1
|
Zhang T, Lawson K, Lee WL, Petoe M, Moorhead A, Bulluss K, Thevathasan W, McDermott H, Perera T. Stimulation artefact removal: review and evaluation of applications in evoked responses. J Neural Eng 2024; 21:066029. [PMID: 39622160 DOI: 10.1088/1741-2552/ad9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Objective.This study investigated software methods for removing stimulation artefacts in recordings undertaken during deep brain stimulation (DBS). We aimed to evaluate artefact attenuation using sample recordings of evoked resonant neural activity (ERNA), as well as a synthetic ground-truth waveform that emulated observed ERNA characteristics.Approach.The synthetic waveform and eight raw DBS recordings were processed by fourteen algorithms spanning the following categories: signal modification, signal decomposition, and template subtraction. For the synthetic waveform, performance was quantified by comparing each reconstructed signal against the ground-truth waveform. For DBS recordings, performance was contrasted amongst each other. The stimulation artefact was quantified by its amplitude and subsequent decay to baseline by the time to first zero-crossing. Each reconstructed ERNA signal was characterised by peak-to-peak-amplitude, root-mean-square amplitude, latency, and number of zero-crossings.Main results.None of the methods performed overall as well as the Backward Filter. Signal decomposition techniques were able to attenuate stimulation artefact albeit with unacceptable ERNA distortion.Significance.Upon evaluation of common software methods for DBS artefact attenuation, we advocate the use of the Backward Filter for reducing such artefacts while reconstructing ERNA.
Collapse
Affiliation(s)
- Tianshu Zhang
- Deep Brain Stimulation Technologies Pty Ltd, East Melbourne, Australia
| | - Kiaran Lawson
- Deep Brain Stimulation Technologies Pty Ltd, East Melbourne, Australia
| | - Wee-Lih Lee
- Medical Bionics Department, University of Melbourne, Parkville, Australia
- Bionics Institute, East Melbourne, Australia
| | - Matthew Petoe
- Deep Brain Stimulation Technologies Pty Ltd, East Melbourne, Australia
- Medical Bionics Department, University of Melbourne, Parkville, Australia
- Bionics Institute, East Melbourne, Australia
| | - Ashton Moorhead
- Deep Brain Stimulation Technologies Pty Ltd, East Melbourne, Australia
| | - Kristian Bulluss
- Deep Brain Stimulation Technologies Pty Ltd, East Melbourne, Australia
- Department of Neurosurgery, Austin Hospital, Heidelberg, Australia
- Department of Neurosurgery, Cabrini Hospital, Malvern, Australia
- Department of Neurosurgery, St. Vincent's Hospital, Fitzroy, Australia
- Department of Surgery, University of Melbourne, Parkville, Australia
| | - Wesley Thevathasan
- Deep Brain Stimulation Technologies Pty Ltd, East Melbourne, Australia
- Department of Neurology, Austin Hospital, Heidelberg, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - Hugh McDermott
- Deep Brain Stimulation Technologies Pty Ltd, East Melbourne, Australia
- Medical Bionics Department, University of Melbourne, Parkville, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - Thushara Perera
- Deep Brain Stimulation Technologies Pty Ltd, East Melbourne, Australia
- Medical Bionics Department, University of Melbourne, Parkville, Australia
- Bionics Institute, East Melbourne, Australia
| |
Collapse
|
2
|
Nakhmani A, Block J, Awad M, Olson J, Smith R, Bentley JN, Holland M, Brinkerhoff SA, Gonzalez C, Moffitt M, Walker H. A Method for Electrical Stimulus Artifact Removal Exploiting Neural Refractoriness: Validation by Contrasting Cathodic and Anodic Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616879. [PMID: 39416042 PMCID: PMC11482801 DOI: 10.1101/2024.10.06.616879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Objective To present a novel method for removing stimulus transient that exploits the absolute refractory period of electrically excitable neural tissues. Background Electrical stimulation often generates significant signal artifacts that can obscure important physiological signals. Removal of the artifact and understanding latent information from these signals could provide objective measures of circuit engagement, potentially driving advancements in neuromodulation research and therapies. Methods We conducted intracranial physiology studies on five consecutive patients with Parkinson's disease who underwent deep brain stimulation (DBS) surgery as part of their routine care. Monopolar stimuli (either cathodic or anodic) were delivered in pairs through the DBS electrode across a range of inter-stimulus intervals. Recordings from adjacent unused electrode contacts used broadband sampling and precise synchronization to generate a robust template for the stimulus transient during the absolute refractory period. These templates of stimulus transient were then subtracted from recordings at different intervals to extract and analyze the residual neural potentials. Results After artifact removal, the residual signals exhibited absolute and relative refractory periods with timing indicative of neural activity. Cathodic and anodic DBS pulses generated distinct patterns of local tissue activation, showing phase independence from the prior stimulus. The earliest detectable neural responses occurred at short peak latencies (ranging from 0.19 to 0.38 ms post-stimulus) and were completely or partially obscured by the stimulus artifact prior to removal. Cathodic stimuli produced stronger local tissue responses than anodic stimuli, aligning with clinical observations of lower activation thresholds for cathodic stimulation. However, cathodic and anodic pulses induced artifact patterns that were equivalent but opposite. Interpretation The proposed artifact removal technique enhances prior approaches by allowing direct measurement of local tissue responses without requirements for stimulus polarity reversal, template scaling, or specialized filters. This approach could be integrated into future neuromodulation systems to visualize stimulus-evoked neural potentials that would otherwise be obscured by stimulus artifacts.
Collapse
|
3
|
Li Y, Nie Y, Quan Z, Zhang H, Song R, Feng H, Cheng X, Liu W, Geng X, Sun X, Fu Y, Wang S. Brain-machine interactive neuromodulation research tool with edge AI computing. Heliyon 2024; 10:e32609. [PMID: 38975192 PMCID: PMC11225749 DOI: 10.1016/j.heliyon.2024.e32609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Closed-loop neuromodulation with intelligence methods has shown great potentials in providing novel neuro-technology for treating neurological and psychiatric diseases. Development of brain-machine interactive neuromodulation strategies could lead to breakthroughs in precision and personalized electronic medicine. The neuromodulation research tool integrating artificial intelligent computing and performing neural sensing and stimulation in real-time could accelerate the development of closed-loop neuromodulation strategies and translational research into clinical application. In this study, we developed a brain-machine interactive neuromodulation research tool (BMINT), which has capabilities of neurophysiological signals sensing, computing with mainstream machine learning algorithms and delivering electrical stimulation pulse by pulse in real-time. The BMINT research tool achieved system time delay under 3 ms, and computing capabilities in feasible computation cost, efficient deployment of machine learning algorithms and acceleration process. Intelligent computing framework embedded in the BMINT enable real-time closed-loop neuromodulation developed with mainstream AI ecosystem resources. The BMINT could provide timely contribution to accelerate the translational research of intelligent neuromodulation by integrating neural sensing, edge AI computing and stimulation with AI ecosystems.
Collapse
Affiliation(s)
- Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhaoyu Quan
- Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Han Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Rui Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hao Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xi Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Liu
- Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xinwei Sun
- School of Data Science, Fudan University, Shanghai, China
| | - Yanwei Fu
- School of Data Science, Fudan University, Shanghai, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Liu TC, Chen YC, Chen PL, Tu PH, Yeh CH, Yeap MC, Wu YH, Chen CC, Wu HT. Removal of electrical stimulus artifact in local field potential recorded from subthalamic nucleus by using manifold denoising. J Neurosci Methods 2024; 403:110038. [PMID: 38145720 DOI: 10.1016/j.jneumeth.2023.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective treatment for movement disorders such as Parkinson's disease (PD). However, local field potentials (LFPs) recorded through lead externalization during high-frequency stimulation (HFS) are contaminated by stimulus artifacts, which require to be removed before further analysis. NEW METHOD In this study, a novel stimulus artifact removal algorithm based on manifold denoising, termed Shrinkage and Manifold-based Artifact Removal using Template Adaptation (SMARTA), was proposed to remove artifacts by deriving a template for each stimulus artifact and subtracting it from the signal. Under a low-dimensional manifold assumption, a matrix denoising technique called optimal shrinkage was applied to design a similarity metric such that the template for stimulus artifacts could be accurately recovered. RESULT SMARTA was evaluated using semirealistic signals, which were the combination of semirealistic stimulus artifacts recorded in an agar brain model and LFPs of PD patients with no stimulation, and realistic LFP signals recorded in patients with PD during HFS. The results indicated that SMARTA removes stimulus artifacts with a modest distortion in LFP estimates. COMPARISON WITH EXISTING METHODS SMARTA was compared with moving-average subtraction, sample-and-interpolate technique, and Hampel filtering. CONCLUSION The proposed SMARTA algorithm helps the exploration of the neurophysiological mechanisms of DBS effects.
Collapse
Affiliation(s)
- Tzu-Chi Liu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Mathematics, National Taiwan University, Taipei, Taiwan
| | - Yi-Chieh Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Lin Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Hsun Tu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hua Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neuroradiology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Mun-Chun Yeap
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Hui Wu
- Biomedical Electronics Translational Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chiung-Chu Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hau-Tieng Wu
- Courant Institute of Mathematical Sciences, New York University, New York, USA.
| |
Collapse
|
5
|
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, Xu Z, Wang M, Cai X. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ Sci B 2024; 25:803-823. [PMID: 39420519 PMCID: PMC11494161 DOI: 10.1631/jzus.b2300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China. ,
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ,
| |
Collapse
|
6
|
Zheng N, Jiang Y, Jiang S, Kim J, Chen G, Li Y, Cheng J, Jia X, Yang C. Multifunctional Fiber-Based Optoacoustic Emitter as a Bidirectional Brain Interface. Adv Healthc Mater 2023; 12:e2300430. [PMID: 37451259 PMCID: PMC10592200 DOI: 10.1002/adhm.202300430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
A bidirectional brain interface with both "write" and "read" functions can be an important tool for fundamental studies and potential clinical treatments for neurological diseases. Herein, a miniaturized multifunctional fiber-based optoacoustic emitter (mFOE) is reported thatintegrates simultaneous optoacoustic stimulation for "write" and electrophysiology recording of neural circuits for "read". Because of the intrinsic ability of neurons to respond to acoustic wave, there is no requirement of the viral transfection. The orthogonality between optoacoustic waves and electrical field provides a solution to avoid the interference between electrical stimulation and recording. The stimulation function of the mFOE is first validated in cultured ratcortical neurons using calcium imaging. In vivo application of mFOE for successful simultaneous optoacoustic stimulation and electrical recording of brain activities is confirmed in mouse hippocampus in both acute and chronical applications up to 1 month. Minor brain tissue damage is confirmed after these applications. The capability of simultaneous neural stimulation and recording enabled by mFOE opens up new possibilities for the investigation of neural circuits and brings new insights into the study of ultrasound neurostimulation.
Collapse
Affiliation(s)
- Nan Zheng
- Division of Materials Science and EngineeringBoston UniversityBostonMA02215USA
| | - Ying Jiang
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Shan Jiang
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
| | - Jongwoon Kim
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
| | - Guo Chen
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
| | - Yueming Li
- Department of Mechanical EngineeringBoston UniversityBostonMA02215USA
| | - Ji‐Xin Cheng
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
- Department of Materials Science and EngineeringVirginia TechBlacksburgVA24061USA
| | - Chen Yang
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
- Department of ChemistryBoston UniversityBostonMA02215USA
| |
Collapse
|
7
|
Swamy CP, Besheli BF, Branco LRF, Provenza NR, Sheth SA, Goodman WK, Viswanathan A, Ince NF. Pulsation artifact removal from intra-operatively recorded local field potentials using sparse signal processing and data-specific dictionary . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082947 PMCID: PMC10746292 DOI: 10.1109/embc40787.2023.10340160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Neural recordings frequently get contaminated by ECG or pulsation artifacts. These large amplitude components can mask the neural patterns of interest and make the visual inspection process difficult. The current study describes a sparse signal representation strategy that targets to denoise pulsation artifacts in local field potentials (LFPs) recorded intraoperatively. To estimate the morphology of the artifact, we first detect the QRS-peaks from the simultaneously recorded ECG trace as an anchor point. After the LFP data has been epoched with respect to each beat, a pool of raw data segments of a specific length is generated. Using the K-singular value decomposition (K-SVD) algorithm, we constructed a data-specific dictionary to represent each contaminated LFP epoch in a sparse fashion. Since LFP is aligned to each QRS complex and the background neural activity is uncorrelated to the anchor points, we assumed that constructed dictionary will be formed to mainly represent the pulsation artifact. In this scheme, we performed an orthogonal matching pursuit to represent each LFP epoch as a linear combination of the dictionary atoms. The denoised LFP data is thus obtained by calculating the residual between the raw LFP and its approximation. We discuss and demonstrate the improvements in denoised data and compare the results with respect to principal component analysis (PCA). We noted that there is a comparable change in the signal for visual inspection to observe various oscillating patterns in the alpha and beta bands. We also see a noticeable compression of signal strength in the lower frequency band (<13 Hz), which was masked by the pulsation artifact, and a strong increase in the signal-to-noise ratio (SNR) in the denoised data.Clinical Relevance- Pulsation artifact can mask relevant neural activity patterns and make their visual inspection difficult. Using sparse signal representation, we established a new approach to reconstruct the quasiperiodic pulsation template and computed the residue signal to achieve noise-free neural activity.
Collapse
|
8
|
Bahador N, Saha J, Rezaei MR, Utpal S, Ghahremani A, Chen R, Lankarany M. Robust Removal of Slow Artifactual Dynamics Induced by Deep Brain Stimulation in Local Field Potential Recordings Using SVD-Based Adaptive Filtering. Bioengineering (Basel) 2023; 10:719. [PMID: 37370650 DOI: 10.3390/bioengineering10060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Deep brain stimulation (DBS) is widely used as a treatment option for patients with movement disorders. In addition to its clinical impact, DBS has been utilized in the field of cognitive neuroscience, wherein the answers to several fundamental questions underpinning the mechanisms of neuromodulation in decision making rely on the ways in which a burst of DBS pulses, usually delivered at a clinical frequency, i.e., 130 Hz, perturb participants' choices. It was observed that neural activities recorded during DBS were contaminated with large artifacts, which lasts for a few milliseconds, as well as a low-frequency (slow) signal (~1-2 Hz) that can persist for hundreds of milliseconds. While the focus of most of methods for removing DBS artifacts was on the former, the artifact removal capabilities of the slow signal have not been addressed. In this work, we propose a new method based on combining singular value decomposition (SVD) and normalized adaptive filtering to remove both large (fast) and slow artifacts in local field potentials, recorded during a cognitive task in which bursts of DBS were utilized. Using synthetic data, we show that our proposed algorithm outperforms four commonly used techniques in the literature, namely, (1) normalized least mean square adaptive filtering, (2) optimal FIR Wiener filtering, (3) Gaussian model matching, and (4) moving average. The algorithm's capabilities are further demonstrated by its ability to effectively remove DBS artifacts in local field potentials recorded from the subthalamic nucleus during a verbal Stroop task, highlighting its utility in real-world applications.
Collapse
Affiliation(s)
- Nooshin Bahador
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Josh Saha
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Toronto, ON N2L 3G1, Canada
| | - Mohammad R Rezaei
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Saha Utpal
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
| | - Ayda Ghahremani
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Robert Chen
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON M5S 2E8, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network (UHN), Toronto, ON M5G 2A2, Canada
| | - Milad Lankarany
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON M5S 2E8, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network (UHN), Toronto, ON M5G 2A2, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 2E8, Canada
| |
Collapse
|
9
|
Nagahawatte ND, Paskaranandavadivel N, Bear LR, Avci R, Cheng LK. A novel framework for the removal of pacing artifacts from bio-electrical recordings. Comput Biol Med 2023; 155:106673. [PMID: 36805227 DOI: 10.1016/j.compbiomed.2023.106673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Electroceuticals provide clinical solutions for a range of disorders including Parkinson's disease, cardiac arrythmias and are emerging as a potential treatment option for gastrointestinal disorders. However, pre-clinical investigations are challenged by the large stimulation artifacts registered in bio-electrical recordings. METHOD A generalized framework capable of isolating and suppressing stimulation artifacts with minimal intervention was developed. Stimulation artifacts with different pulse-parameters in synthetic and experimental cardiac and gastrointestinal signals were detected using a Hampel filter and reconstructed using 3 methods: i) autoregression, ii) weighted mean, and iii) linear interpolation. RESULTS Synthetic stimulation artifacts with amplitudes of 2 mV and 4 mV and pulse-widths of 50 ms, 100 ms, and 200 ms were successfully isolated and the artifact window size remained uninfluenced by the pulse-amplitude, but was influenced by pulse-width (e.g., the autoregression method resulted in an identical Root Mean Square Error (RMSE) of 1.64 mV for artifacts with 200 ms pulse-width and both 2 mV and 4 mV amplitudes). The performance of autoregression (RMSE = 1.45 ± 0.16 mV) and linear interpolation (RMSE = 1.22 ± 0.14 mV) methods were comparable and better than weighted mean (RMSE = 5.54 ± 0.56 mV) for synthetic data. However, for experimental recordings, artifact removal by autoregression was superior to both linear interpolation and weighted mean approaches in gastric, small intestinal and cardiac recordings. CONCLUSIONS A novel signal processing framework enabled efficient analysis of bio-electrical recordings with stimulation artifacts. This will allow the bio-electrical events induced by stimulation protocols to be efficiently and systematically evaluated, resulting in improved stimulation therapies.
Collapse
Affiliation(s)
- Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Laura R Bear
- IHU Liryc, Fondation Bordeaux Université, F-33600, Pessac-Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; Université de Bordeaux, CRCTB, U1045, F-33000, Bordeaux, France
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Surgery, Vanderbilt University, Nashville, TN, USA; Riddet Institute Centre of Research Excellence, Palmerston North, New Zealand.
| |
Collapse
|
10
|
Wong JK, Mayberg HS, Wang DD, Richardson RM, Halpern CH, Krinke L, Arlotti M, Rossi L, Priori A, Marceglia S, Gilron R, Cavanagh JF, Judy JW, Miocinovic S, Devergnas AD, Sillitoe RV, Cernera S, Oehrn CR, Gunduz A, Goodman WK, Petersen EA, Bronte-Stewart H, Raike RS, Malekmohammadi M, Greene D, Heiden P, Tan H, Volkmann J, Voon V, Li L, Sah P, Coyne T, Silburn PA, Kubu CS, Wexler A, Chandler J, Provenza NR, Heilbronner SR, Luciano MS, Rozell CJ, Fox MD, de Hemptinne C, Henderson JM, Sheth SA, Okun MS. Proceedings of the 10th annual deep brain stimulation think tank: Advances in cutting edge technologies, artificial intelligence, neuromodulation, neuroethics, interventional psychiatry, and women in neuromodulation. Front Hum Neurosci 2023; 16:1084782. [PMID: 36819295 PMCID: PMC9933515 DOI: 10.3389/fnhum.2022.1084782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 02/05/2023] Open
Abstract
The deep brain stimulation (DBS) Think Tank X was held on August 17-19, 2022 in Orlando FL. The session organizers and moderators were all women with the theme women in neuromodulation. Dr. Helen Mayberg from Mt. Sinai, NY was the keynote speaker. She discussed milestones and her experiences in developing depression DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers and researchers (from industry and academia) can freely discuss current and emerging DBS technologies as well as the logistical and ethical issues facing the field. The consensus among the DBS Think Tank X speakers was that DBS has continued to expand in scope however several indications have reached the "trough of disillusionment." DBS for depression was considered as "re-emerging" and approaching a slope of enlightenment. DBS for depression will soon re-enter clinical trials. The group estimated that globally more than 244,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: neuromodulation in Europe, Asia, and Australia; cutting-edge technologies, closed loop DBS, DBS tele-health, neuroethics, lesion therapy, interventional psychiatry, and adaptive DBS.
Collapse
Affiliation(s)
- Joshua K. Wong
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Helen S. Mayberg
- Department of Neurology, Neurosurgery, Psychiatry, and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Doris D. Wang
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Casey H. Halpern
- Richards Medical Research Laboratories, Department of Neurosurgery, Perelman School of Medicine, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, United States
| | - Lothar Krinke
- Newronika, Goose Creek, SC, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | | | | | | | | | | | - James F. Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jack W. Judy
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Svjetlana Miocinovic
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Annaelle D. Devergnas
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Stephanie Cernera
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Carina R. Oehrn
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Wayne K. Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Erika A. Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Robert S. Raike
- Restorative Therapies Group Implantables, Research, and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | | | - David Greene
- NeuroPace, Inc., Mountain View, CA, United States
| | - Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Pankaj Sah
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Terry Coyne
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Peter A. Silburn
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Cynthia S. Kubu
- Department of Neurology, Cleveland Clinic, Cleveland, OH, United States
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer Chandler
- Centre for Health Law, Policy, and Ethics, Faculty of Law, University of Ottawa, Ottawa, ON, Canada
| | - Nicole R. Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Marta San Luciano
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Coralie de Hemptinne
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jaimie M. Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Michael S. Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Sui Y, Yu H, Zhang C, Chen Y, Jiang C, Li L. Deep brain-machine interfaces: sensing and modulating the human deep brain. Natl Sci Rev 2022; 9:nwac212. [PMID: 36644311 PMCID: PMC9834907 DOI: 10.1093/nsr/nwac212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 01/18/2023] Open
Abstract
Different from conventional brain-machine interfaces that focus more on decoding the cerebral cortex, deep brain-machine interfaces enable interactions between external machines and deep brain structures. They sense and modulate deep brain neural activities, aiming at function restoration, device control and therapeutic improvements. In this article, we provide an overview of multiple deep brain recording and stimulation techniques that can serve as deep brain-machine interfaces. We highlight two widely used interface technologies, namely deep brain stimulation and stereotactic electroencephalography, for technical trends, clinical applications and brain connectivity research. We discuss the potential to develop closed-loop deep brain-machine interfaces and achieve more effective and applicable systems for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Huiling Yu
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Chen Zhang
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Yue Chen
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Changqing Jiang
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
12
|
Chen P, Kim T, Dastin-van Rijn E, Provenza NR, Sheth SA, Goodman WK, Borton DA, Harrison MT, Darbon J. Periodic Artifact Removal With Applications to Deep Brain Stimulation. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2692-2699. [PMID: 36121940 PMCID: PMC9553325 DOI: 10.1109/tnsre.2022.3205453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deep brain stimulation (DBS) therapies have shown clinical success in the treatment of a number of neurological illnesses, including obsessive-compulsive disorder, epilepsy, and Parkinson's disease. An emerging strategy for increasing the efficacy of DBS therapies is to develop closed-loop, adaptive DBS systems that can sense biomarkers associated with particular symptoms and in response, adjust DBS parameters in real-time. The development of such systems requires extensive analysis of the underlying neural signals while DBS is on, so that candidate biomarkers can be identified and the effects of varying the DBS parameters can be better understood. However, DBS creates high amplitude, high frequency stimulation artifacts that prevent the underlying neural signals and thus the biological mechanisms underlying DBS from being analyzed. Additionally, DBS devices often require low sampling rates, which alias the artifact frequency, and rely on wireless data transmission methods that can create signal recordings with missing data of unknown length. Thus, traditional artifact removal methods cannot be applied to this setting. We present a novel periodic artifact removal algorithm for DBS applications that can accurately remove stimulation artifacts in the presence of missing data and in some cases where the stimulation frequency exceeds the Nyquist frequency. The numerical examples suggest that, if implemented on dedicated hardware, this algorithm has the potential to be used in embedded closed-loop DBS therapies to remove DBS stimulation artifacts and hence, to aid in the discovery of candidate biomarkers in real-time. Code for our proposed algorithm is publicly available on Github.
Collapse
|
13
|
Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, Okun MS, de Hemptinne C. Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol 2022; 13:825178. [PMID: 35356461 PMCID: PMC8959612 DOI: 10.3389/fneur.2022.825178] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jackson Cagle
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kara A. Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Justin D. Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Christopher R. Butson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Coralie de Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Schelles M, Wouters J, Asamoah B, Mc Laughlin M, Bertrand A. Objective evaluation of stimulation artefact removal techniques in the context of neural spike sorting. J Neural Eng 2022; 19. [DOI: 10.1088/1741-2552/ac4ecf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective - We present a framework to objectively test and compare stimulation artefact removal techniques in the context of neural spike sorting. Approach - To this end, we used realistic hybrid ground-truth spiking data, with superimposed artefacts from in vivo recordings. We used the framework to evaluate and compare several techniques: blanking, template subtraction by averaging, linear regression, and a multi-channel Wiener filter (MWF). Main results - Our study demonstrates that blanking and template subtraction result in a poorer spike sorting performance than linear regression and MWF, while the latter two perform similarly. Finally, to validate the conclusions found from the hybrid evaluation framework, we also performed a qualitative analysis on in vivo recordings without artificial manipulations. Significance - Our framework allows direct quantification of the impact of the residual artefact on the spike sorting accuracy, thereby allowing for a more objective and more relevant comparison compared to indirect signal quality metrics that are estimated from the signal statistics. Furthermore, the availability of a ground truth in the form of single-unit spiking activity also facilitates a better estimation of such signal quality metrics.
Collapse
|
15
|
Arlotti M, Colombo M, Bonfanti A, Mandat T, Lanotte MM, Pirola E, Borellini L, Rampini P, Eleopra R, Rinaldo S, Romito L, Janssen MLF, Priori A, Marceglia S. A New Implantable Closed-Loop Clinical Neural Interface: First Application in Parkinson's Disease. Front Neurosci 2021; 15:763235. [PMID: 34949982 PMCID: PMC8689059 DOI: 10.3389/fnins.2021.763235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) is used for the treatment of movement disorders, including Parkinson’s disease, dystonia, and essential tremor, and has shown clinical benefits in other brain disorders. A natural path for the improvement of this technique is to continuously observe the stimulation effects on patient symptoms and neurophysiological markers. This requires the evolution of conventional deep brain stimulators to bidirectional interfaces, able to record, process, store, and wirelessly communicate neural signals in a robust and reliable fashion. Here, we present the architecture, design, and first use of an implantable stimulation and sensing interface (AlphaDBSR System) characterized by artifact-free recording and distributed data management protocols. Its application in three patients with Parkinson’s disease (clinical trial n. NCT04681534) is shown as a proof of functioning of a clinically viable implanted brain-computer interface (BCI) for adaptive DBS. Reliable artifact free-recordings, and chronic long-term data and neural signal management are in place.
Collapse
Affiliation(s)
| | | | - Andrea Bonfanti
- Newronika SpA, Milan, Italy.,Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Tomasz Mandat
- Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie, Warsaw, Poland
| | - Michele Maria Lanotte
- Department of Neuroscience, University of Torino, Torino, Italy.,AOU Città della Salute e della Scienza, Molinette Hospital, Turin, Italy
| | - Elena Pirola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linda Borellini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Rampini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Eleopra
- Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Sara Rinaldo
- Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Luigi Romito
- Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Marcus L F Janssen
- Department of Neurology and Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alberto Priori
- Department of Health Sciences, Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, University of Milan, Milan, Italy
| | - Sara Marceglia
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy
| |
Collapse
|
16
|
Nie Y, Guo X, Li X, Geng X, Li Y, Quan Z, Zhu G, Yin Z, Zhang J, Wang S. Real-time removal of stimulation artifacts in closed-loop deep brain stimulation. J Neural Eng 2021; 18. [PMID: 34818629 DOI: 10.1088/1741-2552/ac3cc5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023]
Abstract
Objective.Closed-loop deep brain stimulation (DBS) with neural feedback has shown great potential in improving the therapeutic effect and reducing side effects. However, the amplitude of stimulation artifacts is much larger than the local field potentials, which remains a bottleneck in developing a closed-loop stimulation strategy with varied parameters.Approach.We proposed an irregular sampling method for the real-time removal of stimulation artifacts. The artifact peaks were detected by applying a threshold to the raw recordings, and the samples within the contaminated period of the stimulation pulses were excluded and replaced with the interpolation of the samples prior to and after the stimulation artifact duration. This method was evaluated with both simulation signals andin vivoclosed-loop DBS applications in Parkinsonian animal models.Main results. The irregular sampling method was able to remove the stimulation artifacts effectively with the simulation signals. The relative errors between the power spectral density of the recovered and true signals within a wide frequency band (2-150 Hz) were 2.14%, 3.93%, 7.22%, 7.97% and 6.25% for stimulation at 20 Hz, 60 Hz, 130 Hz, 180 Hz, and stimulation with variable low and high frequencies, respectively. This stimulation artifact removal method was verified in real-time closed-loop DBS applicationsin vivo, and the artifacts were effectively removed during stimulation with frequency continuously changing from 130 Hz to 1 Hz and stimulation adaptive to beta oscillations.Significance.The proposed method provides an approach for real-time removal in closed-loop DBS applications, which is effective in stimulation with low frequency, high frequency, and variable frequency. This method can facilitate the development of more advanced closed-loop DBS strategies.
Collapse
Affiliation(s)
- Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xuanjun Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xiao Li
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Chen Y, Ma B, Hao H, Li L. Cause of Subharmonics in Local Field Potentials Recorded by Sensing-Enabled Neurostimulator. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6159-6162. [PMID: 34892522 DOI: 10.1109/embc46164.2021.9630422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing-enabled neurostimulators have become an essential technology for recording local field potentials (LFPs) during neurostimulation. However, subharmonics from indeterminate sources make interpreting LFP recordings a challenge. In this study, we investigated the characteristics and the cause of the subharmonics recorded by sensing-enabled neurostimulators. We found that the amplitudes and frequencies of the subharmonics in clinical LFPs varied with stimulation parameters. Using simulated solutions, we demonstrated that these subharmonics were device-generated noise. The cause of the subharmonics was the ripples in the stimulation pulses residual in the final LFP recordings. Our results provided a method to discriminate the subharmonic artifacts and suggested that interpretation of the subharmonics at a fractional frequency of stimulations in LFP recordings should be performed carefully.Clinical Relevance- This study reveals the cause of subharmonics in LFP recordings for clinical neuroscience research.
Collapse
|
18
|
Sohanian Haghighi H, Markazi AHD. Control of epileptic seizures by electrical stimulation: a model-based study. Biomed Phys Eng Express 2021; 7. [PMID: 34488206 DOI: 10.1088/2057-1976/ac240d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022]
Abstract
High frequency electrical stimulation of brain is commonly used in research experiments and clinical trials as a modern tool for control of epileptic seizures. However, the mechanistic basis by which periodic external stimuli alter the brain state is not well understood. This study provides a computational insight into the mechanism of seizure suppression by high frequency stimulation (HFS). In particular, a modified version of the Jansen-Rit neural mass model is employed, in which EEG signals can be considered as the input. The proposed model reproduces seizure-like activity in the output during the ictal period of the input signal. By applying a control signal to the model, a wide range of stimulation amplitudes and frequencies are systematically explored. Simulation results reveal that HFS can effectively suppress the seizure-like activity. Our results suggest that HFS has the ability of shifting the operating state of neural populations away from a critical condition. Furthermore, a closed-loop control strategy is proposed in this paper. The main objective has been to considerably reduce the control effort needed for blocking abnormal activity of the brain. Such an energy reduction could be of practical importance, to reduce possible side effects and increase battery life for implanted neurostimulators.
Collapse
Affiliation(s)
| | - Amir H D Markazi
- 1School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844, Iran
| |
Collapse
|
19
|
Fabietti M, Mahmud M, Lotfi A, Kaiser MS, Averna A, Guggenmos DJ, Nudo RJ, Chiappalone M, Chen J. SANTIA: a Matlab-based open-source toolbox for artifact detection and removal from extracellular neuronal signals. Brain Inform 2021; 8:14. [PMID: 34283328 PMCID: PMC8292498 DOI: 10.1186/s40708-021-00135-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Neuronal signals generally represent activation of the neuronal networks and give insights into brain functionalities. They are considered as fingerprints of actions and their processing across different structures of the brain. These recordings generate a large volume of data that are susceptible to noise and artifacts. Therefore, the review of these data to ensure high quality by automatically detecting and removing the artifacts is imperative. Toward this aim, this work proposes a custom-developed automatic artifact removal toolbox named, SANTIA (SigMate Advanced: a Novel Tool for Identification of Artifacts in Neuronal Signals). Developed in Matlab, SANTIA is an open-source toolbox that applies neural network-based machine learning techniques to label and train models to detect artifacts from the invasive neuronal signals known as local field potentials.
Collapse
Affiliation(s)
- Marcos Fabietti
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
- Computing and Informatics Research Centre, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Ahmad Lotfi
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - M Shamim Kaiser
- Institute of Information Technology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Alberto Averna
- Department of Health Sciences, University of Milan, Via di Rudinì, 8, 20142, Milan, Italy
| | - David J Guggenmos
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, 66160, USA
| | - Randolph J Nudo
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, 66160, USA
| | - Michela Chiappalone
- Department of informatics, Bioengineering, Robotics and System Engineering-DIBRIS, University of Genova, Via All'Opera Pia, 13, 16145, Genoa, Italy
| | - Jianhui Chen
- Faculty of Information Technology, International WIC Institute, Beijing University of Technology, Beijing, 100124, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, 100124, China
| |
Collapse
|
20
|
Dastin-van Rijn EM, Provenza NR, Calvert JS, Gilron R, Allawala AB, Darie R, Syed S, Matteson E, Vogt GS, Avendano-Ortega M, Vasquez AC, Ramakrishnan N, Oswalt DN, Bijanki KR, Wilt R, Starr PA, Sheth SA, Goodman WK, Harrison MT, Borton DA. Uncovering biomarkers during therapeutic neuromodulation with PARRM: Period-based Artifact Reconstruction and Removal Method. CELL REPORTS METHODS 2021; 1:100010. [PMID: 34532716 PMCID: PMC8443190 DOI: 10.1016/j.crmeth.2021.100010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 10/26/2022]
Abstract
Advances in therapeutic neuromodulation devices have enabled concurrent stimulation and electrophysiology in the central nervous system. However, stimulation artifacts often obscure the sensed underlying neural activity. Here, we develop a method, termed Period-based Artifact Reconstruction and Removal Method (PARRM), to remove stimulation artifacts from neural recordings by leveraging the exact period of stimulation to construct and subtract a high-fidelity template of the artifact. Benchtop saline experiments, computational simulations, five unique in vivo paradigms across animal and human studies, and an obscured movement biomarker are used for validation. Performance is found to exceed that of state-of-the-art filters in recovering complex signals without introducing contamination. PARRM has several advantages: (1) it is superior in signal recovery; (2) it is easily adaptable to several neurostimulation paradigms; and (3) it has low complexity for future on-device implementation. Real-time artifact removal via PARRM will enable unbiased exploration and detection of neural biomarkers to enhance efficacy of closed-loop therapies.
Collapse
Affiliation(s)
| | - Nicole R. Provenza
- Brown University School of Engineering, Providence, RI, USA
- Charles Stark Draper Laboratory, Cambridge, MA, USA
| | | | - Ro'ee Gilron
- Deparment of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Radu Darie
- Brown University School of Engineering, Providence, RI, USA
| | - Sohail Syed
- Department of Neurosurgery, Warren Alpert School of Medicine of Brown University, Providence, RI, USA
| | - Evan Matteson
- Brown University School of Engineering, Providence, RI, USA
| | - Gregory S. Vogt
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle Avendano-Ortega
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ana C. Vasquez
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nithya Ramakrishnan
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise N. Oswalt
- Department of Neurosurgery, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kelly R. Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Robert Wilt
- Deparment of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Philip A. Starr
- Deparment of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - David A. Borton
- Brown University School of Engineering, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs, Providence, RI, USA
| |
Collapse
|
21
|
Cho J, Seong G, Chang Y, Kim C. Energy-Efficient Integrated Circuit Solutions Toward Miniaturized Closed-Loop Neural Interface Systems. Front Neurosci 2021; 15:667447. [PMID: 34135727 PMCID: PMC8200530 DOI: 10.3389/fnins.2021.667447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Miniaturized implantable devices play a crucial role in neural interfaces by monitoring and modulating neural activities on the peripheral and central nervous systems. Research efforts toward a compact wireless closed-loop system stimulating the nerve automatically according to the user's condition have been maintained. These systems have several advantages over open-loop stimulation systems such as reduction in both power consumption and side effects of continuous stimulation. Furthermore, a compact and wireless device consuming low energy alleviates foreign body reactions and risk of frequent surgical operations. Unfortunately, however, the miniaturized closed-loop neural interface system induces several hardware design challenges such as neural activity recording with severe stimulation artifact, real-time stimulation artifact removal, and energy-efficient wireless power delivery. Here, we will review recent approaches toward the miniaturized closed-loop neural interface system with integrated circuit (IC) techniques.
Collapse
Affiliation(s)
- Jaeouk Cho
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Geunchang Seong
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yonghee Chang
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Chul Kim
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for Health Science and Technology, Daejeon, South Korea
| |
Collapse
|
22
|
Vedam-Mai V, Deisseroth K, Giordano J, Lazaro-Munoz G, Chiong W, Suthana N, Langevin JP, Gill J, Goodman W, Provenza NR, Halpern CH, Shivacharan RS, Cunningham TN, Sheth SA, Pouratian N, Scangos KW, Mayberg HS, Horn A, Johnson KA, Butson CR, Gilron R, de Hemptinne C, Wilt R, Yaroshinsky M, Little S, Starr P, Worrell G, Shirvalkar P, Chang E, Volkmann J, Muthuraman M, Groppa S, Kühn AA, Li L, Johnson M, Otto KJ, Raike R, Goetz S, Wu C, Silburn P, Cheeran B, Pathak YJ, Malekmohammadi M, Gunduz A, Wong JK, Cernera S, Wagle Shukla A, Ramirez-Zamora A, Deeb W, Patterson A, Foote KD, Okun MS. Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: Advances in Optogenetics, Ethical Issues Affecting DBS Research, Neuromodulatory Approaches for Depression, Adaptive Neurostimulation, and Emerging DBS Technologies. Front Hum Neurosci 2021; 15:644593. [PMID: 33953663 PMCID: PMC8092047 DOI: 10.3389/fnhum.2021.644593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer’s disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.
Collapse
Affiliation(s)
- Vinata Vedam-Mai
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - James Giordano
- Department of Neurology and Neuroethics Studies Program, Georgetown University Medical Center, Washington, DC, United States
| | - Gabriel Lazaro-Munoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Winston Chiong
- Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Nanthia Suthana
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jean-Philippe Langevin
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Neurosurgery Service, Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jay Gill
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wayne Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nicole R Provenza
- School of Engineering, Brown University, Providence, RI, United States
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Rajat S Shivacharan
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Tricia N Cunningham
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine W Scangos
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Helen S Mayberg
- Department of Neurology and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Kara A Johnson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Christopher R Butson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Ro'ee Gilron
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Robert Wilt
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Yaroshinsky
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Simon Little
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Philip Starr
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Prasad Shirvalkar
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Department of Anesthesiology (Pain Management) and Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Edward Chang
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Jens Volkmann
- Neurologischen Klinik Universitätsklinikum Würzburg, Würzburg, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Matthew Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Robert Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Steve Goetz
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Peter Silburn
- Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Binith Cheeran
- Neuromodulation Division, Abbott, Plano, TX, United States
| | - Yagna J Pathak
- Neuromodulation Division, Abbott, Plano, TX, United States
| | | | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Joshua K Wong
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Stephanie Cernera
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Wissam Deeb
- Department of Neurology, University of Massachusetts, Worchester, MA, United States
| | - Addie Patterson
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Chen Y, Ma B, Hao H, Li L. Removal of Electrocardiogram Artifacts From Local Field Potentials Recorded by Sensing-Enabled Neurostimulator. Front Neurosci 2021; 15:637274. [PMID: 33912002 PMCID: PMC8071948 DOI: 10.3389/fnins.2021.637274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 01/11/2023] Open
Abstract
Sensing-enabled neurostimulators are an advanced technology for chronic observation of brain activities, and show great potential for closed-loop neuromodulation and as implantable brain-computer interfaces. However, local field potentials (LFPs) recorded by sensing-enabled neurostimulators can be contaminated by electrocardiogram (ECG) signals due to complex recording conditions and limited common-mode-rejection-ratio (CMRR). In this study, we propose a solution for removing such ECG artifacts from local field potentials (LFPs) recorded by a sensing-enabled neurostimulator. A synchronized monopolar channel was added as an ECG reference, and two pre-existing methods, i.e., template subtraction and adaptive filtering, were then applied. ECG artifacts were successfully removed and the performance of the method was insensitive to residual stimulation artifacts. This approach to removal of ECG artifacts broadens the range of applications of sensing-enabled neurostimulators.
Collapse
Affiliation(s)
- Yue Chen
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Bozhi Ma
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Hongwei Hao
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China.,Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,International Data Group (IDG)/McGovern Institute for Brain Research at Tsinghua University, Beijing, China.,Institute of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
24
|
Litvak V, Florin E, Tamás G, Groppa S, Muthuraman M. EEG and MEG primers for tracking DBS network effects. Neuroimage 2020; 224:117447. [PMID: 33059051 DOI: 10.1016/j.neuroimage.2020.117447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment method for a range of neurological and psychiatric disorders. It involves implantation of stimulating electrodes in a precisely guided fashion into subcortical structures and, at a later stage, chronic stimulation of these structures with an implantable pulse generator. While the DBS surgery makes it possible to both record brain activity and stimulate parts of the brain that are difficult to reach with non-invasive techniques, electroencephalography (EEG) and magnetoencephalography (MEG) provide complementary information from other brain areas, which can be used to characterize brain networks targeted through DBS. This requires, however, the careful consideration of different types of artifacts in the data acquisition and the subsequent analyses. Here, we review both the technical issues associated with EEG/MEG recordings in DBS patients and the experimental findings to date. One major line of research is simultaneous recording of local field potentials (LFPs) from DBS targets and EEG/MEG. These studies revealed a set of cortico-subcortical coherent networks functioning at distinguishable physiological frequencies. Specific network responses were linked to clinical state, task or stimulation parameters. Another experimental approach is mapping of DBS-targeted networks in chronically implanted patients by recording EEG/MEG responses during stimulation. One can track responses evoked by single stimulation pulses or bursts as well as brain state shifts caused by DBS. These studies have the potential to provide biomarkers for network responses that can be adapted to guide stereotactic implantation or optimization of stimulation parameters. This is especially important for diseases where the clinical effect of DBS is delayed or develops slowly over time. The same biomarkers could also potentially be utilized for the online control of DBS network effects in the new generation of closed-loop stimulators that are currently entering clinical use. Through future studies, the use of network biomarkers may facilitate the integration of circuit physiology into clinical decision making.
Collapse
Affiliation(s)
- Vladimir Litvak
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
25
|
Chen Y, Gong C, Tian Y, Orlov N, Zhang J, Guo Y, Xu S, Jiang C, Hao H, Neumann WJ, Kühn AA, Liu H, Li L. Neuromodulation effects of deep brain stimulation on beta rhythm: A longitudinal local field potential study. Brain Stimul 2020; 13:1784-1792. [PMID: 33038597 DOI: 10.1016/j.brs.2020.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/15/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) holds great promise in treating various brain diseases but its chronic therapeutic mechanisms are unclear. OBJECTIVE To explore the immediate and chronic effects of DBS on brain oscillations, and understand how different sub-bands of oscillations may be related to symptom improvement in Parkinson's patients. METHODS We carried out a longitudinal study to examine the effects of DBS on local field potentials recorded by sensing-enabled neurostimulators in the subthalamic nuclei of Parkinson's patients, using a novel block-design stimulation paradigm. RESULTS DBS significantly suppressed beta activity (13-35Hz) but the suppression effect appeared to gradually attenuate during a 6-month follow-up period after surgery (p = 0.002). However, beta suppression did not attenuate after repeated stimulation over several minutes (p > 0.110), suggesting that the changes in beta suppression may reflect a slow reconfiguration of neural pathways instead of habituation. Suppression of beta was also associated with clinical symptom improvement across subjects. Importantly, symptom-relevant features fell within the high beta band at month 1 but shifted to the low beta band at month 6, indicating that the high beta and the low beta oscillations may play different functional roles and respond differently to stimulation over the long-term treatment. CONCLUSION These data may advance understanding of chronic DBS effects on beta oscillations and their association with clinical improvement, offering novel insights to the therapeutic mechanisms of DBS.
Collapse
Affiliation(s)
- Yue Chen
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Chen Gong
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Natasza Orlov
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, 100032, China
| | - Shujun Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Changqing Jiang
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Hongwei Hao
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, 29425, SC, USA.
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China; Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518071, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, 100084, China; Institute of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| |
Collapse
|
26
|
Debarros J, Gaignon L, He S, Pogosyan A, Benjaber M, Denison T, Brown P, Tan H. Artefact-free recording of local field potentials with simultaneous stimulation for closed-loop Deep-Brain Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3367-3370. [PMID: 33018726 DOI: 10.1109/embc44109.2020.9176665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Continuous high frequency Deep Brain Stimulation (DBS) is a standard therapy for several neurological disorders. Closed-loop DBS is expected to further improve treatment by providing adaptive, on-demand therapy. Local field potentials (LFPs) recorded from the stimulation electrodes are the most often used feedback signal in closed-loop DBS. However, closed-loop DBS based on LFPs requires simultaneous recording and stimulating, which remains a challenge due to persistent stimulation artefacts that distort underlying LFP biomarkers. Here we first investigate the nature of the stimulation-induced artefacts and review several techniques that have been proposed to deal with them. Then we propose a new method to synchronize the sampling clock with the stimulation pulse so that the stimulation artefacts are never sampled, while at the same time the Nyquist-Shannon theorem is satisfied for uninterrupted LFP recording. Test results show that this method achieves true uninterrupted artefact-free LFP recording over a wide frequency band and for a wide range of stimulation frequencies.Clinical relevance-The method proposed here provides continuous and artefact-free recording of LFPs close to the stimulation target, and thereby facilitates the implementation of more advanced closed-loop DBS using LFPs as feedback.
Collapse
|
27
|
Sadeghi Najafabadi M, Chen L, Dutta K, Norris A, Feng B, Schnupp JWH, Rosskothen-Kuhl N, Read HL, Escabí MA. Optimal Multichannel Artifact Prediction and Removal for Neural Stimulation and Brain Machine Interfaces. Front Neurosci 2020; 14:709. [PMID: 32765212 PMCID: PMC7379342 DOI: 10.3389/fnins.2020.00709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Neural implants that deliver multi-site electrical stimulation to the nervous systems are no longer the last resort but routine treatment options for various neurological disorders. Multi-site electrical stimulation is also widely used to study nervous system function and neural circuit transformations. These technologies increasingly demand dynamic electrical stimulation and closed-loop feedback control for real-time assessment of neural function, which is technically challenging since stimulus-evoked artifacts overwhelm the small neural signals of interest. We report a novel and versatile artifact removal method that can be applied in a variety of settings, from single- to multi-site stimulation and recording and for current waveforms of arbitrary shape and size. The method capitalizes on linear electrical coupling between stimulating currents and recording artifacts, which allows us to estimate a multi-channel linear Wiener filter to predict and subsequently remove artifacts via subtraction. We confirm and verify the linearity assumption and demonstrate feasibility in a variety of recording modalities, including in vitro sciatic nerve stimulation, bilateral cochlear implant stimulation, and multi-channel stimulation and recording between the auditory midbrain and cortex. We demonstrate a vast enhancement in the recording quality with a typical artifact reduction of 25-40 dB. The method is efficient and can be scaled to arbitrary number of stimulus and recording sites, making it ideal for applications in large-scale arrays, closed-loop implants, and high-resolution multi-channel brain-machine interfaces.
Collapse
Affiliation(s)
- Mina Sadeghi Najafabadi
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Kelsey Dutta
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, United States
| | - Ashley Norris
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Jan W. H. Schnupp
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Nicole Rosskothen-Kuhl
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Heather L. Read
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
- Department of Psychology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| | - Monty A. Escabí
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
- Department of Psychology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
28
|
Abstract
Closed-loop optogenetic stimulation devices deliver optical stimulations based on real-time measurement and analysis of neural responses to stimulations. However, the use of large bench-top and tethered devices hinders the naturalistic test environment, which is crucial in pre-clinical neuroscience studies involving small rodent subjects. This paper presents a tetherless, lightweight and miniaturized head-mountable closed-loop optogenetic stimulation device. The device consists of three hardware modules: a hybrid electrode, an action potential detector, and an optogenetic stimulator. In addition, the device includes three software modules: a feature extractor, a control algorithm, and a pulse generator. The details of the design, implementation, and bench-testing of the device are presented. Furthermore, an in vitro test environment is formed using synthetic neural signals, wherein the device is validated for its closed-loop performance. During the in vitro validation, the device was able to identify abnormal neural signals, and trigger optical stimulation. On the other hand, it was able to also distinguish normal neural signals and inhibit optical stimulation. The overall power consumption of the device is 24 mW. The device measures 6 mm in radius and weighs 0.44 g excluding the power source.
Collapse
|
29
|
|
30
|
Petkos K, Guiho T, Degenaar P, Jackson A, Brown P, Denison T, Drakakis EM. A high-performance 4 nV (√Hz) -1 analog front-end architecture for artefact suppression in local field potential recordings during deep brain stimulation. J Neural Eng 2019; 16:066003. [PMID: 31151118 PMCID: PMC6877351 DOI: 10.1088/1741-2552/ab2610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recording of local field potentials (LFPs) during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, existing recording systems lack the ability to provide artefact-free high-frequency (>100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. APPROACH To solve this problem, we designed and developed a novel, low-noise and versatile analog front-end (AFE) that uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, we assessed the performance of the realised AFE by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 µs). A full performance comparison between the proposed AFE and an identical AFE, equipped with an 8th order analog Bessel notch filter, was also conducted. MAIN RESULTS A high-performance, 4 nV ([Formula: see text])-1 AFE that is capable of recording nV-scale signals was designed in accordance with the imposed specifications. Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5-250 Hz) during stimulation. Its sensing and stimulation artefact suppression capabilities outperformed the capabilities of the AFE equipped with the Bessel notch filter. SIGNIFICANCE The designed AFE can precisely record LFP signals, in and without the presence of either unipolar or bipolar DBS, which renders it as a functional and practical AFE architecture to be utilised in a wide range of applications and environments. This work paves the way for the development of externalized research tools for closed-loop neuromodulation that use low- and higher-frequency LFPs as control signals.
Collapse
Affiliation(s)
- Konstantinos Petkos
- Department of Bioengineering, Imperial College London, London, United Kingdom. Center for Neurotechnology, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen Y, Gong C, Hao H, Guo Y, Xu S, Zhang Y, Yin G, Cao X, Yang A, Meng F, Ye J, Liu H, Zhang J, Sui Y, Li L. Automatic Sleep Stage Classification Based on Subthalamic Local Field Potentials. IEEE Trans Neural Syst Rehabil Eng 2019; 27:118-128. [PMID: 30605104 PMCID: PMC6544463 DOI: 10.1109/tnsre.2018.2890272] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deep brain stimulation (DBS) is an established treatment for patients with Parkinson's disease (PD). Sleep disorders are common complications of PD and affected by subthalamic DBS treatment. To achieve more precise neuromodulation, chronicsleepmonitoringand closed-loop DBS toward sleep-wake cycles could potentially be utilized. Local field potential (LFP) signals that are sensed by the DBS electrode could be processed as primary feedback signals. This is the first study to systematically investigate the sleep-stage classification based on LFPs in subthalamic nucleus (STN). With our newly developed recording and transmission system, STN-LFPs were collected from 12 PD patients during wakefulness and nocturnal polysomnography sleep monitoring at one month after DBS implantation. Automatic sleep-stage classificationmodels were built with robust and interpretable machine learning methods (support vector machine and decision tree). The accuracy, sensitivity, selectivity, and specificity of the classification reached high values (above90% at most measures) at group and individual levels. Features extracted in alpha (8-13 Hz), beta (13-35 Hz), and gamma (35-50 Hz) bandswere found to contribute the most to the classification. These results will directly guide the engineering development of implantable sleepmonitoring and closed-loopDBS and pave the way for a better understanding of the STN-LFP sleep patterns.
Collapse
|
32
|
Alagapan S, Shin HW, Fröhlich F, Wu HT. Diffusion geometry approach to efficiently remove electrical stimulation artifacts in intracranial electroencephalography. J Neural Eng 2018; 16:036010. [PMID: 30523899 DOI: 10.1088/1741-2552/aaf2ba] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cortical oscillations, electrophysiological activity patterns, associated with cognitive functions and impaired in many psychiatric disorders can be observed in intracranial electroencephalography (iEEG). Direct cortical stimulation (DCS) may directly target these oscillations and may serve as therapeutic approaches to restore functional impairments. However, the presence of electrical stimulation artifacts in neurophysiological data limits the analysis of the effects of stimulation. Currently available methods suffer in performance in the presence of nonstationarity inherent in biological data. APPROACH Our algorithm, shape adaptive nonlocal artifact removal (SANAR) is based on unsupervised manifold learning. By estimating the Euclidean median of k-nearest neighbors of each artifact in a nonlocal fashion, we obtain a faithful representation of the artifact which is then subtracted. This approach overcomes the challenges presented by nonstationarity. MAIN RESULTS SANAR is effective in removing stimulation artifacts in the time domain while preserving the spectral content of the endogenous neurophysiological signal. We demonstrate the performance in a simulated dataset as well as in human iEEG data. Using two quantitative measures, that capture how much of information from endogenous activity is retained, we demonstrate that SANAR's performance exceeds that of one of the widely used approaches, independent component analysis, in the time domain as well as the frequency domain. SIGNIFICANCE This approach allows for the analysis of iEEG data, single channel or multiple channels, during DCS, a crucial step in advancing our understanding of the effects of periodic stimulation and developing new therapies.
Collapse
Affiliation(s)
- Sankaraleengam Alagapan
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America. Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | | | | | | |
Collapse
|
33
|
An EEG Experimental Study Evaluating the Performance of Texas Instruments ADS1299. SENSORS 2018; 18:s18113721. [PMID: 30388836 PMCID: PMC6263632 DOI: 10.3390/s18113721] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022]
Abstract
Texas Instruments ADS1299 is an attractive choice for low cost electroencephalography (EEG) devices owing to its low power consumption and low input referred noise. To date, there have been no rigorous evaluations of its performance. In this EEG experimental study we evaluated the performance of the ADS1299 against a high quality laboratory-based system. Two self-paced lower limb motor tasks were performed by 22 healthy participants. Recorded power across delta, theta, alpha, and beta EEG bands, the power ratio across the motor tasks, pre-movement noise, and signal-to-noise ratio were obtained for evaluation. The amplitude and time of the negative peak in the movement-related cortical potentials (MRCPs) extracted from the EEG data were also obtained. Using linear mixed models, no statistically significant differences (p > 0.05) were found in any of these measures across the two systems. These findings were further supported by evaluation of cosine similarity, waveform differences, and topographic maps. There were statistically significant differences in MRCPs across the motor tasks in both systems. We conclude that the performance of the ADS1299 in combination with wet Ag/AgCl electrodes is analogous to that of a laboratory-based system in a low frequency (<40 Hz) EEG recording.
Collapse
|