1
|
Fu L, Ren J, Lei X, Zhang R, Zhang C. Effects of repetitive transcranial magnetic stimulation (rTMS) on cognitive impairment in depression: A systematic review and meta-analysis. J Affect Disord 2025; 373:465-477. [PMID: 39793617 DOI: 10.1016/j.jad.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
OBJECTIVE Cognitive dysfunction is a core symptom of depression and contributes significantly to functional and psychosocial impairment. However, pharmacotherapy has shown limited efficacy in alleviating these cognitive deficits. This study aimed to systematically evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS) in improving cognitive impairments in patients with depression. METHODS A literature search was conducted across PubMed, Embase, Web of Science, PsycINFO, and the Cochrane Library databases up to June 19, 2024. Studies were included if they met the following criteria: (1) participants were exclusively patients with unipolar depression, (2) both active rTMS and sham stimulation were administered in parallel groups, (3) sufficient data were available, and (4) the study design was a randomized controlled trial (RCT). RESULTS A total of 15 studies met the inclusion criteria. The meta-analysis revealed no significant improvement in cognitive impairment with active rTMS compared to sham rTMS across multiple cognitive domains, including global cognitive function, attention, working memory, psychomotor speed, language, visuospatial ability, learning and memory, and executive function. CONCLUSION Current evidence suggests that rTMS does not demonstrate substantial efficacy in alleviating cognitive dysfunction in patients with depression. Future research should focus on elucidating the underlying mechanisms of rTMS efficacy and optimizing stimulation protocols, including the precise targeting of stimulation sites, as well as refining frequency, intensity, and duration parameters to better address cognitive impairment.
Collapse
Affiliation(s)
- Lirong Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Ren
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Lei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Yu Y, Zhang T, Li Q, Song M, Qi L, Sun J, Ji G, Tian Y, Wang K. Distinction in the function and microstructure of white matter between major depressive disorder and generalized anxiety disorder. J Affect Disord 2025; 374:55-62. [PMID: 39793621 DOI: 10.1016/j.jad.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are two of the leading causes of impairment to human mental health. These two psychiatric disorders overlap in many symptoms and neurobiological features thus difficult to distinguish in some cases. METHODS We enrolled 102 participants, comprising 40 patients with MDD, 32 patients with GAD and 30 matched healthy controls (HCs), to undergo multimodal magnetic resonance imaging (MRI) scans. We identified 18 major white matter (WM) tracts with automated fiber quantification (AFQ) method, to evaluated microstructure with fractional anisotropy (FA) and function with amplitude of low-frequency fluctuation (ALFF). An analysis of variance (ANOVA) was employed to identify differences among groups. We further explored the correlations of FA and ALFF features with clinical symptoms. RESULTS We identified the white matter microstructure and function of 89 participants. ANOVA and post-hoc analysis revealed that GAD group exhibited significantly higher FA of right anterior thalamic radiation (ATR) than in MDD and HC groups. Additionally, MDD group exhibited significantly decreased ALFF in forceps major (FMA), forceps minor (FMI), bilateral corticospinal tracts (CST) and left inferior fronto-occipital fasciculus (IFOF) compared to both GAD and HC group. ALFF of right CST was significantly negatively correlated to HAMA and a moderate effect size and marginal significance was found between FA of the right ATR and HAMA in GAD group. LIMITATIONS This study used cross-sectional data and sample size was small. CONCLUSION Tracking microstructure and function of WM with AFQ method has the potential to distinguish different psychiatric diseases.
Collapse
Affiliation(s)
- Yue Yu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ting Zhang
- Department of Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qianqian Li
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China
| | - Mengyu Song
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Li Qi
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jinmei Sun
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Gongjun Ji
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China.
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| |
Collapse
|
3
|
Hernández-Sauret A, Martin de la Torre O, Redolar-Ripoll D. Use of transcranial magnetic stimulation (TMS) for studying cognitive control in depressed patients: A systematic review. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:972-1007. [PMID: 38773020 PMCID: PMC11525394 DOI: 10.3758/s13415-024-01193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Major depressive disorder (MDD) is a debilitating mental disorder and the leading cause of disease burden. Major depressive disorder is associated with emotional impairment and cognitive deficit. Cognitive control, which is the ability to use perceptions, knowledge, and information about goals and motivations to shape the selection of goal-directed actions or thoughts, is a primary function of the prefrontal cortex (PFC). Psychotropic medications are one of the main treatments for MDD, but they are not effective for all patients. An alternative treatment is transcranial magnetic stimulation (TMS). Previous studies have provided mixed results on the cognitive-enhancing effects of TMS treatment in patients with MDD. Some studies have found significant improvement, while others have not. There is a lack of understanding of the specific effects of different TMS protocols and stimulation parameters on cognitive control in MDD. Thus, this review aims to synthesize the effectiveness of the TMS methods and a qualitative assessment of their potential benefits in improving cognitive functioning in patients with MDD. We reviewed 21 studies in which participants underwent a treatment of any transcranial magnetic stimulation protocol, such as repetitive TMS or theta-burst stimulation. One of the primary outcome measures was any change in the cognitive control process. Overall, the findings indicate that transcranial magnetic stimulation (TMS) may enhance cognitive function in patients with MDD. Most of the reviewed studies supported the notion of cognitive improvement following TMS treatment. Notably, improvements were predominantly observed in inhibition, attention, set shifting/flexibility, and memory domains. However, fewer significant improvements were detected in evaluations of visuospatial function and recognition, executive function, phonemic fluency, and speed of information processing. This review found evidence supporting the use of TMS as a treatment for cognitive deficits in patients with MDD. The results are promising, but further research is needed to clarify the specific TMS protocol and stimulation locations that are most effective.
Collapse
Affiliation(s)
- Ana Hernández-Sauret
- Cognitive Neurolab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou 156, Barcelona, Spain.
- Instituto Brain360, Unidad Neuromodulación y Neuroimagen, Calle Maó 9, Barcelona, Spain.
| | - Ona Martin de la Torre
- Cognitive Neurolab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou 156, Barcelona, Spain
- Instituto Brain360, Unidad Neuromodulación y Neuroimagen, Calle Maó 9, Barcelona, Spain
| | - Diego Redolar-Ripoll
- Cognitive Neurolab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou 156, Barcelona, Spain
- Instituto Brain360, Unidad Neuromodulación y Neuroimagen, Calle Maó 9, Barcelona, Spain
| |
Collapse
|
4
|
Nejati V, Khorrami AS, Vaziri ZS, Shahri F, Yazdchi M, Abdolmanafi V, Paydarfard S, Golshan A. The effectiveness of non-invasive brain stimulation in treatment of major depressive disorder (MDD): a systematic review and transfer analysis. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02852-5. [PMID: 39585445 DOI: 10.1007/s00702-024-02852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to analyze the transferability of non-invasive brain stimulation (NIBS) interventions in individuals with major depressive disorder (MDD) based on the FIELD model (Function, Implementation, Ecology, Level, and Duration), encompassing function, implement, ecology, level, and duration. A systematic search of electronic databases yielded a total of 21 eligible studies, comprising 12 transcranial direct current stimulation (tDCS) and 9 transcranial magnetic stimulation (TMS) trials, involving 1029 individuals with MDD. The meta-analysis of effect sizes revealed positive transfer effects across all domains of the FIELD model, suggesting that NIBS interventions have potential efficacy in improving various facets of MDD. The subgroup analysis highlighted that bilateral dlPFC stimulation exhibited the highest effect size for transferability, indicating greater transferability for rTMS, a higher dose of stimulation, and the integration of additional interventions. Additionally, the study discusses the implications of bilateral dorsolateral prefrontal cortex (dlPFC) stimulation and the integration of complementary therapies for optimizing treatment efficacy.
Collapse
Affiliation(s)
- Vahid Nejati
- Department of Psychology, Shahid Beheshti University, Tehran, Iran.
| | | | - Zahra S Vaziri
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Shahri
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Yazdchi
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | | | - Saeed Paydarfard
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Aida Golshan
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Valter Y, Rapallo F, Burlando B, Crossen M, Baeken C, Datta A, Deblieck C. Efficacy of non-invasive brain stimulation and neuronavigation for major depressive disorder: a systematic review and meta-analysis. Expert Rev Med Devices 2024; 21:643-658. [PMID: 38902968 DOI: 10.1080/17434440.2024.2370820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are increasingly used for major depressive disorder (MDD). Most tDCS and rTMS studies target the left dorsolateral prefrontal cortex, either with or without neuronavigation. We examined the effect of rTMS and tDCS, and the added value of neuronavigation in the treatment of MDD. METHODS A search on PubMed, Embase, and Cochrane databases for rTMS or tDCS randomized controlled trials of MDD up to 1 February 2023, yielded 89 studies. We then performed meta-analyses comparing tDCS efficacy to non-neuronavigated rTMS, tDCS to neuronavigated rTMS, and neuronavigated rTMS to non-neuronavigated rTMS. We assessed the significance of the effect in subgroups and in the whole meta-analysis with a z-test and subgroup differences with a chi-square test. RESULTS We found small-to-medium effects of both tDCS and rTMS on MDD, with a slightly greater effect from rTMS. No significant difference was found between neuronavigation and non-neuronavigation. CONCLUSION Although both tDCS and rTMS are effective in treating MDD, many patients do not respond. Additionally, current neuronavigation methods are not significantly improving MDD treatment. It is therefore imperative to seek personalized methods for these interventions.
Collapse
Affiliation(s)
- Yishai Valter
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Fabio Rapallo
- Faculty of Economics, University of Genoa, Genova, Italy
| | - Bruno Burlando
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Miah Crossen
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Choi Deblieck
- Lab for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Fitzsimmons SMDD, Oostra E, Postma TS, van der Werf YD, van den Heuvel OA. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities. Biol Psychiatry 2024; 95:592-600. [PMID: 38040046 DOI: 10.1016/j.biopsych.2023.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Neuroplasticity, or activity-dependent neuronal change, is a crucial mechanism underlying the mechanisms of effect of many therapies for neuropsychiatric disorders, one of which is repetitive transcranial magnetic stimulation (rTMS). Understanding the neuroplastic effects of rTMS at different biological scales and on different timescales and how the effects at different scales interact with each other can help us understand the effects of rTMS in clinical populations and offers the potential to improve treatment outcomes. Several decades of research in the fields of neuroimaging and blood biomarkers is increasingly showing its clinical relevance, allowing measurement of the synaptic, functional, and structural changes involved in neuroplasticity in humans. In this narrative review, we describe the evidence for rTMS-induced neuroplasticity at multiple levels of the nervous system, with a focus on the treatment of psychiatric disorders. We also describe the relationship between neuroplasticity and clinical effects, discuss methods to optimize neuroplasticity, and identify future research opportunities in this area.
Collapse
Affiliation(s)
- Sophie M D D Fitzsimmons
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands.
| | - Eva Oostra
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Tjardo S Postma
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Rodolico A, Cutrufelli P, Di Francesco A, Aguglia A, Catania G, Concerto C, Cuomo A, Fagiolini A, Lanza G, Mineo L, Natale A, Rapisarda L, Petralia A, Signorelli MS, Aguglia E. Efficacy and safety of ketamine and esketamine for unipolar and bipolar depression: an overview of systematic reviews with meta-analysis. Front Psychiatry 2024; 15:1325399. [PMID: 38362031 PMCID: PMC10867194 DOI: 10.3389/fpsyt.2024.1325399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
Background Unipolar and bipolar depression present treatment challenges, with patients sometimes showing limited or no response to standard medications. Ketamine and its enantiomer, esketamine, offer promising alternative treatments that can quickly relieve suicidal thoughts. This Overview of Reviews (OoR) analyzed and synthesized systematic reviews (SRs) with meta-analysis on randomized clinical trials (RCTs) involving ketamine in various formulations (intravenous, intramuscular, intranasal, subcutaneous) for patients with unipolar or bipolar depression. We evaluated the efficacy and safety of ketamine and esketamine in treating major depressive episodes across various forms, including unipolar, bipolar, treatment-resistant, and non-resistant depression, in patient populations with and without suicidal ideation, aiming to comprehensively assess their therapeutic potential and safety profile. Methods Following PRIOR guidelines, this OoR's protocol was registered on Implasy (ID:202150049). Searches in PubMed, Scopus, Cochrane Library, and Epistemonikos focused on English-language meta-analyses of RCTs of ketamine or esketamine, as monotherapy or add-on, evaluating outcomes like suicide risk, depressive symptoms, relapse, response rates, and side effects. We included studies involving both suicidal and non-suicidal patients; all routes and formulations of administration (intravenous, intramuscular, intranasal) were considered, as well as all available comparisons with control interventions. We excluded meta-analysis in which the intervention was used as anesthesia for electroconvulsive therapy or with a randomized ascending dose design. The selection, data extraction, and quality assessment of studies were carried out by pairs of reviewers in a blinded manner. Data on efficacy, acceptability, and tolerability were extracted. Results Our analysis included 26 SRs and 44 RCTs, with 3,316 subjects. The intervention is effective and well-tolerated, although the quality of the included SRs and original studies is poor, resulting in low certainty of evidence. Limitations This study is limited by poor-quality SRs and original studies, resulting in low certainty of the evidence. Additionally, insufficient available data prevents differentiation between the effects of ketamine and esketamine in unipolar and bipolar depression. Conclusion While ketamine and esketamine show promising therapeutic potential, the current evidence suffers from low study quality. Enhanced methodological rigor in future research will allow for a more informed application of these interventions within the treatment guidelines for unipolar and bipolar depression. Systematic review registration [https://inplasy.com/inplasy-2021-5-0049/], identifier (INPLASY202150049).
Collapse
Affiliation(s)
- Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Pierfelice Cutrufelli
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Antonio Di Francesco
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gaetano Catania
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
- University of Catania, Catania, Italy
| | - Carmen Concerto
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Alessandro Cuomo
- Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Andrea Fagiolini
- Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Ludovico Mineo
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Antimo Natale
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
- Department of Psychiatry, Adult Psychiatry Service (SPA), University Hospitals of Geneva (HUG), Geneva, Switzerland
| | - Laura Rapisarda
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Salihu AT, Hill KD, Zoghi M, Jaberzadeh S. Examining the Intra-rater Reliability of Transcranial Magnetic Stimulation (TMS)-Induced Motor Evoked Potentials (MEPs) Within and Between Sessions: A Step Towards Ensuring Accuracy of Observed MEP Changes in Repeated Measures Studies conducted by Newly Trained TMS Operators. MIDDLE EAST JOURNAL OF REHABILITATION AND HEALTH STUDIES 2023; 11. [DOI: 10.5812/mejrh-138723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 01/03/2025]
Abstract
Background: An essential factor in the validity of motor evoked potential (MEP)s recorded by transcranial magnetic stimulation (TMS) over multiple times is their test-retest reliability which to a large extent depends on the accuracy and competence of the assessor (intra-rater reliability). However, intra-rater reliability is infrequently reported in TMS studies suggesting that this is rarely done. Objectives: This study was conducted to determine the intra-rater within and between-session reliability of a newly trained TMS assessor prior to a main TMS study and report on the methodology used to encourage similar practice. Methods: Fourteen (10 males, 4 females; mean age: 32 ± 5.8 years) participants took part in the study. Motor evoked potentials were elicited from a relaxed, right first dorsal interosseous (FDI) muscle three times (T1, T2 and T3) across two testing sessions at least 48 hours apart. During the first session, MEPs were recorded twice (T1 and T2) within an interval of 20 minutes to determine the within (intra) session reliability of the assessor. During the second session, a single measurement was carried out (T3) which was compared to T1 to determine the inter-session reliability. Results: Repeated measure analysis of variance (ANOVA) did not reveal significant difference in the amplitude of the MEPs obtained across the three time periods (P = 0.196) demonstrating agreement in the MEPs and hence the reliability of the assessor. Additionally, the intraclass correlation coefficient (ICC) between T1 and T2; and T1 and T3 were 0.952 (P < 0.001) and 0.833 (P = 0.001) respectively further indicating the within and between sessions reliability of the assessor. Conclusions: The agreement between the three measured MEPs amplitude and the significant ICC demonstrates the reliability of the assessor in this study to use TMS for research. We suggest that the intra-rater reliability of new TMS operators should be established using the methodology in this report prior to main TMS studies.
Collapse
|
9
|
Chen H, Xu J, Lv W, Hu Z, Ke Z, Qin R, Chen Y, Xu Y. Altered morphological connectivity mediated white matter hyperintensity-related cognitive impairment. Brain Res Bull 2023; 202:110714. [PMID: 37495024 DOI: 10.1016/j.brainresbull.2023.110714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
White matter hyperintensities (WMH) are widely observed in older adults and are closely associated with cognitive impairment. However, the underlying neuroimaging mechanisms of WMH-related cognitive dysfunction remain unknown. This study recruited 61 WMH individuals with mild cognitive impairment (WMH-MCI, n = 61), 48 WMH individuals with normal cognition (WMH-NC, n = 48) and 57 healthy control (HC, n = 57) in the final analyses. We constructed morphological networks by applying the Kullback-Leibler divergence to estimate interregional similarity in the distributions of regional gray matter volume. Based on morphological networks, graph theory was applied to explore topological properties, and their relationship to WMH-related cognitive impairment was assessed. There were no differences in small-worldness, global efficiency and local efficiency. The nodal local efficiency, degree centrality and betweenness centrality were altered mainly in the limbic network (LN) and default mode network (DMN). The rich-club analysis revealed that WMH-MCI subjects showed lower average strength of the feeder and local connections than HC (feeder connections: P = 0.034; local connections: P = 0.042). Altered morphological connectivity mediated the relationship between WMH and cognition, including language (total indirect effect: -0.010; 95 % CI: -0.024, -0.002) and executive (total indirect effect: -0.010; 95 % CI: -0.028, -0.002) function. The altered topological organization of morphological networks was mainly located in the DMN and LN and was associated with WMH-related cognitive impairment. The rich-club connection was relatively preserved, while the feeder and local connections declined. The results suggest that single-subject morphological networks may capture neurological dysfunction due to WMH and could be applied to the early imaging diagnostic protocol for WMH-related cognitive impairment.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Jingxian Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weiping Lv
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Ke
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ying Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| |
Collapse
|
10
|
Yu T, Chen W, Huo L, Luo X, Wang J, Zhang B. Association between daily dose and efficacy of rTMS over the left dorsolateral prefrontal cortex in depression: A meta-analysis. Psychiatry Res 2023; 325:115260. [PMID: 37229909 DOI: 10.1016/j.psychres.2023.115260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a well-established, safe, and effective brain stimulation technique for depression; however, uniform parameters have not been used in clinical practice. The aim of this study was to identify the parameters that affect rTMS effectiveness and ascertain the range in which that parameter has optimal efficacy. A meta-analysis of sham-controlled trials using rTMS delivered over the left dorsolateral prefrontal cortex (DLPFC) in depression was conducted. In the meta-regression and subgroup analyses, all rTMS stimulation parameters were extracted and their association with efficacy was investigated. Of the 17,800 references, 52 sham-controlled trials were included. Compared to sham controls, our results demonstrated a significant improvement in depressive symptoms at the end of treatment. According to the results of meta-regression, the number of pulses and sessions per day correlated with rTMS efficacy; however, the positioning method, stimulation intensity, frequency, number of treatment days, and total pulses did not. Furthermore, subgroup analysis revealed that the efficacy was correspondingly better in the group with higher daily pulses. In clinical practice, increasing the number of daily pulses and sessions may improve the effectiveness of rTMS.
Collapse
Affiliation(s)
- Tong Yu
- Department of Psychiatry, Guangzhou Medical University, Guangzhou, PR. China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, PR. China
| | - Wangni Chen
- Department of Psychiatry, Guangzhou Medical University, Guangzhou, PR. China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, PR. China
| | - Lijuan Huo
- Department of Psychiatry, Guangzhou Medical University, Guangzhou, PR. China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, PR. China
| | - Xin Luo
- Department of Psychiatry, Guangzhou Medical University, Guangzhou, PR. China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, PR. China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR. China
| | - Bin Zhang
- Tianjin Anding Hospital, Tianjin Medical University, Tianjin, PR. China.
| |
Collapse
|
11
|
Deng Y, Li W, Zhang B. Functional Activity in the Effect of Transcranial Magnetic Stimulation Therapy for Patients with Depression: A Meta-Analysis. J Pers Med 2023; 13:405. [PMID: 36983590 PMCID: PMC10051603 DOI: 10.3390/jpm13030405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Depression is a long-lasting mental disorder that affects more than 264 million people worldwide. Transcranial magnetic stimulation (TMS) can be a safe and effective choice for the treatment of depression. Functional neuroimaging provides unique insights into the neuropsychiatric effects of antidepressant TMS. In this meta-analysis, we aimed to assess the functional activity of brain regions caused by TMS for depression. A literature search was conducted from inception to 5 January 2022. Studies were then selected according to predetermined inclusion and exclusion criteria. Activation likelihood estimation was applied to analyze functional activation. Five articles were ultimately included after selection. The main analysis results indicated that TMS treatment for depression can alter the activity in the right precentral gyrus, right posterior cingulate, left inferior frontal gyrus and left middle frontal gyrus. In resting-state studies, increased activation was shown in the right precentral gyrus, right posterior cingulate, left inferior frontal gyrus and left superior frontal gyrus associated with TMS treatment. In task-related studies, clusters in the right middle frontal gyrus, left sub-gyrus, left middle frontal gyrus and left posterior cingulate were hyperactivated post-treatment. Our study offers an overview of brain activity changes in patients with depression after TMS treatment.
Collapse
Affiliation(s)
- Yongyan Deng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
- Peking University Sixth Hospital, Beijing 100191, China
| | - Wenyue Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin 300222, China
| |
Collapse
|
12
|
Ren L, Zhai Z, Xiang Q, Zhuo K, Zhang S, Zhang Y, Jiao X, Tong S, Liu D, Sun J. Transcranial ultrasound stimulation modulates the interhemispheric balance of excitability in human motor cortex. J Neural Eng 2023; 20. [PMID: 36669203 DOI: 10.1088/1741-2552/acb50d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Background. Low-intensity transcranial ultrasound stimulation (TUS) could induce both immediate and long-lasting neuromodulatory effects in human brains. Interhemispheric imbalance at prefrontal or motor cortices generally associates with various cognitive decline in aging and mental disorders. However, whether TUS could modulate the interhemispheric balance of excitability in human brain remains unknown.Objective. This study aims to explore whether repetitive TUS (rTUS) intervention can modulate the interhemispheric balance of excitability between bilateral motor cortex (M1) in healthy subjects.Approach. Motor evoked potentials (MEPs) at bilateral M1 were measured at 15 min and 0 min before a 15 min active or sham rTUS intervention on left M1 and at 0 min, 15 min and 30 min after the intervention, and the Chinese version of brief neurocognitive test battery (C-BCT) was conducted before and after the intervention respectively. Cortical excitability was quantified by MEPs, and the long-lasting changes of MEP amplitude was used as an index of plasticity.Results. In the active rTUS group (n= 20), the ipsilateral MEP amplitude increased significantly compared with baselines and lasted for up to 30 min after intervention, while the contralateral MEP amplitude decreased lasting for 15 min, yielding increased laterality between bilateral MEPs. Furthermore, rTUS intervention induced changes in some C-BCT scores, and the changes of scores correlated with the changes of MEP amplitudes induced by rTUS intervention. The sham rTUS group (n= 20) showed no significant changes in MEPs and C-BCT scores. In addition, no participants reported any adverse effects during and after the rTUS intervention, and no obvious temperature increase appeared in skull or brain tissues in simulation.Significance. rTUS intervention modulated the plasticity of ipsilateral M1 and the interhemispheric balance of M1 excitability in human brain, and improved cognitive performance, suggesting a considerable potential of rTUS in clinical interventions.
Collapse
Affiliation(s)
- Liyuan Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Zhaolin Zhai
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Qiong Xiang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Kaiming Zhuo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Suzhen Zhang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Yi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Xiong Jiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Dengtang Liu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Institute of Mental Health, Fudan University, Shanghai 200030, People's Republic of China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| |
Collapse
|
13
|
Multi-objective optimization method for coil current waveform of transcranial magnetic stimulation. Heliyon 2023; 9:e13541. [PMID: 36873139 PMCID: PMC9975103 DOI: 10.1016/j.heliyon.2023.e13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has been proved to be effective in the treatment of many kinds of mental diseases. However, the clicking noise produced by the pulse current with large amplitude and short duration in the TMS coil may damage the hearing of patients. The heat produced by the high-frequency pulse current in the coil also reduces the efficiency of TMS equipment. A multi-objective waveform optimization method to improve heat and noise problems at the same time is presented. By analyzing the current waveforms of TMS, the relationship between the current and the vibration energy/Joule heating is established. Taking the Joule heating and the vibration energy as the optimization objectives, exceeding the same amount of neuronal membrane potential as the limiting condition, the Pareto fronts of different current models are obtained by applying the multi-objective particle swarm optimization algorithm (MOPSO). Therefore, the corresponding current waveforms are inversely deduced. A ringing suppression cTMS (RS-cTMS) proof-of-principle experimental platform is constructed. The feasibility of the proposed method is validated through experiments. The results show that the optimized current waveforms can greatly reduce the vibration and heating of the coil compared with the conventional full-sine, recified sine and half-sine waveforms, thus reducing the pulse noise and prolonging the using time of the equipment. The optimized diversified waveforms also provide a reference for the diversity of TMS.
Collapse
|
14
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
15
|
Toffanin T, Folesani F, Ferrara M, Belvederi Murri M, Zerbinati L, Caruso R, Nanni MG, Koch G, Fadiga L, Palagini L, Perini G, Benatti B, Dell'Osso B, Grassi L. Cognitive functioning as predictor and marker of response to repetitive transcranial magnetic stimulation in depressive disorders: A systematic review. Gen Hosp Psychiatry 2022; 79:19-32. [PMID: 36240649 DOI: 10.1016/j.genhosppsych.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Cognitive performance in Major Depressive Disorder (MDD) is frequently impaired and related to functional outcomes. Repetitive Transcranial Magnetic Stimulation (rTMS) may exert its effects on MDD acting both on depressive symptoms and neurocognition. Furthermore, cognitive status could predict the therapeutic response of depressive symptoms to rTMS. However, cognitive performances as a predictor of rTMS response in MDD has not been thoroughly investigated. This review aims to evaluate the role of pre-treatment cognitive performance as a predictor of clinical response to rTMS, and the effects of rTMS on neurocognition in MDD. METHOD A systematic review of studies evaluating neurocognition in MDD as an outcome and/or predictor of response to rTMS was conducted using PubMed/Medline and Embase. RESULTS Fifty-eight articles were identified: 25 studies included neurocognition as a predictor of response to rTMS; 56 used cognitive evaluation as an outcome of rTMS. Baseline cognitive performance and cognitive improvements after rTMS predicted clinical response to rTMS. Moreover, rTMS improved cognition in MDD. CONCLUSIONS Cognitive assessment could predict improvement of depression in MDD patients undergoing rTMS and help selecting patients that could have beneficial effects from rTMS. A routine cognitive assessment might stratify MDD patients and track rTMS related cognitive improvement.
Collapse
Affiliation(s)
- Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Federica Folesani
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Maria Ferrara
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| | - Martino Belvederi Murri
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Luigi Zerbinati
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Rosangela Caruso
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Maria Giulia Nanni
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, Institute of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, Institute of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | - Laura Palagini
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Giulia Perini
- Padova Neuroscience Center, University of Padova, Padova, Italy; Casa di Cura Parco dei Tigli, Padova, Italy
| | - Beatrice Benatti
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Ariza-Salamanca DF, Corrales-Hernández MG, Pachón-Londoño MJ, Hernández-Duarte I. Molecular and cellular mechanisms leading to catatonia: an integrative approach from clinical and preclinical evidence. Front Mol Neurosci 2022; 15:993671. [PMID: 36245923 PMCID: PMC9558725 DOI: 10.3389/fnmol.2022.993671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
This review aims to describe the clinical spectrum of catatonia, in order to carefully assess the involvement of astrocytes, neurons, oligodendrocytes, and microglia, and articulate the available preclinical and clinical evidence to achieve a translational understanding of the cellular and molecular mechanisms behind this disorder. Catatonia is highly common in psychiatric and acutely ill patients, with prevalence ranging from 7.6% to 38%. It is usually present in different psychiatric conditions such as mood and psychotic disorders; it is also a consequence of folate deficiency, autoimmunity, paraneoplastic disorders, and even autistic spectrum disorders. Few therapeutic options are available due to its complexity and poorly understood physiopathology. We briefly revisit the traditional treatments used in catatonia, such as antipsychotics, electroconvulsive therapy, and benzodiazepines, before assessing novel therapeutics which aim to modulate molecular pathways through different mechanisms, including NMDA antagonism and its allosteric modulation, and anti-inflammatory drugs to modulate microglia reaction and mitigate oxidative stress, such as lithium, vitamin B12, and NMDAr positive allosteric modulators.
Collapse
Affiliation(s)
- Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- *Correspondence: Daniel Felipe Ariza-Salamanca
| | - María Gabriela Corrales-Hernández
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - María José Pachón-Londoño
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Isabella Hernández-Duarte
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
17
|
Gutierrez MI, Poblete-Naredo I, Mercado-Gutierrez JA, Toledo-Peral CL, Quinzaños-Fresnedo J, Yanez-Suarez O, Gutierrez-Martinez J. Devices and Technology in Transcranial Magnetic Stimulation: A Systematic Review. Brain Sci 2022; 12:1218. [PMID: 36138954 PMCID: PMC9496961 DOI: 10.3390/brainsci12091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/18/2023] Open
Abstract
The technology for transcranial magnetic stimulation (TMS) has significantly changed over the years, with important improvements in the signal generators, the coils, the positioning systems, and the software for modeling, optimization, and therapy planning. In this systematic literature review (SLR), the evolution of each component of TMS technology is presented and analyzed to assess the limitations to overcome. This SLR was carried out following the PRISMA 2020 statement. Published articles of TMS were searched for in four databases (Web of Science, PubMed, Scopus, IEEE). Conference papers and other reviews were excluded. Records were filtered using terms about TMS technology with a semi-automatic software; articles that did not present new technology developments were excluded manually. After this screening, 101 records were included, with 19 articles proposing new stimulator designs (18.8%), 46 presenting or adapting coils (45.5%), 18 proposing systems for coil placement (17.8%), and 43 implementing algorithms for coil optimization (42.6%). The articles were blindly classified by the authors to reduce the risk of bias. However, our results could have been influenced by our research interests, which would affect conclusions for applications in psychiatric and neurological diseases. Our analysis indicates that more emphasis should be placed on optimizing the current technology with a special focus on the experimental validation of models. With this review, we expect to establish the base for future TMS technological developments.
Collapse
Affiliation(s)
- Mario Ibrahin Gutierrez
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, CONACYT —Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | | | - Jorge Airy Mercado-Gutierrez
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Cinthya Lourdes Toledo-Peral
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Jimena Quinzaños-Fresnedo
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Oscar Yanez-Suarez
- Neuroimaging Research Laboratory, Electrical Engineering Department, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City 14389, Mexico
| | - Josefina Gutierrez-Martinez
- Subdirección de Investigación Tecnológica, División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| |
Collapse
|
18
|
Concerto C, Lanza G, Fisicaro F, Pennisi M, Rodolico A, Torrisi G, Bella R, Aguglia E. Repetitive transcranial magnetic stimulation for post-traumatic stress disorder: Lights and shadows. World J Clin Cases 2022; 10:5929-5933. [PMID: 35979128 PMCID: PMC9258373 DOI: 10.12998/wjcc.v10.i17.5929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/27/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
We have read with interest the publication that describes the available data related to the use of neuromodulation strategies for the treatment of post-traumatic stress disorder (PTSD). Despite treatment advances, however, a substantial proportion of PTSD patients receiving psychological and/or pharmacological treatment do not reach an adequate clinical response. In their paper, the authors draw attention to the current understanding of the use of repetitive transcranial magnetic stimulation (rTMS) as a potential treatment for PTSD. Most of the previous studies indeed applied both inhibitory (1 Hz) and excitatory (> 1 Hz, up to 20 Hz) rTMS to the right and/or left dorsolateral prefrontal cortex. Despite larger therapeutic effects observed when high-frequency stimulation was applied, the question of which side and frequency of stimulation is the most successful is still debated. The authors also reported on the after-effect of rTMS related to neuroplasticity and identified the intermittent theta burst stimulation as a technique of particular interest because of it showed the most effective improvement on PTSD symptoms. However, although numerous studies have highlighted the possible beneficial use of rTMS protocols for PTSD, the exact mechanism of action remains unclear. In their conclusions, the authors stated that rTMS has been demonstrated to be effective for the treatment of PTSD symptoms. Nevertheless, we believe that further research with homogeneous samples, standardized protocols, and objective outcome measures is needed to identify specific therapeutic targets and to better define significant changes when active and sham stimulation procedures are compared.
Collapse
Affiliation(s)
- Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania 95124, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania 95124, Italy
| | - Giulia Torrisi
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania 95124, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, University of Catania, Catania 95123, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania 95124, Italy
| |
Collapse
|
19
|
Cotovio G, Rodrigues da Silva D, Real Lage E, Seybert C, Oliveira-Maia AJ. Hemispheric asymmetry of motor cortex excitability in mood disorders - Evidence from a systematic review and meta-analysis. Clin Neurophysiol 2022; 137:25-37. [PMID: 35240425 DOI: 10.1016/j.clinph.2022.01.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mood disorders have been associated with lateralized brain dysfunction, on the left-side for depression and right-side for mania. Consistently, asymmetry of cortical excitability, as measured by transcranial magnetic stimulation (TMS) has been reported. Here, we reviewed and summarized work assessing such measures bilaterally in mood disorders. METHODS We performed a systematic review and extracted data to perform meta-analyses of interhemispheric asymmetry of motor cortex excitability, assessed with TMS, across different mood disorders and in healthy subjects. Additionally, potential predictors of interhemispheric asymmetry were explored. RESULTS Asymmetry of resting motor threshold (MT) among healthy volunteers was significant, favoring lower right relative to left-hemisphere excitability. MT was also significantly asymmetric in major depressive disorder (MDD), but with lower excitability of the left -hemisphere, when compared to the right, no longer observed in recovered patients. Findings on intracortical facilitation were similar. The few trials including bipolar depression revealed similar trends for imbalance, but with lower right hemisphere excitability, relative to the left. CONCLUSIONS There is interhemispheric asymmetry of motor cortical excitability in MDD, with lower excitability on left when compared to right-side. Interhemispheric asymmetry, with lower right relative to left-sided excitability, was found for bipolar depression and was also suggested for healthy volunteers, in a pattern that is clearly distinct from MDD. SIGNIFICANCE Mood disorders display asymmetric motor cortical excitability that is distinct from that found in healthy volunteers, supporting the presence of lateralized brain dysfunction in these disorders.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | | | - Estela Real Lage
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal
| | - Carolina Seybert
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
20
|
Shi X, Guo Y, Zhu L, Wu W, Hordacre B, Su X, Wang Q, Chen X, Lan X, Dang G. Electroencephalographic connectivity predicts clinical response to repetitive transcranial magnetic stimulation in patients with insomnia disorder. Sleep Med 2021; 88:171-179. [PMID: 34773788 DOI: 10.1016/j.sleep.2021.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accumulating evidence suggests that low frequency repetitive transcranial magnetic stimulation (rTMS), which generally decreases cortical excitability and remodels plastic connectivity, improves sleep quality in patients with insomnia disorder. However, the effects of rTMS vary substantially across individuals and treatment is sometimes unsatisfactory, calling for biomarkers for predicting clinical outcomes. OBJECTIVE This study aimed to investigate whether functional connectivity of the target network in electroencephalography is associated with the clinical response to low frequency rTMS in patients with insomnia disorder. METHODS Twenty-five patients with insomnia disorder were subjected to 10 sessions of treatment with 1 Hz rTMS over the right dorsolateral prefrontal cortex. Resting-state electroencephalography was collected before rTMS. Pittsburgh Sleep Quality Index, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Mini-Mental State Exam were performed before and after rTMS treatment, with a follow-up after one month. Electroencephalographic connectivity was measured by the power envelope connectivity at the source level. Partial least squares regression identified models of connectivity that maximally accounted for the rTMS response. RESULTS Scores of Pittsburgh Sleep Quality Index, Hamilton Depression Rating Scale, and Hamilton Anxiety Rating Scale were decreased after rTMS and one-month later. Baseline weaker connectivity of a network in the beta and alpha bands between a brain region approximating the stimulated right dorsolateral prefrontal cortex and areas located in the frontal, insular, and limbic cortices was associated with a greater change in Pittsburgh Sleep Quality Index and Hamilton Depression Rating Scale following rTMS. CONCLUSIONS Low frequency rTMS could improve sleep quality and depressive moods in patients with insomnia disorder. Moreover, electroencephalographic functional connectivity would potentially be a robust biomarker for predicting the therapeutic effects.
Collapse
Affiliation(s)
- Xue Shi
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China; Shenzhen Bay Laboratory, Shenzhen, 518020, Guangdong, China
| | - Lin Zhu
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Wei Wu
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Australia
| | - Xiaolin Su
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Qian Wang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xiaoxia Chen
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xiaoyong Lan
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Ge Dang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
21
|
Cavallero F, Gold MC, Tirrell E, Kokdere F, Donachie N, Steinfink D, Kriske J, Carpenter LL. Audio-Guided Mindfulness Meditation During Transcranial Magnetic Stimulation Sessions for the Treatment of Major Depressive Disorder: A Pilot Feasibility Study. Front Psychol 2021; 12:678911. [PMID: 34484035 PMCID: PMC8415877 DOI: 10.3389/fpsyg.2021.678911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Mindfulness-Based Cognitive Therapy (MBCT) has been shown to enhance the long-term treatment outcomes for major depressive disorder (MDD), and engagement of specific brain activities during brain stimulation may produce synergistic effects. Audio-guided meditation exercises are a component of MBCT that might be combined with standard transcranial magnetic stimulation (TMS) therapy sessions. We developed and pilot-tested a modified MBCT protocol for patients undergoing a standard course of TMS for MDD. Methods: Four MBCT audiotracks with differing durations and types of mental focus were selected. Patients listened to the audiotapes through headphones during daily TMS sessions for 5 consecutive weeks. The primary goal was to evaluate the feasibility and acceptability of the meditation intervention with TMS. Changes in self-rated measures of symptom severity, stress, life satisfaction, and mindfulness were also assessed. Results: Seventeen depressed subjects completed the study and 12 terminated early. Reasons for discontinuation included an inability to meditate in the treatment setting and induction of negative mood states. TMS percussive sensations and clicking sounds hindered the ability of patients to fully concentrate on or hear the voice of the audiotape narrator. Some became overwhelmed or felt increased pressure, anxiety, or aggravation trying to do meditation exercises while receiving TMS. Conclusion: There is a growing interest in combining TMS with other concurrent psychotherapeutic interventions to optimize treatment outcomes. The results highlight numerous feasibility issues with MBCT via guided audiotapes during TMS treatment. Future work should draw on these shortcomings to evaluate the appropriateness of MBCT for depressed patients undergoing neuromodulation.
Collapse
Affiliation(s)
- Fiamma Cavallero
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, United States.,Brown Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Michael C Gold
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, United States
| | - Eric Tirrell
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, United States
| | - Fatih Kokdere
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, United States.,Brown Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | | | - Dan Steinfink
- Salience TMS Neuro Solutions, Plano, TX, United States
| | - Joseph Kriske
- Salience TMS Neuro Solutions, Plano, TX, United States
| | - Linda L Carpenter
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, United States.,Brown Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
22
|
Faro A, Giordano D, Venticinque M. Wireless Programmable Body Sensor Networks and Situated Healthcare. 2021 9TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOICT) 2021:269-274. [DOI: 10.1109/icoict52021.2021.9527527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Zhong Y, Fan J, Wang H, He R. Simultaneously stimulating both brain hemispheres by rTMS in patients with unilateral brain lesions decreases interhemispheric asymmetry. Restor Neurol Neurosci 2021; 39:409-418. [PMID: 34334435 DOI: 10.3233/rnn-211172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Interhemispheric asymmetry caused by brain lesions is an adverse factor in the recovery of patients with neurological deficits. Repetitive transcranial magnetic stimulation (rTMS) has been shown to modulate cortical oscillation and proposed as an approach to rebalance the symmetry, which has not been documented well. OBJECTIVE In this study, we investigated the influence of repetitive transcranial magnetic stimulation (rTMS) on EEG power in patients with unilateral brain lesions by simultaneously stimulating both brain hemispheres and to elucidate asymmetrical changes in rTMS-induced neurophysiological activity. METHODS Fourteen patients with unilateral brain lesions were treated with one active and one sham session of 10 Hz rTMS over the vertex (Cz position). Resting-state EEGs were recorded before and immediately after rTMS. The brain symmetry index (BSI), calculated from a fast Fourier transform, was employed to quantify the power asymmetry in both hemispheres and paired channels over the entire range and five frequency bands (delta, theta, alpha, beta and gamma bands). RESULTS Comparison between active and sham sessions demonstrated rTMS-induced EEG after-effects. rTMS in the active session significantly reduced the BSI in patients with unilateral brain lesions over the entire frequency range (t = 2.767, P = 0.016). Among the five frequency bands, rTMS only induced a noticeable decrease in the BSI in the delta band (t = 2.254, P = 0.042). Furthermore, analysis of different brain regions showed that significant changes in the BSI of the alpha band were only demonstrated in the posterior parietal lobe. In addition, EEG topographic mapping showed a decreased power of delta oscillations in the ipsilesional hemisphere, whereas distinct cortical oscillations were observed in the alpha band around the parietal-occipital lobe in the contralesional hemisphere. CONCLUSIONS When both brain hemispheres were simultaneously activated, rTMS decreased interhemispheric asymmetry primarily via reducing the delta band in the lesioned hemisphere.
Collapse
Affiliation(s)
- Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianzhong Fan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huijuan Wang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Renhong He
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Kim E, Anguluan E, Kum J, Sanchez-Casanova J, Park TY, Kim JG, Kim H. Wearable Transcranial Ultrasound System for Remote Stimulation of Freely Moving Animal. IEEE Trans Biomed Eng 2021; 68:2195-2202. [PMID: 33186099 DOI: 10.1109/tbme.2020.3038018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) has drawn considerable attention in the neuroscience field as a noninvasive approach to modulate brain circuits. However, the conventional approach requires the use of anesthetized or immobilized animal models, which places considerable restrictions on behavior and affects treatment. Thus, this work presents a wireless, wearable system to achieve ultrasound brain stimulation in freely behaving animals. METHODS The wearable tFUS system was developed based on a microcontroller and amplifier circuit. Brain activity induced by tFUS was monitored through cerebral hemodynamic changes using near-infrared spectroscopy. The system was also applied to stroke rehabilitation after temporal middle cerebral artery occlusion (tMCAO) in rats. Temperature calculations and histological results showed the safety of the application even with prolonged 40 min sonication. RESULTS The output ultrasonic wave produced from a custom PZT transducer had a central frequency of 457 kHz and peak to peak pressure of 426 kPa. The device weight was 20 g, allowing a full range of motion. The stimulation was found to induce hemodynamic changes in the sonicated area, while open-field tests showed that ultrasound applied to the ipsilateral hemisphere for 5 consecutive days after the stroke facilitated recovery. CONCLUSION The wearable tFUS system has been designed and implemented on moving rats. The results showed the ability of device to cause both short- and long lasting effects. SIGNIFICANCE The proposed device provides a more natural environment to investigate the effects of tFUS for behavioral and long-term studies.
Collapse
|
25
|
Faro A, Giordano D, Venticinque M. Internetworked wrist sensing devices for Pervasive and M-Connected Eldercare. 2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (LIFETECH) 2021:454-456. [DOI: 10.1109/lifetech52111.2021.9391828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Lissemore JI, Mulsant BH, Rajji TK, Karp JF, Reynolds CF, Lenze EJ, Downar J, Chen R, Daskalakis ZJ, Blumberger DM. Cortical inhibition, facilitation and plasticity in late-life depression: effects of venlafaxine pharmacotherapy. J Psychiatry Neurosci 2021; 46:E88-E96. [PMID: 33119493 PMCID: PMC7955845 DOI: 10.1503/jpn.200001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/30/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Late-life depression is often associated with non-response or relapse following conventional antidepressant treatment. The pathophysiology of late-life depression likely involves a complex interplay between aging and depression, and may include abnormalities in cortical inhibition and plasticity. However, the extent to which these cortical processes are modifiable by antidepressant pharmacotherapy is unknown. METHODS Sixty-eight patients with late-life depression received 12 weeks of treatment with open-label venlafaxine, a serotonin-norepinephrine reuptake inhibitor (≤ 300 mg/d). We combined transcranial magnetic stimulation of the left motor cortex with electromyography recordings from the right hand to measure cortical inhibition using contralateral cortical silent period and paired-pulse short-interval intracortical inhibition paradigms; cortical facilitation using a paired-pulse intracortical facilitation paradigm; and short-term cortical plasticity using a paired associative stimulation paradigm. All measures were collected at baseline, 1 week into treatment (n = 23) and after approximately 12 weeks of treatment. RESULTS Venlafaxine did not significantly alter cortical inhibition, facilitation or plasticity after 1 or 12 weeks of treatment. Improvements in depressive symptoms during treatment were not associated with changes in cortical physiology. LIMITATIONS The results presented here are specific to the motor cortex. Future work should investigate whether these findings extend to cortical areas more closely associated with depression, such as the dorsolateral prefrontal cortex. CONCLUSION These findings suggest that antidepressant treatment with venlafaxine does not exert meaningful changes in motor cortical inhibition or plasticity in late-life depression. The absence of changes in motor cortical physiology, alongside improvements in depressive symptoms, suggests that age-related changes may play a role in previously identified abnormalities in motor cortical processes in latelife depression, and that venlafaxine treatment does not target these abnormalities.
Collapse
Affiliation(s)
- Jennifer I Lissemore
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Benoit H Mulsant
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Tarek K Rajji
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Jordan F Karp
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Charles F Reynolds
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Eric J Lenze
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Jonathan Downar
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Robert Chen
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Zafiris J Daskalakis
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| | - Daniel M Blumberger
- From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen)
| |
Collapse
|
27
|
Bouaziz N, Laidi C, Thomas F, Schenin-King Andrianisaina P, Moulier V, Januel D. Intermittent Theta-Burst Stimulation Over the DorsoLateral PreFrontal Cortex (DLPFC) in Healthy Subjects Produces No Cumulative Effect on Cortical Excitability. Front Psychiatry 2021; 12:626479. [PMID: 33679482 PMCID: PMC7930830 DOI: 10.3389/fpsyt.2021.626479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Intermittent Theta Burst Stimulation (iTBS) is a design of repetitive Transcranial Magnetic Stimulation (rTMS) and could be a candidate to replace rTMS in the treatment of depression, thanks to its efficacy, shorter duration, and ease of use. The antidepressant mechanism of iTBS, and whether this mechanism is mediated by a modulation of cortical excitability, remains unknown. Methods: Using a randomized double-blind, sham-controlled trial, 30 healthy volunteers received either iTBS or a sham treatment targeting the left DorsoLateral PreFrontal Cortex (L-DLPFC), twice a day over 5 consecutive days. Cortical excitability was measured before and after the 5 days of stimulation. Results: No difference in cortical excitability was observed between active or sham iTBS. Conclusion: Our study does not support any effect on cortical excitability of repetitive iTBS targeting the L-DLPFC.
Collapse
Affiliation(s)
- Noomane Bouaziz
- Unité de recherche clinique, Pôle 93G03, EPS de Ville Evrard, Neuilly sur Marne, France
| | - Charles Laidi
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine de Créteil, DMU IMPACT, Hôpitaux Universitaires Mondor, Créteil, France
| | - Fanny Thomas
- Unité de recherche clinique, Pôle 93G03, EPS de Ville Evrard, Neuilly sur Marne, France
| | | | - Virginie Moulier
- Unité de recherche clinique, Pôle 93G03, EPS de Ville Evrard, Neuilly sur Marne, France.,Service hospitalo-universitaire de psychiatrie adulte, CH du Rouvray, Sotteville-lès-Rouen, France
| | - Dominique Januel
- Unité de recherche clinique, Pôle 93G03, EPS de Ville Evrard, Neuilly sur Marne, France
| |
Collapse
|
28
|
Liu MN, Yeh HL, Kuan AS, Tsai SJ, Liou YJ, Walsh V, Lau CI. High-Frequency External Muscle Stimulation Reduces Depressive Symptoms in Older Male Veterans: A Pilot Study. J Geriatr Psychiatry Neurol 2021; 34:37-45. [PMID: 32242480 DOI: 10.1177/0891988720915524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Late-life depression (LLD) is a severe public health problem. Given that pharmacological treatments for LLD are limited by their side effects, development of efficient and tolerable nonpharmacological treatment for LLD is urgently required. This study investigated whether high-frequency external muscle stimulation could reduce depressive symptoms in LLD. METHODS Twenty-two older male veterans with major depression were recruited and randomized into a treatment (n = 9) or sham control group (n = 13). The groups received high-frequency external muscle stimulation or sham intervention 3 times per week for 12 weeks. Clinical symptoms and muscle strength were evaluated at baseline and every 2 weeks. RESULTS The 2 groups were homogeneous in age, baseline clinical symptoms, and muscle strength. The treatment group showed significant improvement in depression and anxiety scores and muscle strength (all P < .01), whereas the control group showed no significant change after the 12-week follow-up. Compared to the control group, the treatment group showed significant improvements in depression (Geriatric Depression Scale, P = .009; Hamilton Depression Rating Scale, P = .007) and anxiety scores (HAMA, P = .008) and muscle strength (all P < .001). Changes in depression and anxiety levels were significantly correlated with changes in muscle strength after the study. In the treatment group, we observed a trend of correlation between the reduction in depression and muscle strength gains. CONCLUSION High-frequency external muscle stimulation appears to be an effective treatment for older patients with LLD. Large studies with more tests and/or conducted in different populations are warranted to validate these preliminary findings.
Collapse
Affiliation(s)
- Mu-N Liu
- Department of Psychiatry, 46615Taipei Veterans General Hospital, Taipei.,Institute of Brain Science, National Yang-Ming University, Taipei.,Department of Neurology, Memory & Aging Center, University of California, San Francisco, CA, USA
| | - Heng-Liang Yeh
- Health Care Group, Taipei Veterans Home, New-Taipei City
| | - Ai Seon Kuan
- Institute of Public Health, National Yang-Ming University, Taipei.,Division of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei
| | - Shih-Jen Tsai
- Department of Psychiatry, 46615Taipei Veterans General Hospital, Taipei.,School of Medicine, National Yang-Ming University, Taipei
| | - Ying-Jay Liou
- Department of Psychiatry, 46615Taipei Veterans General Hospital, Taipei.,School of Medicine, National Yang-Ming University, Taipei
| | - Vincent Walsh
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, 4919University College London, London, United Kingdom
| | - Chi-Ieong Lau
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, 4919University College London, London, United Kingdom.,Department of Neurology, 38029Shin Kong Wu Ho-Su Memorial Hospital, Taipei.,Fu-Jen Catholic University, College of Medicine, Taipei.,Institute of Biophotonics and Brain Research Center, National Yang-Ming University, Taipei.,University Hospital, Taipa, Macau
| |
Collapse
|
29
|
Evaluation and Treatment of Vascular Cognitive Impairment by Transcranial Magnetic Stimulation. Neural Plast 2020. [PMID: 33193753 DOI: 10.1155/2020/8820881.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exact relationship between cognitive functioning, cortical excitability, and synaptic plasticity in dementia is not completely understood. Vascular cognitive impairment (VCI) is deemed to be the most common cognitive disorder in the elderly since it encompasses any degree of vascular-based cognitive decline. In different cognitive disorders, including VCI, transcranial magnetic stimulation (TMS) can be exploited as a noninvasive tool able to evaluate in vivo the cortical excitability, the propension to undergo neural plastic phenomena, and the underlying transmission pathways. Overall, TMS in VCI revealed enhanced cortical excitability and synaptic plasticity that seem to correlate with the disease process and progression. In some patients, such plasticity may be considered as an adaptive response to disease progression, thus allowing the preservation of motor programming and execution. Recent findings also point out the possibility to employ TMS to predict cognitive deterioration in the so-called "brains at risk" for dementia, which may be those patients who benefit more of disease-modifying drugs and rehabilitative or neuromodulatory approaches, such as those based on repetitive TMS (rTMS). Finally, TMS can be exploited to select the responders to specific drugs in the attempt to maximize the response and to restore maladaptive plasticity. While no single TMS index owns enough specificity, a panel of TMS-derived measures can support VCI diagnosis and identify early markers of progression into dementia. This work reviews all TMS and rTMS studies on VCI. The aim is to evaluate how cortical excitability, plasticity, and connectivity interact in the pathophysiology of the impairment and to provide a translational perspective towards novel treatments of these patients. Current pitfalls and limitations of both studies and techniques are also discussed, together with possible solutions and future research agenda.
Collapse
|
30
|
Deng Y, Li W, Zhang B. Neuroimaging in the effect of transcranial magnetic stimulation therapy for patient with depression: a protocol for a coordinate-based meta-analysis. BMJ Open 2020; 10:e038099. [PMID: 33020098 PMCID: PMC7537428 DOI: 10.1136/bmjopen-2020-038099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION As a prevalent psychiatric disease, depression is a life-threatening mental disorder that may cause work disability and premature death. Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation procedure, which has been reported to have a significant effect on antidepressant treatment in recent years. However, the parameters of TMS for depression that can produce the best clinical benefits remain unknown. In the present study, we will evaluate the effect of TMS treatment for depression from the perspective of functional neuroimaging by performing a meta-analysis based on included studies. METHODS AND ANALYSIS Two independent reviewers will search published studies in the following five databases: PubMed, Web of Science, Embase, China National Knowledge Infrastructure and WANGFANG DATA from inception to 1 June 2020. Then we will select studies according to predesigned inclusion and exclusion criteria. After extracting data from included studies, activation likelihood estimation will be applied to data synthesis. Any disagreement will be checked by the third reviewer who will also make the final decision. ETHICS AND DISSEMINATION This work does not require ethics approval as it will be based on published studies. This review will be published in peer-reviewed journals.PROSPERO registration numberCRD42020165436.
Collapse
Affiliation(s)
- Yongyan Deng
- Psychiatric and psychological Neuroimage Lab (PsyNI Lab), Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenyue Li
- Psychiatric and psychological Neuroimage Lab (PsyNI Lab), Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Zhang
- Psychiatric and psychological Neuroimage Lab (PsyNI Lab), Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Li S, Zhou H, Yu Y, Lyu H, Mou T, Shi G, Hu S, Huang M, Hu J, Xu Y. Effect of repetitive transcranial magnetic stimulation on the cognitive impairment induced by sleep deprivation: a randomized trial. Sleep Med 2020; 77:270-278. [PMID: 32843299 DOI: 10.1016/j.sleep.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Currently, an efficient method for improving cognitive impairment due to sleep deprivation (SD) is lacking. The aim of this study is to evaluate the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) during SD on reversing the adverse effects of SD. METHODS A total of 66 healthy people were randomized into the rTMS group and sham group. Both groups were deprived of sleep for 24 h. During SD, participants were asked to complete several cognitive tasks and underwent mood assessments. Saliva cortisol levels, plasma concentrations of brain-derived neurotrophic factor (BDNF), precursor BDNF (proBDNF), and tissue-type plasminogen activator (tPA), and frontal blood activation were detected before and after SD. The rTMS group received real rTMS stimulation for 2 sessions of 10 Hz rTMS (40 trains of 50 pulses with a 20-second intertrain interval) to the left dorsolateral prefrontal cortex and the sham group received sham stimulation during SD. RESULTS Twenty-four hours of SD induced a reduced accuracy in the n-back task, increases in both anxiety and depression, increased cortisol levels, decreased frontal blood activation and decreased BDNF levels in healthy people. Notably, rTMS improved the hyperactivity of the hypothalamic-pituitary-adrenal axis and decreased frontal blood activation induced by SD, and reduced the consumption of plasma proBDNF. CONCLUSIONS Twenty-four hours of SD induced a cognitive impairment. The administration of high-frequency rTMS during sleep deprivation exerted positive effects on HPA axis and frontal activation and might help alleviate cognitive impairment in the long term.
Collapse
Affiliation(s)
- Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Hetong Zhou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Yueran Yu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hailong Lyu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Gongde Shi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jianbo Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.
| |
Collapse
|
32
|
Sun N, He Y, Wang Z, Zou W, Liu X. The effect of repetitive transcranial magnetic stimulation for insomnia: a systematic review and meta-analysis. Sleep Med 2020; 77:226-237. [PMID: 32830052 DOI: 10.1016/j.sleep.2020.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) might be a promising technique in treating insomnia. A comprehensive meta-analysis of the available literature is conducted to offer evidence. OBJECTIVE To evaluate the efficacy and safety of rTMS for insomnia, either as monotherapy or as a complementary strategy. METHODS CENTRAL, PubMed, EMBASE, PsycINFO, CINAHL, PEDro, CBM, CNKI, WANFANG, and VIP were searched from earliest record to August 2019. Randomized control trials (RCTs) published in English and Chinese examining effects of rTMS on patients with insomnia were included. Two authors independently completed the article selection, data extraction and rating. Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. The RevMan software was used for meta-analysis. The quality of the evidence was assessed by Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS A total of 36 trials from 28 eligible studies were included, involving a total of 2357 adult participants (mean age, 48.80 years; 45.33% males). Compared with sham rTMS, rTMS was associated with improved PSQI total score (SMD -2.31, 95% CI -2.95 to -1.66; Z = 7.01, P < 0.00001) and scores of seven subscales. Compared to other treatment, rTMS as an adjunct to other treatment was associated with improved PSQI total score (SMD -1.44, 95% CI -2.00 to -0.88; Z = 5.01, P < 0.00001), and may have effects on scores of seven subscales. Compared with other treatment, rTMS was associated with improved Pittsburgh sleep quality index (PSQI) total score (SMD -0.63, 95% CI -1.22 to -0.04; Z = 2.08, P = 0.04), and may have a better score in sleep latency, sleep disturbance and hypnotic using of seven subscales. In the three pair of comparisons, the results for polysomnography (PSG) outcomes were varied. In general, rTMS may improve sleep quality through increasing slow wave and rapid eye movement (REM) sleep. The rTMS group was more prone to headache than the sham or blank control group (RR 1.71, 95% CI 1.03 to 2.85; Z = 2.07, P = 0.04). No severe adverse events were reported. Reporting biases and low and very low grade of some evidences should be considered when interpreting the results of this meta-analysis. CONCLUSIONS Our findings indicate that rTMS may be a safe and effective option for insomnia. Further international, multicenter, high-quality RCTs with more objective, quality of life related and follow-up assessments are needed.
Collapse
Affiliation(s)
- Nianyi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China
| | - Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China
| | - Zhiqiang Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China
| | - Wenchen Zou
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xueyong Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
33
|
Hamilton scale and MADRS are interchangeable in meta-analyses but can disagree at trial level. J Clin Epidemiol 2020; 124:106-117. [PMID: 32387423 DOI: 10.1016/j.jclinepi.2020.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Major depressive disorder is a multidimensional disease, in which demonstrating the efficacy of treatments is difficult. The Hamilton Rating Scale for Depression (HRSD) and the Montgomery-Asberg Depression Rating Scale (MADRS) cover different domains but are used interchangeably as primary measures of the outcome in trials and-with standardized measures-in meta-analyses. We aimed at understanding (i) whether the choice of the outcome measurement tool can influence the outcome of a trial, and if so, (ii) whether one systematically outperforms the other, and (iii) whether using standardized measures of the effect in meta-analysis is justified. METHODS Short-term randomized trials in patients with major depressive disorder that used both the scales were systematically searched and the results were collected. To quantify the differences in the results-both in terms of the standardized mean difference (SMD) and odds ratio (OR) for response-and their range, data were analyzed and plotted with the Bland-Altman method. RESULTS 161 comparisons from 80 studies were included, involving a total of 18,189 patients. Neither of the two scales appears systematically more sensitive to the treatment effect than the other in terms of SMDs (P-value = 0.06, 95% CI -0.044 to 0.001) or ORs (P-value = 0.15, 95% CI -0.25 to 0.04). However, the variability of differences between the HRSD and MADRS largely depends on the number of patients included in the comparison. CONCLUSION No systematic differences between the two scales were found supporting the use of standardized measures in meta-analyses. However, the same trial may give very different results with either scale, especially in small trials. Further research is needed to understand the causes of this variability.
Collapse
|
34
|
Vinciguerra L, Lanza G, Puglisi V, Fisicaro F, Pennisi M, Bella R, Cantone M. Update on the Neurobiology of Vascular Cognitive Impairment: From Lab to Clinic. Int J Mol Sci 2020; 21:E2977. [PMID: 32340195 PMCID: PMC7215552 DOI: 10.3390/ijms21082977] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
In the last years, there has been a significant growth in the literature exploring the pathophysiology of vascular cognitive impairment (VCI). As an "umbrella term" encompassing any degree of vascular-related cognitive decline, VCI is deemed to be the most common cognitive disorder in the elderly, with a significant impact on social and healthcare expenses. Interestingly, some of the molecular, biochemical, and electrophysiological abnormalities detected in VCI seem to correlate with disease process and progression, eventually promoting an adaptive plasticity in some patients and a maladaptive, dysfunctional response in others. However, the exact relationships between vascular lesion, cognition, and neuroplasticity are not completely understood. Recent findings point out also the possibility to identify a panel of markers able to predict cognitive deterioration in the so-called "brain at risk" for vascular or mixed dementia. This will be of pivotal importance when designing trials of disease-modifying drugs or non-pharmacological approaches, including non-invasive neuromodulatory techniques. Taken together, these advances could make VCI a potentially preventable cause of both vascular and degenerative dementia in late life. This review provides a timely update on the recent serological, cerebrospinal fluid, histopathological, imaging, and neurophysiological studies on this "cutting-edge" topic, including the limitations, future perspectives and translational implications in the diagnosis and management of VCI patients.
Collapse
Affiliation(s)
- Luisa Vinciguerra
- Department of Neurology and Stroke Unit, ASST Cremona, 26100 Cremona, Italy; (L.V.); (V.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
- Department of Neurology IC, Oasi Research Institute – IRCCS, 94018 Troina, Italy
| | - Valentina Puglisi
- Department of Neurology and Stroke Unit, ASST Cremona, 26100 Cremona, Italy; (L.V.); (V.P.)
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy;
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, 93100 Caltanissetta, Italy;
| |
Collapse
|
35
|
Update on the Neurobiology of Vascular Cognitive Impairment: From Lab to Clinic. Int J Mol Sci 2020. [PMID: 32340195 DOI: 10.3390/ijms21082977.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the last years, there has been a significant growth in the literature exploring the pathophysiology of vascular cognitive impairment (VCI). As an "umbrella term" encompassing any degree of vascular-related cognitive decline, VCI is deemed to be the most common cognitive disorder in the elderly, with a significant impact on social and healthcare expenses. Interestingly, some of the molecular, biochemical, and electrophysiological abnormalities detected in VCI seem to correlate with disease process and progression, eventually promoting an adaptive plasticity in some patients and a maladaptive, dysfunctional response in others. However, the exact relationships between vascular lesion, cognition, and neuroplasticity are not completely understood. Recent findings point out also the possibility to identify a panel of markers able to predict cognitive deterioration in the so-called "brain at risk" for vascular or mixed dementia. This will be of pivotal importance when designing trials of disease-modifying drugs or non-pharmacological approaches, including non-invasive neuromodulatory techniques. Taken together, these advances could make VCI a potentially preventable cause of both vascular and degenerative dementia in late life. This review provides a timely update on the recent serological, cerebrospinal fluid, histopathological, imaging, and neurophysiological studies on this "cutting-edge" topic, including the limitations, future perspectives and translational implications in the diagnosis and management of VCI patients.
Collapse
|
36
|
Cantone M, Lanza G, Fisicaro F, Pennisi M, Bella R, Di Lazzaro V, Di Pino G. Evaluation and Treatment of Vascular Cognitive Impairment by Transcranial Magnetic Stimulation. Neural Plast 2020; 2020:8820881. [PMID: 33193753 PMCID: PMC7641667 DOI: 10.1155/2020/8820881] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The exact relationship between cognitive functioning, cortical excitability, and synaptic plasticity in dementia is not completely understood. Vascular cognitive impairment (VCI) is deemed to be the most common cognitive disorder in the elderly since it encompasses any degree of vascular-based cognitive decline. In different cognitive disorders, including VCI, transcranial magnetic stimulation (TMS) can be exploited as a noninvasive tool able to evaluate in vivo the cortical excitability, the propension to undergo neural plastic phenomena, and the underlying transmission pathways. Overall, TMS in VCI revealed enhanced cortical excitability and synaptic plasticity that seem to correlate with the disease process and progression. In some patients, such plasticity may be considered as an adaptive response to disease progression, thus allowing the preservation of motor programming and execution. Recent findings also point out the possibility to employ TMS to predict cognitive deterioration in the so-called "brains at risk" for dementia, which may be those patients who benefit more of disease-modifying drugs and rehabilitative or neuromodulatory approaches, such as those based on repetitive TMS (rTMS). Finally, TMS can be exploited to select the responders to specific drugs in the attempt to maximize the response and to restore maladaptive plasticity. While no single TMS index owns enough specificity, a panel of TMS-derived measures can support VCI diagnosis and identify early markers of progression into dementia. This work reviews all TMS and rTMS studies on VCI. The aim is to evaluate how cortical excitability, plasticity, and connectivity interact in the pathophysiology of the impairment and to provide a translational perspective towards novel treatments of these patients. Current pitfalls and limitations of both studies and techniques are also discussed, together with possible solutions and future research agenda.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- 1Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta 93100, Italy
| | - Giuseppe Lanza
- 2Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- 3Department of Neurology IC, Oasi Research Institute–IRCCS, Troina 94108, Italy
| | - Francesco Fisicaro
- 4Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Manuela Pennisi
- 4Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Rita Bella
- 5Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania 95123, Italy
| | - Vincenzo Di Lazzaro
- 6Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Giovanni Di Pino
- 7Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome 00128, Italy
| |
Collapse
|
37
|
Long-term deep-TMS does not negatively affect cognitive functions in stroke and spinal cord injury patients with central neuropathic pain. BMC Neurol 2019; 19:319. [PMID: 31823735 PMCID: PMC6905077 DOI: 10.1186/s12883-019-1531-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
|
38
|
Candido S, Lupo G, Pennisi M, Basile MS, Anfuso CD, Petralia MC, Gattuso G, Vivarelli S, Spandidos DA, Libra M, Falzone L. The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer's disease. Oncol Rep 2019; 42:911-922. [PMID: 31322245 PMCID: PMC6682788 DOI: 10.3892/or.2019.7215] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
There is recent evidence to indicate the existence of an inverse association between the incidence of neurological disorders and cancer development. Concurrently, the transcriptional pathways responsible for the onset of glioblastoma multiforme (GBM) and Alzheimer's disease (AD) have been found to be mutually exclusive between the two pathologies. Despite advancements being made concerning the knowledge of the molecular mechanisms responsible for the development of GBM and AD, little is known about the identity of the microRNA (miRNAs or miRs) involved in the development and progression of these two pathologies and their possible inverse expression patterns. On these bases, the aim of the present study was to identify a set of miRNAs significantly de-regulated in both GBM and AD, and hence to determine whether the identified miRNAs exhibit an inverse association within the two pathologies. For this purpose, miRNA expression profiling datasets derived from the Gene Expression Omnibus (GEO) DataSets and relative to GBM and AD were used. Once the miRNAs significantly de-regulated in both pathologies were identified, DIANA-mirPath pathway prediction and STRING Gene Ontology enrichment analyses were performed to establish their functional roles in each of the pathologies. The results allowed the identification of a set of miRNAs found de-regulated in both GBM and AD, whose expression levels were inversely associated in the two pathologies. In particular, a strong negative association was observed between the expression levels of miRNAs in GBM compared to AD, suggesting that although the molecular pathways behind the development of these two pathologies are the same, they appear to be inversely regulated by miRNAs. Despite the identification of this set of miRNAs which may be used for diagnostic, prognostic and therapeutic purposes, further functional in vitro and in vivo evaluations are warranted in order to validate the diagnostic and therapeutic potential of the identified miRNAs, as well as their involvement in the development of GBM and AD.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria S Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Carmelina D Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria C Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
39
|
Cognitive Impairment and Celiac Disease: Is Transcranial Magnetic Stimulation a Trait d'Union between Gut and Brain? Int J Mol Sci 2018. [PMID: 30065211 DOI: 10.3390/ijms19082243.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Celiac disease is a systemic disorder with multifactorial pathogenesis and multifaceted symptomatology. In response to gluten exposure, a significant part of the general population produces antibodies that have been hypothesized to be deleterious to the brain. Among the well-known neurological manifestations, adult celiac patients often complain cognitive symptoms, ranging from the so-called "brain fog" till an overt dementia. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that can contribute to the assessment and monitoring of celiac patients, even in those without a clear neurological involvement. The studies here reviewed seem to converge on an impaired central motor conductivity and a "hyperexcitable celiac brain" to TMS, which partially reverts back after a long-term gluten restriction. Notably, a clear hyperexcitability is a stably reported feature of both degenerative and vascular dementia. Therefore, given its potential neuroprotective effect, the gluten-free diet should be introduced as early as possible, although the overall response of neurological symptoms (and cognition in particular) is still controversial. Identifying new and possibly modifiable risk factors may be of crucial importance for patients, clinicians, and researchers.
Collapse
|
40
|
Lanza G, Bella R, Cantone M, Pennisi G, Ferri R, Pennisi M. Cognitive Impairment and Celiac Disease: Is Transcranial Magnetic Stimulation a Trait d'Union between Gut and Brain? Int J Mol Sci 2018; 19:ijms19082243. [PMID: 30065211 PMCID: PMC6121508 DOI: 10.3390/ijms19082243] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
Celiac disease is a systemic disorder with multifactorial pathogenesis and multifaceted symptomatology. In response to gluten exposure, a significant part of the general population produces antibodies that have been hypothesized to be deleterious to the brain. Among the well-known neurological manifestations, adult celiac patients often complain cognitive symptoms, ranging from the so-called "brain fog" till an overt dementia. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that can contribute to the assessment and monitoring of celiac patients, even in those without a clear neurological involvement. The studies here reviewed seem to converge on an impaired central motor conductivity and a "hyperexcitable celiac brain" to TMS, which partially reverts back after a long-term gluten restriction. Notably, a clear hyperexcitability is a stably reported feature of both degenerative and vascular dementia. Therefore, given its potential neuroprotective effect, the gluten-free diet should be introduced as early as possible, although the overall response of neurological symptoms (and cognition in particular) is still controversial. Identifying new and possibly modifiable risk factors may be of crucial importance for patients, clinicians, and researchers.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Oasi Research Institute-IRCCS, Via Conte Ruggero, 73-94018 Troina, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Via S. Sofia, 78-95123 Catania, Italy.
| | - Mariagiovanna Cantone
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via S. Sofia, 78-95123 Catania, Italy.
| | - Raffaele Ferri
- Oasi Research Institute-IRCCS, Via Conte Ruggero, 73-94018 Troina, Italy.
| | - Manuela Pennisi
- Spinal Unit, Emergency Hospital Cannizzaro, Via Messina, 829-95126 Catania, Italy.
| |
Collapse
|
41
|
How Does Repetitive Transcranial Magnetic Stimulation Influence the Brain in Depressive Disorders?: A Review of Neuroimaging Magnetic Resonance Imaging Studies. J ECT 2018; 34:79-86. [PMID: 29324522 DOI: 10.1097/yct.0000000000000477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is a nonpharmacological technique used to stimulate the brain. It is a safe and proven alternative tool to treat resistant major depressive disorders (MDDs). Neuroimaging studies suggest a wide corticolimbic network is involved in MDDs. We researched observable changes in magnetic resonance imaging induced by rTMS to clarify the operational mechanism. METHODS A systematic search of the international literature was performed using PubMed and Embase, using papers published up to January 1, 2017. The following MESH terms were used: (depression or major depressive disorder) and (neuroimaging or MRI) and (rTMS or repetitive transcranial magnetic stimulation). We searched the databases using a previously defined strategy to identify potentially eligible studies. RESULTS Both structural and functional changes were observed on magnetic resonance imagings performed before and after rTMS. Various areas of the brain were impacted when rTMS was used. Although the results were very heterogeneous, a pattern that involved the anterior cingulate cortex and the prefrontal cortex emerged. These are known to be regions of interest in MDDs. However, the various parameters used in rTMS make any generalization difficult. CONCLUSIONS Repetitive transcranial magnetic stimulation helps to treat MDDs with good efficacy. Its effect on the brain, as observed in several neuroimaging studies, seems to impact on the structural and functional features of several networks and structures involved in major depressive disorders.
Collapse
|
42
|
Lanza G, Cantone M, Aricò D, Lanuzza B, Cosentino FII, Paci D, Papotto M, Pennisi M, Bella R, Pennisi G, Paulus W, Ferri R. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory-motor network in patients with restless legs syndrome. Ther Adv Neurol Disord 2018. [PMID: 29511386 DOI: 10.1177/1756285618759973.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. Methods A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Results Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. Conclusions rTMS on S1-M1 connectivity alleviated the sensory-motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Oasi Research Institute - IRCCS Via Conte Ruggero, 73 - 94018, Troina, Italy
| | | | | | | | | | | | | | | | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele Catania, Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, Azienda Ospedaliero Universitaria Policlinico-Vittorio Emanuele, Catania, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University Göttingen, Göttingen, Germany
| | | |
Collapse
|
43
|
Ilieva IP, Alexopoulos GS, Dubin MJ, Morimoto SS, Victoria LW, Gunning FM. Age-Related Repetitive Transcranial Magnetic Stimulation Effects on Executive Function in Depression: A Systematic Review. Am J Geriatr Psychiatry 2018; 26:334-346. [PMID: 29111132 DOI: 10.1016/j.jagp.2017.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/27/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aims of the current review were to: 1) examine whether the rTMS effects on executive function increase as age advances; 2) to examine the potential of rTMS to remediate executive function in older depressed patients; and 3) to assess the relationship between the executive function and mood benefits from rTMS in depression. METHODS Randomized or matched-groups, blind, sham-controlled studies (12 studies, 347 participants) on excitatory rTMS applied to left DLPFC in depression were reviewed. RESULTS A series of meta-regressions found no evidence of greater rTMS effects on executive functions as age advances. Similarly, meta-analyses showed no significant rTMS effects on executive functions in older depressed individuals. However, meta-regression analyses showed that the size of the executive function benefits from rTMS in depression are positively related to the effect size of mood symptom reduction. Despite its correlational nature, this finding is consistent with the idea that improvement in executive function may play a critical role in depression recovery. CONCLUSIONS The authors consider these findings preliminary because of the modest number of available studies. Based on a qualitative review, the authors describe methodologic modifications that may increase rTMS efficacy for both executive functions and mood in late-life depression.
Collapse
Affiliation(s)
- Irena P Ilieva
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY; Institute of Geriatric Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY.
| | - George S Alexopoulos
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY; Institute of Geriatric Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY
| | - Marc J Dubin
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY
| | - S Shizuko Morimoto
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY; Institute of Geriatric Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY
| | - Lindsay W Victoria
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY; Institute of Geriatric Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY; Institute of Geriatric Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY
| |
Collapse
|
44
|
Lanza G, Cantone M, Aricò D, Lanuzza B, Cosentino FII, Paci D, Papotto M, Pennisi M, Bella R, Pennisi G, Paulus W, Ferri R. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory-motor network in patients with restless legs syndrome. Ther Adv Neurol Disord 2018; 11:1756286418759973. [PMID: 29511386 PMCID: PMC5833163 DOI: 10.1177/1756286418759973] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. METHODS A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. RESULTS Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. CONCLUSIONS rTMS on S1-M1 connectivity alleviated the sensory-motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies ‘GF Ingrassia’, Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele Catania, Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical–Surgical Specialties, Azienda Ospedaliero Universitaria Policlinico-Vittorio Emanuele, Catania, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University Göttingen, Göttingen, Germany
| | | |
Collapse
|
45
|
Martin DM, McClintock SM, Forster JJ, Lo TY, Loo CK. Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: A systematic review and meta-analysis of individual task effects. Depress Anxiety 2017; 34:1029-1039. [PMID: 28543994 DOI: 10.1002/da.22658] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/31/2017] [Accepted: 04/23/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an approved therapeutic treatment of major depressive disorder and has increasing clinical use throughout the world. However, it remains unclear whether an rTMS course for depression may also produce cognitive enhancement. In a recent meta-analysis of sham-controlled randomized controlled studies (RCTs) conducted in patients with neuropsychiatric conditions, no evidence was found for generalized cognitive enhancing effects across cognitive domains with active compared to sham rTMS. Notwithstanding, there remains the possibility of cognitive effects following an rTMS course that are more highly specific, for example, in specific clinical conditions, or at the individual task level. This study aimed to determine whether a therapeutic rTMS course in patients with depression is associated with cognitive enhancing effects at the task level. METHODS A systematic review and meta-analysis of outcomes on individual neuropsychological tasks from sham-controlled RCTs where an rTMS course was administered to the dorsolateral prefrontal cortex (DLPFC) in patients with depression. RESULTS Eighteen studies met the inclusion criteria. Active rTMS treatment showed no specific enhancing effects on the majority of cognitive tasks. Modest effect size improvements with active compared to sham rTMS treatment were found for performance on the Trail Making Test Parts A (g = 0.28, 95% CI = 0.06-0.50) and B (g = 0.26, 95% CI = 0.06-0.47). CONCLUSION A therapeutic rTMS course administered to the prefrontal cortex for depression may produce modest cognitive enhancing effects specific to psychomotor speed, visual scanning, and set-shifting ability.
Collapse
Affiliation(s)
- Donel M Martin
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jane J Forster
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Tin Yan Lo
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Colleen K Loo
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
46
|
Pennisi M, Bramanti A, Cantone M, Pennisi G, Bella R, Lanza G. Neurophysiology of the "Celiac Brain": Disentangling Gut-Brain Connections. Front Neurosci 2017. [PMID: 28928632 DOI: 10.3389/fnins.2017.00498.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Celiac disease (CD) can be considered a complex multi-organ disorder with highly variable extra-intestinal, including neurological, involvement. Cerebellar ataxia, peripheral neuropathy, seizures, headache, cognitive impairment, and neuropsychiatric diseases are complications frequently reported. These manifestations may be present at the onset of the typical disease or become clinically evident during its course. However, CD subjects with subclinical neurological involvement have also been described, as well as patients with clear central and/or peripheral nervous system and intestinal histopathological disease features in the absence of typical CD manifestations. Based on these considerations, a sensitive and specific diagnostic method that is able to detect early disease process, progression, and complications is desirable. In this context, neurophysiological techniques play a crucial role in the non-invasive assessment of central nervous system (CNS) excitability and conductivity. Moreover, some of these tools are known for their valuable role in early diagnosis and follow-up of several neurological diseases or systemic disorders, such as CD with nervous system involvement, even at the subclinical level. This review provides an up-to-date summary of the neurophysiological basis of CD using electroencephalography (EEG), multimodal evoked potentials, and transcranial magnetic stimulation (TMS). The evidence examined here seems to converge on an overall profile of "hyperexcitable celiac brain," which partially recovers after institution of a gluten-free diet (GFD). The main translational correlate is that in case of subclinical neurological involvement or overt unexplained symptoms, neurophysiology could contribute to the diagnosis, assessment, and monitoring of a potentially underlying CD.
Collapse
Affiliation(s)
| | | | | | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of CataniaCatania, Italy
| | - Rita Bella
- Section of Neurosciences, Department of Medical and Surgical Sciences and Advanced Technology, University of CataniaCatania, Italy
| | - Giuseppe Lanza
- Department of Neurology IC, Oasi Maria SS (IRCCS)Troina, Italy
| |
Collapse
|
47
|
Pennisi M, Bramanti A, Cantone M, Pennisi G, Bella R, Lanza G. Neurophysiology of the "Celiac Brain": Disentangling Gut-Brain Connections. Front Neurosci 2017; 11:498. [PMID: 28928632 PMCID: PMC5591866 DOI: 10.3389/fnins.2017.00498] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/23/2017] [Indexed: 02/05/2023] Open
Abstract
Celiac disease (CD) can be considered a complex multi-organ disorder with highly variable extra-intestinal, including neurological, involvement. Cerebellar ataxia, peripheral neuropathy, seizures, headache, cognitive impairment, and neuropsychiatric diseases are complications frequently reported. These manifestations may be present at the onset of the typical disease or become clinically evident during its course. However, CD subjects with subclinical neurological involvement have also been described, as well as patients with clear central and/or peripheral nervous system and intestinal histopathological disease features in the absence of typical CD manifestations. Based on these considerations, a sensitive and specific diagnostic method that is able to detect early disease process, progression, and complications is desirable. In this context, neurophysiological techniques play a crucial role in the non-invasive assessment of central nervous system (CNS) excitability and conductivity. Moreover, some of these tools are known for their valuable role in early diagnosis and follow-up of several neurological diseases or systemic disorders, such as CD with nervous system involvement, even at the subclinical level. This review provides an up-to-date summary of the neurophysiological basis of CD using electroencephalography (EEG), multimodal evoked potentials, and transcranial magnetic stimulation (TMS). The evidence examined here seems to converge on an overall profile of "hyperexcitable celiac brain," which partially recovers after institution of a gluten-free diet (GFD). The main translational correlate is that in case of subclinical neurological involvement or overt unexplained symptoms, neurophysiology could contribute to the diagnosis, assessment, and monitoring of a potentially underlying CD.
Collapse
Affiliation(s)
| | | | | | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of CataniaCatania, Italy
| | - Rita Bella
- Section of Neurosciences, Department of Medical and Surgical Sciences and Advanced Technology, University of CataniaCatania, Italy
| | - Giuseppe Lanza
- Department of Neurology IC, Oasi Maria SS (IRCCS)Troina, Italy
| |
Collapse
|
48
|
Cantone M, Bramanti A, Lanza G, Pennisi M, Bramanti P, Pennisi G, Bella R. Cortical Plasticity in Depression. ASN Neuro 2017. [PMID: 28629225 DOI: 10.1177/1759091417711512.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neural plasticity is considered the neurophysiological correlate of learning and memory, although several studies have also noted that it plays crucial roles in a number of neurological and psychiatric diseases. Indeed, impaired brain plasticity may be one of the pathophysiological mechanisms that underlies both cognitive decline and major depression. Moreover, a degree of cognitive impairment is frequently observed throughout the clinical spectrum of mood disorders, and the relationship between depression and cognition is often bidirectional. However, most evidence for dysfunctional neural plasticity in depression has been indirect. Transcranial magnetic stimulation has emerged as a noninvasive tool for investigating several parameters of cortical excitability with the aim of exploring the functions of different neurotransmission pathways and for probing in vivo plasticity in both healthy humans and those with pathological conditions. In particular, depressed patients exhibit a significant interhemispheric difference in motor cortex excitability, an imbalanced inhibitory or excitatory intracortical neurochemical circuitry, reduced postexercise facilitation, and an impaired long-term potentiation-like response to paired-associative transcranial magnetic stimulation, and these symptoms may indicate disrupted plasticity. Research aimed at disentangling the mechanism by which neuroplasticity plays a role in the pathological processes that lead to depression and evaluating the effects of modulating neuroplasticity are needed for the field to facilitate more powerful translational research studies and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- 1 Department of Neurology IC, IRCCS " Oasi" Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | | | - Giuseppe Lanza
- 1 Department of Neurology IC, IRCCS " Oasi" Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Manuela Pennisi
- 3 Spinal Unit, Emergency Hospital Cannizzaro, Catania, Italy
| | | | - Giovanni Pennisi
- 4 Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- 5 Department of Medical and Surgical Sciences and Advanced Technology, Section of Neurosciences, University of Catania, Catania, Italy
| |
Collapse
|
49
|
Cortical involvement in celiac disease before and after long-term gluten-free diet: A Transcranial Magnetic Stimulation study. PLoS One 2017. [PMID: 28489931 DOI: 10.1371/journal.pone.0177560.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Transcranial Magnetic Stimulation in de novo patients with Celiac Disease previously revealed an imbalance in the excitability of cortical facilitatory and inhibitory circuits. After a median period of 16 months of gluten-free diet, a global increase of cortical excitability was reported, suggesting a glutamate-mediated compensation for disease progression. We have now evaluated cross-sectionally the changes of cortical excitability to TMS after a much longer gluten-free diet. METHODS Twenty patients on adequate gluten-free diet for a mean period of 8.35 years were enrolled and compared with 20 de novo patients and 20 healthy controls. Transcranial Magnetic Stimulation measures, recorded from the first dorsal interosseous muscle of the dominant hand, consisted of: resting motor threshold, cortical silent period, motor evoked potentials, central motor conduction time, mean short-latency intracortical inhibition and intracortical facilitation. RESULTS The cortical silent period was shorter in de novo patients, whereas in gluten-free diet participants it was similar to controls. The amplitude of motor responses was significantly smaller in all patients than in controls, regardless of the dietary regimen. Notwithstanding the diet, all patients exhibited a statistically significant decrease of mean short-latency intracortical inhibition and enhancement of intracortical facilitation with respect to controls; more intracortical facilitation in gluten-restricted compared to non-restricted patients was also observed. Neurological examination and celiac disease-related antibodies were negative. CONCLUSIONS In this new investigation, the length of dietary regimen was able to modulate the electrocortical changes in celiac disease. Nevertheless, an intracortical synaptic dysfunction, mostly involving excitatory and inhibitory interneurons within the motor cortex, may persist. The clinical significance of subtle neurophysiological changes in celiac disease needs to be further investigated.
Collapse
|
50
|
Cantone M, Bramanti A, Lanza G, Pennisi M, Bramanti P, Pennisi G, Bella R. Cortical Plasticity in Depression. ASN Neuro 2017; 9:1759091417711512. [PMID: 28629225 PMCID: PMC5480639 DOI: 10.1177/1759091417711512] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 02/05/2023] Open
Abstract
Neural plasticity is considered the neurophysiological correlate of learning and memory, although several studies have also noted that it plays crucial roles in a number of neurological and psychiatric diseases. Indeed, impaired brain plasticity may be one of the pathophysiological mechanisms that underlies both cognitive decline and major depression. Moreover, a degree of cognitive impairment is frequently observed throughout the clinical spectrum of mood disorders, and the relationship between depression and cognition is often bidirectional. However, most evidence for dysfunctional neural plasticity in depression has been indirect. Transcranial magnetic stimulation has emerged as a noninvasive tool for investigating several parameters of cortical excitability with the aim of exploring the functions of different neurotransmission pathways and for probing in vivo plasticity in both healthy humans and those with pathological conditions. In particular, depressed patients exhibit a significant interhemispheric difference in motor cortex excitability, an imbalanced inhibitory or excitatory intracortical neurochemical circuitry, reduced postexercise facilitation, and an impaired long-term potentiation-like response to paired-associative transcranial magnetic stimulation, and these symptoms may indicate disrupted plasticity. Research aimed at disentangling the mechanism by which neuroplasticity plays a role in the pathological processes that lead to depression and evaluating the effects of modulating neuroplasticity are needed for the field to facilitate more powerful translational research studies and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Department of Neurology IC, IRCCS “Oasi” Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | | | - Giuseppe Lanza
- Department of Neurology IC, IRCCS “Oasi” Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | | | | | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technology, Section of Neurosciences, University of Catania, Catania, Italy
| |
Collapse
|