525 University Street, Eugene, OR 97403
| | - Peter G. Adamczyk
- Department of Mechanical Engineering, University of Wisconsin-Madison, Room 3039, Mechanical Engineering Building, 1513 University Avenue, Madison, WI 53706-1539
| | - Kieran M. Nichols
- Department of Mechanical Engineering, University of Wisconsin-Madison, Room 3039, Mechanical Engineering Building, 1513 University Avenue, Madison, WI 53706-1539
| | - Michael E. Hahn
- Department of Human Physiology, University of Oregon, 181 Esslinger Hall, 1525 University Street, Eugene, OR 97403
| |
Collapse
|
27
|
Welker CG, Voloshina AS, Chiu VL, Collins SH. Shortcomings of human-in-the-loop optimization of an ankle-foot prosthesis emulator: a case series. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202020. [PMID: 34035945 PMCID: PMC8097204 DOI: 10.1098/rsos.202020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Human-in-the-loop optimization allows for individualized device control based on measured human performance. This technique has been used to produce large reductions in energy expenditure during walking with exoskeletons but has not yet been applied to prosthetic devices. In this series of case studies, we applied human-in-the-loop optimization to the control of an active ankle-foot prosthesis used by participants with unilateral transtibial amputation. We optimized the parameters of five control architectures that captured aspects of successful exoskeletons and commercial prostheses, but none resulted in significantly lower metabolic rate than generic control. In one control architecture, we increased the exposure time per condition by a factor of five, but the optimized controller still resulted in higher metabolic rate. Finally, we optimized for self-reported comfort instead of metabolic rate, but the resulting controller was not preferred. There are several reasons why human-in-the-loop optimization may have failed for people with amputation. Control architecture is an unlikely cause given the variety of controllers tested. The lack of effect likely relates to changes in motor adaptation, learning, or objectives in people with amputation. Future work should investigate these potential causes to determine whether human-in-the-loop optimization for prostheses could be successful.
Collapse
Affiliation(s)
- Cara Gonzalez Welker
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexandra S. Voloshina
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Vincent L. Chiu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Steven H. Collins
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Olesnavage KM, Prost V, Johnson WB, Major MJ, Winter AG. Experimental Demonstration of the Lower Leg Trajectory Error Framework Using Physiological Data as Inputs. J Biomech Eng 2021; 143:031003. [PMID: 33006368 DOI: 10.1115/1.4048643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 11/08/2022]
Abstract
While many studies have attempted to characterize the mechanical behavior of passive prosthetic feet to understand their influence on amputee gait, the relationship between mechanical design and biomechanical performance has not yet been fully articulated from a fundamental physics perspective. A novel framework, called lower leg trajectory error (LLTE) framework, presents a means of quantitatively optimizing the constitutive model of prosthetic feet to match a reference kinematic and kinetic dataset. This framework can be used to predict the required stiffness and geometry of a prosthesis to yield a desired biomechanical response. A passive prototype foot with adjustable ankle stiffness was tested by a unilateral transtibial amputee to evaluate this framework. The foot condition with LLTE-optimal ankle stiffness enabled the user to replicate the physiological target dataset within 16% root-mean-square (RMS) error. Specifically, the measured kinematic variables matched the target kinematics within 4% RMS error. Testing a range of ankle stiffness conditions from 1.5 to 24.4 N·m/deg with the same user indicated that conditions with lower LLTE values deviated the least from the target kinematic data. Across all conditions, the framework predicted the horizontal/vertical position, and angular orientation of the lower leg during midstance within 1.0 cm, 0.3 cm, and 1.5 deg, respectively. This initial testing suggests that prosthetic feet designed with low LLTE values could offer benefits to users. The LLTE framework is agnostic to specific foot designs and kinematic/kinetic user targets, and could be used to design and customize prosthetic feet.
Collapse
Affiliation(s)
- Kathryn M Olesnavage
- GEAR Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Victor Prost
- GEAR Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - William Brett Johnson
- GEAR Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Matthew J Major
- Jesse Brown VA Medical Center, Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60208
| | - Amos G Winter
- GEAR Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
29
|
McDonald KA, Teater RH, Cruz JP, Kerr JT, Bastas G, Zelik KE. Adding a toe joint to a prosthesis: walking biomechanics, energetics, and preference of individuals with unilateral below-knee limb loss. Sci Rep 2021; 11:1924. [PMID: 33479374 PMCID: PMC7820350 DOI: 10.1038/s41598-021-81565-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/21/2020] [Indexed: 11/15/2022] Open
Abstract
Toe joints play an important functional role in able-bodied walking; however, for prosthesis users, the effect of adding a toe joint to a passive prosthetic foot remains largely unknown. The current study explores the kinematics, kinetics, rate of oxygen consumption and user preference of nine individuals with below-knee limb loss. Participants walked on a passive prosthetic foot in two configurations: with a Flexible, articulating toe joint and with a Locked-out toe joint. During level treadmill gait, participants exhibited a decrease in Push-Off work when using the Flexible toe joint prosthesis versus the Locked toe joint prosthesis: 16% less from the prosthesis (p = 0.004) and 10% less at the center of mass level (p = 0.039). However, between configurations, participants exhibited little change in other gait kinematics or kinetics, and no apparent or consistent difference in the rate of oxygen consumption (p = 0.097). None of the traditional biomechanical or metabolic outcomes seemed to explain user preference. However, an unexpected and intriguing observation was that all participants who wore the prosthesis on their dominant limb preferred the Flexible toe joint, and every other participant preferred the Locked configuration. Although perhaps coincidental, such findings may suggest a potential link between user preference and limb dominance, offering an interesting avenue for future research.
Collapse
Affiliation(s)
- Kirsty A McDonald
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA.
- Department of Exercise Physiology, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Rachel H Teater
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Justin P Cruz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - John T Kerr
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Gerasimos Bastas
- Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, TN, 37212, USA
| | - Karl E Zelik
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
30
|
Wang J, Wang W, Ren S, Shi W, Hou ZG. Engagement Enhancement Based on Human-in-the-Loop Optimization for Neural Rehabilitation. Front Neurorobot 2020; 14:596019. [PMID: 33304263 PMCID: PMC7693715 DOI: 10.3389/fnbot.2020.596019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Enhancing patients' engagement is of great benefit for neural rehabilitation. However, physiological and neurological differences among individuals can cause divergent responses to the same task, and the responses can further change considerably during training; both of these factors make engagement enhancement a challenge. This challenge can be overcome by training task optimization based on subjects' responses. To this end, an engagement enhancement method based on human-in-the-loop optimization is proposed in this paper. Firstly, an interactive speed-tracking riding game is designed as the training task in which four reference speed curves (RSCs) are designed to construct the reference trajectory in each generation. Each RSC is modeled using a piecewise function, which is determined by the starting velocity, transient time, and end velocity. Based on the parameterized model, the difficulty of the training task, which is a key factor affecting the engagement, can be optimized. Then, the objective function is designed with consideration to the tracking accuracy and the surface electromyogram (sEMG)-based muscle activation, and the physical and physiological responses of the subjects can consequently be evaluated simultaneously. Moreover, a covariance matrix adaption evolution strategy, which is relatively tolerant of both measurement noises and human adaptation, is used to generate the optimal parameters of the RSCs periodically. By optimization of the RSCs persistently, the objective function can be maximized, and the subjects' engagement can be enhanced. Finally, the performance of the proposed method is demonstrated by the validation and comparison experiments. The results show that both subjects' sEMG-based motor engagement and electroencephalography based neural engagement can be improved significantly and maintained at a high level.
Collapse
Affiliation(s)
- Jiaxing Wang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Weiqun Wang
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shixin Ren
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Weiguo Shi
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zeng-Guang Hou
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| |
Collapse
|
31
|
Tryggvason H, Starker F, Armannsdottir AL, Lecomte C, Jonsdottir F. Speed Adaptable Prosthetic Foot: Concept Description, Prototyping and Initial User Testing. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2978-2986. [PMID: 33151884 DOI: 10.1109/tnsre.2020.3036329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article presents a novel design of a prosthetic foot that features adaptable stiffness that changes according to the speed of ankle motion. The motivation is the natural graduation in stiffness of a biological ankle over a range of ambulation tasks. The device stiffness depends on rate of movement, ranging from a dissipating support at very slow walking speed, to efficient energy storage and return at normal walking speed. The objective here is to design a prosthetic foot that provides a compliant support for slow ambulation, without sacrificing the spring-like energy return beneficial in normal walking. The design is a modification of a commercially available foot and employs material properties to provide a change in stiffness. The velocity dependent properties of a non-Newtonian working fluid provide the rate adaptability. Material properties of components allow for a geometry shift that results in a coupling action, affecting the stiffness of the overall system. The function of an adaptive coupling was tested in linear motion. A prototype prosthetic foot was built, and the speed dependent stiffness measured mechanically. Furthermore, the prototype was tested by a user and body kinematics measured in gait analysis for varying walking speed, comparing the prototype to the original foot model (non-modified). Mechanical evaluation of stiffness shows increase in stiffness of about 60% over the test range and 10% increase between slow and normal walking speed in user testing.
Collapse
|
32
|
Shepherd MK, Rouse EJ. Comparing preference of ankle-foot stiffness in below-knee amputees and prosthetists. Sci Rep 2020; 10:16067. [PMID: 32999317 PMCID: PMC7527979 DOI: 10.1038/s41598-020-72131-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/26/2020] [Indexed: 11/01/2022] Open
Abstract
When fitting prosthetic feet, prosthetists fuse information from their visual assessment of patient gait with the patient's communicated perceptions and preferences. In this study, we sought to simultaneously and independently assess patient and prosthetist preference for prosthetic foot stiffness using a custom variable-stiffness prosthesis. In the first part of the experiment, seven subjects with below-knee amputation walked on the variable-stiffness prosthetic foot set to a randomized stiffness, while several prosthetist subjects simultaneously observed their gait. After each trial, the amputee subjects and prosthetist subjects indicated the change to stiffness that they would prefer (increase or decrease). This paradigm allowed us to simultaneously measure amputee subject and prosthetist subject preferences, and provided a reliability index indicating the consistency of their preferences. In the second part of the experiment, amputee subjects were instructed to communicate verbally with one prosthetist subject to arrive at a mutually preferred stiffness. On average, prosthetist subjects preferred a 26% higher stiffness than amputee subjects (p < 0.001), though this depended on the amputee subject (p < 0.001). Prosthetist subjects were also considerably less consistent than amputee subjects in their preferences (CV of 5.6% for amputee subjects, CV of 23% for prosthetist subjects; p = 0.014). Mutual preference seemed to be dictated by the specific patient-prosthetist dynamic, and no clear trends emerged.
Collapse
Affiliation(s)
- Max K Shepherd
- Northwestern University Department of Biomedical Engineering, The Center for Bionic Medicine Within the Shirley Ryan AbilityLab, Chicago, IL, USA. .,University of Michigan Neurobionics Lab, Ann Arbor, MI, USA. .,(Google) X, Mountain View, CA, USA.
| | - Elliott J Rouse
- University of Michigan Neurobionics Lab, Ann Arbor, MI, USA.,Department of Mechanical Engineering and Robotics Institute, University of Michigan, Ann Arbor, USA
| |
Collapse
|
33
|
Schmitthenner D, Sweeny C, Du J, Martin AE. The Effect of Stiff Foot Plate Length on Walking Gait Mechanics. J Biomech Eng 2020; 142:091012. [PMID: 32280960 DOI: 10.1115/1.4046882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 11/08/2022]
Abstract
Exoskeletons are increasingly being used to treat gait pathologies. Many of these exoskeletons use a foot plate to actuate the foot, altering the effective stiffness of the foot. Stiffness of the biological foot and ankle plays an important role in the energy modulating function of the leg, so it is important to examine how a foot plate in and of itself impacts gait. Therefore, this study quantified how foot plates themselves alter the walking gait of 16 healthy young adults. The effect of the foot plate length was also examined through the use of two foot plates, one that ended at the metatarsals and one that extended past the toes, about 20% longer. Gait parameters examined included walking speed, step frequency, joint angles for the hip, knee, ankle, forefoot, and toe, ground reaction forces (GRF), and foot-ankle power. The most significant changes were caused by the full plate, which caused an average 13% decrease in the ankle range of motion (ROM) and a 23% decrease in forward GRF at push off. The shorter plate also decreased ankle ROM to a lesser degree. This indicates that the presence of a foot plate impacted foot and ankle kinematics. However, the presence of the tested foot plate had no effect on walking speed or hip or knee kinematics. This indicates that subjects were mostly able to compensate both kinematically and energetically via their foot and ankle for the increased foot stiffness due to the tested foot plate.
Collapse
Affiliation(s)
- Dave Schmitthenner
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Carolyn Sweeny
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Jing Du
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Anne E Martin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
34
|
Kim M, Lyness H, Chen T, Collins SH. The Effects of Prosthesis Inversion/Eversion Stiffness on Balance-Related Variability During Level Walking: A Pilot Study. J Biomech Eng 2020; 142:091011. [PMID: 32280955 DOI: 10.1115/1.4046881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 11/08/2022]
Abstract
Prosthesis features that enhance balance are desirable to people with transtibial amputation. Ankle inversion/eversion compliance is intended to improve balance on uneven ground, but its effects remain unclear on level ground. We posited that increasing ankle inversion/eversion stiffness during level-ground walking would reduce balance-related effort by assisting in recovery from small disturbances in frontal-plane motions. We performed a pilot test with an ankle-foot prosthesis emulator programmed to apply inversion/eversion torques in proportion to the deviation from a nominal inversion/eversion position trajectory. We applied a range of stiffnesses to clearly understand the effect of the stiffness on balance-related effort, hypothesizing that positive stiffness would reduce effort while negative stiffness would increase effort. Nominal joint angle trajectories were calculated online as a moving average over several steps. In experiments with K3 ambulators with unilateral transtibial amputation (N = 5), stiffness affected step-width variability, average step width, margin of stability, intact-foot center of pressure variability, and user satisfaction (p ≤ 0.05, Friedman's test), but not intact-limb evertor average, intact-limb evertor variability, and metabolic rate (p ≥ 0.38, Friedman's test). Compared to zero stiffness, high positive stiffness reduced step-width variability by 13%, step width by 3%, margin of stability by 3%, and intact-foot center of pressure variability by 14%, whereas high negative stiffness had opposite effects and decreased satisfaction by 63%. The results of this pilot study suggest that positive ankle inversion stiffness can reduce active control requirements during level walking.
Collapse
Affiliation(s)
- Myunghee Kim
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Hannah Lyness
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tianjian Chen
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Steven H Collins
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
35
|
Honert EC, Bastas G, Zelik KE. Effects of toe length, foot arch length and toe joint axis on walking biomechanics. Hum Mov Sci 2020; 70:102594. [DOI: 10.1016/j.humov.2020.102594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 02/04/2023]
|
36
|
Hedrick EA, Malcolm P, Wilken JM, Takahashi KZ. The effects of ankle stiffness on mechanics and energetics of walking with added loads: a prosthetic emulator study. J Neuroeng Rehabil 2019; 16:148. [PMID: 31752942 PMCID: PMC6873504 DOI: 10.1186/s12984-019-0621-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The human ankle joint has an influential role in the regulation of the mechanics and energetics of gait. The human ankle can modulate its joint 'quasi-stiffness' (ratio of plantarflexion moment to dorsiflexion displacement) in response to various locomotor tasks (e.g., load carriage). However, the direct effect of ankle stiffness on metabolic energy cost during various tasks is not fully understood. The purpose of this study was to determine how net metabolic energy cost was affected by ankle stiffness while walking under different force demands (i.e., with and without additional load). METHODS Individuals simulated an amputation by using an immobilizer boot with a robotic ankle-foot prosthesis emulator. The prosthetic emulator was controlled to follow five ankle stiffness conditions, based on literature values of human ankle quasi-stiffness. Individuals walked with these five ankle stiffness settings, with and without carrying additional load of approximately 30% of body mass (i.e., ten total trials). RESULTS Within the range of stiffness we tested, the highest stiffness minimized metabolic cost for both load conditions, including a ~ 3% decrease in metabolic cost for an increase in stiffness of about 0.0480 Nm/deg/kg during normal (no load) walking. Furthermore, the highest stiffness produced the least amount of prosthetic ankle-foot positive work, with a difference of ~ 0.04 J/kg from the highest to lowest stiffness condition. Ipsilateral hip positive work did not significantly change across the no load condition but was minimized at the highest stiffness for the additional load conditions. For the additional load conditions, the hip work followed a similar trend as the metabolic cost, suggesting that reducing positive hip work can lower metabolic cost. CONCLUSION While ankle stiffness affected the metabolic cost for both load conditions, we found no significant interaction effect between stiffness and load. This may suggest that the importance of the human ankle's ability to change stiffness during different load carrying tasks may not be driven to minimize metabolic cost. A prosthetic design that can modulate ankle stiffness when transitioning from one locomotor task to another could be valuable, but its importance likely involves factors beyond optimizing metabolic cost.
Collapse
Affiliation(s)
- Erica A Hedrick
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Philippe Malcolm
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Jason M Wilken
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa, USA
| | - Kota Z Takahashi
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
37
|
Müller R, Tronicke L, Abel R, Lechler K. Prosthetic push-off power in trans-tibial amputee level ground walking: A systematic review. PLoS One 2019; 14:e0225032. [PMID: 31743353 PMCID: PMC6863538 DOI: 10.1371/journal.pone.0225032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Unilateral trans-tibial amputation signifies a challenge to locomotion. Prosthetic ankle-foot units are developed to mimic the missing biological system which adapts push-off power to walking speed in some new prosthetic ankle-foot designs. The first systematic review including the two factors aims to investigate push-off power differences among Solid Ankle Cushion Heel (SACH), Energy Storage And Return (ESAR) and Powered ankle-foot units (PWR) and their relation to walking speed. DATA SOURCES A literature search was undertaken in the Web of Science, PubMed, IEEE xplore, and Google Scholar databases. The search term included: ampu* AND prosth* AND ankle-power AND push-off AND walking. STUDY APPRAISAL AND SYNTHESIS METHODS Studies were included if they met the following criteria: unilateral trans-tibial amputees, lower limb prosthesis, reported analysis of ankle power during walking. Data extracted from the included studies were clinical population, type of the prosthetic ankle-foot units (SACH, ESAR, PWR), walking speed, and peak ankle power. Linear regression was used to determine whether the push-off power of different prosthetic ankle-foot units varied regarding walking speed. Push-off power of the different prosthetic ankle-foot units were compared using one-way between subjects' ANOVAs with post hoc analysis, separately for slower and faster walking speeds. RESULTS 474 publications were retrieved, 28 of which were eligible for inclusion. Correlations between walking speed and peak push-off power were found for ESAR (r = 0.568, p = 0.006) and PWR (r = 0.820, p = 0.000) but not for SACH (r = 0.267, p = 0.522). ESAR and PWR demonstrated significant differences in push-off power for slower and faster walking speeds (ESAR (p = 0.01) and PWR (p = 0.02)). CONCLUSION Push-off power can be used as a selection criterion to differentiate ankle-foot units for prosthetic users and their bandwidth of walking speeds.
Collapse
Affiliation(s)
- Roy Müller
- Department of Orthopedic Surgery, Klinikum Bayreuth GmbH, Bayreuth, Germany
- Institute of Sport Sciences, Friedrich Schiller University Jena, Jena, Germany
| | | | - Rainer Abel
- Department of Orthopedic Surgery, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | | |
Collapse
|
38
|
Panizzolo FA, Bolgiani C, Di Liddo L, Annese E, Marcolin G. Reducing the energy cost of walking in older adults using a passive hip flexion device. J Neuroeng Rehabil 2019; 16:117. [PMID: 31615535 PMCID: PMC6794907 DOI: 10.1186/s12984-019-0599-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Elevated energy cost is a hallmark feature of gait in older adults. As such, older adults display a general avoidance of walking which contributes to declining health status and risk of morbidity. Exoskeletons offer a great potential for lowering the energy cost of walking, however their complexity and cost often limit their use. To overcome some of these issues, in the present work we propose a passive wearable assistive device, namely Exoband, that applies a torque to the hip flexors thus reducing the net metabolic power of wearers. METHODS Nine participants (age: 62.1 ± 5.6 yr; height: 1.71 ± 0.05 m; weight: 76.3 ± 11.9 kg) walked on a treadmill at a speed of 1.1 m/s with and without the Exoband. Metabolic power was measured by indirect calorimetry and spatio-temporal parameters measured using an optical measurement system. Heart rate and ratings of perceived exertion were recorded during data collection to monitor relative intensity of the walking trials. RESULTS The Exoband was able to provide a consistent torque (~ 0.03-0.05 Nm/kg of peak torque) to the wearers. When walking with the Exoband, participants displayed a lower net metabolic power with respect to free walking (- 3.3 ± 3.0%; p = 0.02). There were no differences in spatio-temporal parameters or relative intensities when walking with or without the Exoband. CONCLUSIONS This study demonstrated that it is possible to reduce metabolic power during walking in older adults with the assistance of a passive device that applies a torque to the hip joint. Wearable, lightweight and low-cost devices such as the Exoband have the potential to make walking less metabolically demanding for older individuals.
Collapse
Affiliation(s)
| | | | - Laura Di Liddo
- Moveo Walks, 12 Remington Street, Cambridge, MA 02138 USA
| | - Eugenio Annese
- Moveo Walks, 12 Remington Street, Cambridge, MA 02138 USA
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35131 Padua, Italy
| |
Collapse
|
39
|
Lamers EP, Eveld ME, Zelik KE. Subject-specific responses to an adaptive ankle prosthesis during incline walking. J Biomech 2019; 95:109273. [DOI: 10.1016/j.jbiomech.2019.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 11/26/2022]
|
40
|
Liu M, Lupiani A, Lee IC, Huang HH. Identify Kinematic Features for Powered Prosthesis Tuning. IEEE Int Conf Rehabil Robot 2019; 2019:565-569. [PMID: 31374690 DOI: 10.1109/icorr.2019.8779516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To maximize the benefits of the newly developed powered prosthetic legs, amputees must rely on tuning experts (TE) from manufacturers to tune these devices based on their specific physical conditions. Because TEs are hard to train, it is difficult to access the TEs and the cost of customization is high. If the knowledge used by the TEs could be extracted, it is possible to reduce the tuning cost by automating the tuning procedure or developing efficient TE training programs. In this paper, we preliminarily identified kinematic features that are sensitive to the control parameter change of the powered prosthetic leg. Using data collected from three transtibial amputee subjects with four levels of push-off power, we tested whether a change of push-off power could generate a significant difference on 13 preselected kinematic features during level ground walking at self-selected walking speed. Six features across three joints on the prosthesis side were demonstrated to be sensitive to the change of push-off power.
Collapse
|
41
|
Womac ND, Neptune RR, Klute GK. Stiffness and energy storage characteristics of energy storage and return prosthetic feet. Prosthet Orthot Int 2019; 43:266-275. [PMID: 30688551 DOI: 10.1177/0309364618823127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mechanical properties of prosthetic feet can significantly influence amputee gait, but how they vary with respect to limb loading and orientation is infrequently reported. OBJECTIVE The objective of this study is to measure stiffness and energy storage characteristics of prosthetic feet across limb loading and a range of orientations experienced in typical gait. STUDY DESIGN This study included mechanical testing. METHODS Force-displacement data were collected at combinations of 15 sagittal and 5 coronal orientations and used to calculate stiffness and energy storage across prosthetic feet, stiffness categories, and heel wedge conditions. RESULTS Stiffness and energy storage were highly non-linear in both the sagittal and coronal planes. Across all prosthetic feet, stiffness decreased with greater heel, forefoot, medial, and lateral orientations, while energy storage increased with forefoot, medial, and lateral loading orientations. Stiffness category was proportional to stiffness and inversely proportional to energy storage. Heel wedge effects were prosthetic foot dependent. CONCLUSION Orientation, manufacturer, stiffness category, and heel wedge inclusion greatly influenced stiffness and energy storage characteristics. CLINICAL RELEVANCE These results and an available graphical user interface tool may help improve clinical prescriptions by providing prosthetists with quantitative measures to compare prosthetic feet.
Collapse
Affiliation(s)
| | | | - Glenn K Klute
- 2 Center for Limb Loss and MoBility, VA Puget Sound Health Care System, Seattle, WA, USA.,3 University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Does Decreasing Below-Knee Prosthesis Pylon Longitudinal Stiffness Increase Prosthetic Limb Collision and Push-Off Work During Gait? J Appl Biomech 2019; 35:312–319. [PMID: 31141448 DOI: 10.1123/jab.2019-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Investigations have begun to connect leg prosthesis mechanical properties and user outcomes to optimize prosthesis designs for maximizing mobility. To date, parametric studies have focused on prosthetic foot properties, but not explicitly longitudinal stiffness that is uniquely modified through shock-absorbing pylons. The linear spring function of these devices might affect work performed on the body center-of-mass during walking. This study observed the effects of different levels of pylon stiffness on individual limb work of unilateral below-knee prosthesis users walking at customary and fast speeds. Longitudinal stiffness reductions were associated with minimal increase in prosthetic limb collision and push-off work, but inconsistent changes in sound limb work. These small and variable changes in limb work did not suggest an improvement in mechanical economy due to reductions in stiffness. Fast walking generated greater overall center-of-mass work demands across stiffness conditions. Results indicate limb work asymmetry as the prosthetic limb experienced on average 61% and 36% of collision and push-off work, respectively, relative to the sound limb. A series spring model to estimate residuum and pylon stiffness effects on prosthesis energy storage suggested that minimal changes to limb work may be due to influences of the residual limb which dominate the system response.
Collapse
|
43
|
Frossard L, Leech B, Pitkin M. Automated characterization of anthropomorphicity of prosthetic feet fitted to bone-anchored transtibial prosthesis. IEEE Trans Biomed Eng 2019; 66:10.1109/TBME.2019.2904713. [PMID: 30872221 PMCID: PMC6926161 DOI: 10.1109/tbme.2019.2904713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This study describes differentiating prosthetic feet designs fitted to bone-anchored transtibial prostheses based on an automated characterization of ankle stiffness profile relying on direct loading measurements. The objectives were (A) to present a process characterizing stiffness using innovative macro, meso and micro analyses, (B) to present stiffness profiles for feet with and without anthropomorphic designs, where anthropomorphicity is defined as a similarity of the moment-angle dependency in prosthetic and in the anatomical ankle, (C) to determine sensitivity of characterization. METHODS Three participants walked consecutively with two instrumented bone-anchored prostheses including their own prosthetic feet and Free-Flow foot meeting the anthropomorphicity criterion by design. Angle of dorsiflexion was extracted from video footage. Bending moment was recorded using multi-axis transducer attached to osseointegrated fixation. The automated characterization of stiffness involved a 12-step process relying on data-based criterion. RESULTS The meso analyses confirmed bilinear behavior of moment-angle curves with Index of Anthropomorphicity of -2.966±2.369 Nm/Deg and 2.681±1.089 Nm/Deg indicating a convex and concave shape of usual and Free-Flow feet without and with anthropomorphic designs, respectively. CONCLUSIONS The proposed straightforward meso analysis of the stiffness was capable to report clinical meaningful differences sensitive to feet's anthropomorphicity. Results confirmed the benefits for clinicians to rely on direct loading measurement providing individualized complementary insight into impact of components. SIGNIFICANCE This work could assist the developments of standards and guidelines for manufacturing and safe fitting of components to growing population requiring transtibial prostheses with socket or direct skeletal attachment worldwide.
Collapse
Affiliation(s)
| | - Barry Leech
- Barry Leech Prosthetics & Orthotics Pty Ltd, Southport, Australia
| | - Mark Pitkin
- Tufts University, Boston, MA, USA and Poly-Orth International, Sharon, MA, USA
| |
Collapse
|
44
|
Shepherd MK, Azocar AF, Major MJ, Rouse EJ. Amputee perception of prosthetic ankle stiffness during locomotion. J Neuroeng Rehabil 2018; 15:99. [PMID: 30409168 PMCID: PMC6225626 DOI: 10.1186/s12984-018-0432-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/25/2018] [Indexed: 12/02/2022] Open
Abstract
Background Prosthetic feet are spring-like, and their stiffness critically affects the wearer’s stability, comfort, and energetic cost of walking. Despite the importance of stiffness in ambulation, the prescription process often entails testing a limited number of prostheses, which may result in patients receiving a foot with suboptimal mechanics. To understand the resolution with which prostheses should be individually optimized, we sought to characterize below-knee prosthesis users’ psychophysical sensitivity to prosthesis stiffness. Methods We used a novel variable-stiffness ankle prosthesis to measure the repeatability of user-selected preferred stiffness, and implemented a psychophysical experiment to characterize the just noticeable difference of stiffness during locomotion. Results All eight subjects with below-knee amputation exhibited high repeatability in selecting their Preferred Stiffness (mean coefficient of variation: 14.2 ± 1.7%) and were able to correctly identify a 7.7 ± 1.3% change in ankle stiffness (with 75% accuracy). Conclusions This high sensitivity suggests prosthetic foot stiffness should be tuned with a high degree of precision on an individual basis. These results also highlight the need for a pairing of new robotic prescription tools and mechanical characterizations of prosthetic feet.
Collapse
Affiliation(s)
- Max K Shepherd
- Shirley Ryan AbilityLab, Room 11-1414, 355 E Erie St, Chicago, IL, 60611, USA. .,Department of Biomedical Engineering, Northwestern University, 663 Clark St, Evanston, IL, 60208, USA. .,Neurobionics Lab, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Alejandro F Azocar
- Neurobionics Lab, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew J Major
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, 710 North Lake Shore Drive, #1022, Chicago, IL, 60611, USA
| | - Elliott J Rouse
- Neurobionics Lab, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
45
|
Glanzer EM, Adamczyk PG. Design and Validation of a Semi-Active Variable Stiffness Foot Prosthesis. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2351-2359. [PMID: 30371376 DOI: 10.1109/tnsre.2018.2877962] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This paper presents the design and validation of a novel lower limb prosthesis called the variable stiffness foot (VSF), designed to vary its forefoot stiffness in response to user activity. The VSF is designed as a semi-active device that adjusts its stiffness once per stride during swing phases, in order to minimize size, mass, and power consumption. The forefoot keel is designed as an overhung composite beam, whose stiffness is varied by moving a support fulcrum to change the length of the overhang. Stiffness modulation is programmed in response to the gait characteristics detected through foot trajectory reconstruction based on an embedded inertial sensor. The prototype VSF has a mass of only 649 g including the battery, and a build height of 87 mm. Mechanical testing demonstrated a forefoot stiffness range of 10-32 N/mm for the prototype, a threefold range of stiffness variation. The stiffness range can be altered by changing the keel material or geometry. Actuation testing showed that the VSF can make a full-scale stiffness adjustment within three strides, and tracks moderate speed-driven variations within one swing phase. Human subjects testing demonstrated greater energy storage and return with lower stiffness settings. This capability may be useful for the modulating prosthesis energy return to better mimic human ankle function. Subjective feedback indicated clear perception by the subjects of contrasts among the stiffness settings, including interpretation of scenarios for which different settings may be beneficial. Future applications of the VSF include adapting stiffness to optimize stairs, ramps, turns, and standing.
Collapse
|
46
|
Honert EC, Bastas G, Zelik KE. Effect of toe joint stiffness and toe shape on walking biomechanics. BIOINSPIRATION & BIOMIMETICS 2018; 13:066007. [PMID: 30187893 PMCID: PMC8777388 DOI: 10.1088/1748-3190/aadf46] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During typical human walking, the metatarsophalangeal joints undergo extension/flexion, which we term toe joint articulation. This toe joint articulation impacts locomotor performance, as evidenced by prior studies on prostheses, footwear, sports and humanoid robots. However, a knowledge gap exists in our understanding of how individual toe properties (e.g. shape, joint stiffness) affect bipedal locomotion. To address this gap, we designed and built a pair of adjustable foot prostheses that enabled us to independently vary different toe properties, across a broad range of physiological and non-physiological values. We then characterized the effects of varying toe joint stiffness across a range of different ankle joint stiffness conditions, and the effects of varying toe shape on walking biomechanics. Ten able-bodied individuals walked on a treadmill with prostheses mounted bilaterally underneath simulator boots (which immobilized their biological ankles). We collected motion capture and ground reaction force data, then computed joint kinematics and kinetics, and center-of-mass (COM) power and work. To our surprise, we found that varying toe joint stiffness affected COM Push-off dynamics during walking as much as, or in some cases even more than, varying ankle joint stiffness. Increasing toe joint stiffness increased COM Push-off work by up to 48% (6 J), and prosthetic anklefoot Push-off work by up to 181% (12 J). In contrast, large changes in toe shape had little effect on gait. This study brings attention to the toes, an aspect of prosthetic and robotic foot design that is often overlooked or overshadowed by design of the ankle. Optimizing toe joint stiffness in assistive and robotic devices (e.g. prostheses, exoskeletons, robot feet) may provide a complementary means of enhancing Push-off or other aspects of locomotor performance, in conjunction with the more conventional approach of augmenting ankle dynamics. Future studies are needed to isolate the effects of additional toe properties (e.g. toe length).
Collapse
Affiliation(s)
- Eric C. Honert
- Dept. of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Gerasimos Bastas
- Dept. of Physical Medicine & Rehabilitation, Vanderbilt University, Nashville, TN, USA
| | - Karl E. Zelik
- Dept. of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
- Dept. of Physical Medicine & Rehabilitation, Vanderbilt University, Nashville, TN, USA
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
47
|
An Ankle–Foot Prosthesis Emulator With Control of Plantarflexion and Inversion–Eversion Torque. IEEE T ROBOT 2018. [DOI: 10.1109/tro.2018.2830372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Olesnavage KM, Winter AG. A Novel Framework for Quantitatively Connecting the Mechanical Design of Passive Prosthetic Feet to Lower Leg Trajectory. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1544-1555. [PMID: 29994122 DOI: 10.1109/tnsre.2018.2848845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper presents a novel framework that quantitatively connects the mechanical design of a prosthetic foot to its anticipated biomechanical performance. The framework uses kinetic inputs (ground reaction forces and center of pressure) to predict kinematic outputs of the lower leg segment by knowing the geometry and stiffness of the foot. The error between the predicted and target kinematics is evaluated using a root-mean-square error function called the Lower Leg Trajectory Error (LLTE). Using physiological kinetic inputs and kinematic targets, three model foot architectures were optimized to minimize the LLTE. The resulting predicted lower leg kinematics were compared to those of the same foot architectures optimized for physiological roll-over geometry. The feet with minimized LLTE had lower leg kinematics closer to physiological than those optimized for roll-over geometry. A prosthetic foot that exactly mimics physiological roll-over geometry may result in gait kinematics that differ greatly from physiological, as roll-over geometry omits information about the foot-ground contact constraint, lower leg orientation, and temporal progression of a step. The LLTE-based framework is agnostic to specific foot designs provided their constitutive behavior can be characterized, and it can accept alternate inputs and targets depending on what performance and clinical objectives are desired.
Collapse
|
49
|
Zelik KE, Honert EC. Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment. J Biomech 2018; 75:1-12. [PMID: 29724536 PMCID: PMC6005760 DOI: 10.1016/j.jbiomech.2018.04.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
Abstract
In human gait analysis studies, the entire foot is typically modeled as a single rigid-body segment; however, this neglects power generated/absorbed within the foot. Here we show how treating the entire foot as a rigid body can lead to misunderstandings related to (biological and prosthetic) foot function, and distort our understanding of ankle and muscle-tendon dynamics. We overview various (unconventional) inverse dynamics methods for estimating foot power, partitioning ankle vs. foot contributions, and computing combined anklefoot power. We present two case study examples. The first exemplifies how modeling the foot as a single rigid-body segment causes us to overestimate (and overvalue) muscle-tendon power generated about the biological ankle (in this study by up to 77%), and to misestimate (and misinform on) foot contributions; corroborating findings from previous multi-segment foot modeling studies. The second case study involved an individual with transtibial amputation walking on 8 different prosthetic feet. The results exemplify how assuming a rigid foot can skew comparisons between biological and prosthetic limbs, and lead to incorrect conclusions when comparing different prostheses/interventions. Based on analytical derivations, empirical findings and prior literature we recommend against computing conventional ankle power (between shank-foot). Instead, we recommend using an alternative estimate of power generated about the ankle joint complex (between shank-calcaneus) in conjunction with an estimate of foot power (between calcaneus-ground); or using a combined anklefoot power calculation. We conclude that treating the entire foot as a rigid-body segment is often inappropriate and ill-advised. Including foot power in biomechanical gait analysis is necessary to enhance scientific conclusions, clinical evaluations and technology development.
Collapse
Affiliation(s)
- Karl E Zelik
- Dept. of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA; Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Dept. of Physical Medicine & Rehabilitation, Vanderbilt University, Nashville, TN, USA.
| | - Eric C Honert
- Dept. of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
50
|
Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, Collins SH. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 2018. [PMID: 28642437 DOI: 10.1126/science.aal5054] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.,School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Pieter Fiers
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kirby A Witte
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rachel W Jackson
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katherine L Poggensee
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Steven H Collins
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. .,Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|