1
|
Kumari A, Akhtar M, Shah R, Tanveer M. Support matrix machine: A review. Neural Netw 2024; 181:106767. [PMID: 39488110 DOI: 10.1016/j.neunet.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 11/04/2024]
Abstract
Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. SMM preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class-imbalance, and multi-class classification models. We also analyze the applications of the SMM and conclude the article by outlining potential future research avenues and possibilities that may motivate researchers to advance the SMM algorithm.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India
| | - Mushir Akhtar
- Department of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India
| | - Rupal Shah
- Department of Electrical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India
| | - M Tanveer
- Department of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
2
|
Liang S, Hang W, Lei B, Wang J, Qin J, Choi KS, Zhang Y. Adaptive Multimodel Knowledge Transfer Matrix Machine for EEG Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7726-7739. [PMID: 36383580 DOI: 10.1109/tnnls.2022.3220551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The emerging matrix learning methods have achieved promising performances in electroencephalogram (EEG) classification by exploiting the structural information between the columns or rows of feature matrices. Due to the intersubject variability of EEG data, these methods generally need to collect a large amount of labeled individual EEG data, which would cause fatigue and inconvenience to the subjects. Insufficient subject-specific EEG data will weaken the generalization capability of the matrix learning methods in neural pattern decoding. To overcome this dilemma, we propose an adaptive multimodel knowledge transfer matrix machine (AMK-TMM), which can selectively leverage model knowledge from multiple source subjects and capture the structural information of the corresponding EEG feature matrices. Specifically, by incorporating least-squares (LS) loss with spectral elastic net regularization, we first present an LS support matrix machine (LS-SMM) to model the EEG feature matrices. To boost the generalization capability of LS-SMM in scenarios with limited EEG data, we then propose a multimodel adaption method, which can adaptively choose multiple correlated source model knowledge with a leave-one-out cross-validation strategy on the available target training data. We extensively evaluate our method on three independent EEG datasets. Experimental results demonstrate that our method achieves promising performances on EEG classification.
Collapse
|
3
|
Du H, Wang J, Liu M, Wang Y, Meijering E. SwinPA-Net: Swin Transformer-Based Multiscale Feature Pyramid Aggregation Network for Medical Image Segmentation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:5355-5366. [PMID: 36121961 DOI: 10.1109/tnnls.2022.3204090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The precise segmentation of medical images is one of the key challenges in pathology research and clinical practice. However, many medical image segmentation tasks have problems such as large differences between different types of lesions and similar shapes as well as colors between lesions and surrounding tissues, which seriously affects the improvement of segmentation accuracy. In this article, a novel method called Swin Pyramid Aggregation network (SwinPA-Net) is proposed by combining two designed modules with Swin Transformer to learn more powerful and robust features. The two modules, named dense multiplicative connection (DMC) module and local pyramid attention (LPA) module, are proposed to aggregate the multiscale context information of medical images. The DMC module cascades the multiscale semantic feature information through dense multiplicative feature fusion, which minimizes the interference of shallow background noise to improve the feature expression and solves the problem of excessive variation in lesion size and type. Moreover, the LPA module guides the network to focus on the region of interest by merging the global attention and the local attention, which helps to solve similar problems. The proposed network is evaluated on two public benchmark datasets for polyp segmentation task and skin lesion segmentation task as well as a clinical private dataset for laparoscopic image segmentation task. Compared with existing state-of-the-art (SOTA) methods, the SwinPA-Net achieves the most advanced performance and can outperform the second-best method on the mean Dice score by 1.68%, 0.8%, and 1.2% on the three tasks, respectively.
Collapse
|
4
|
Ma R, Chen YF, Jiang YC, Zhang M. A New Compound-Limbs Paradigm: Integrating Upper-Limb Swing Improves Lower-Limb Stepping Intention Decoding From EEG. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3823-3834. [PMID: 37713229 DOI: 10.1109/tnsre.2023.3315717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Brain-computer interface (BCI) systems based on spontaneous electroencephalography (EEG) hold the promise to implement human voluntary control of lower-extremity powered exoskeletons. However, current EEG-BCI paradigms do not consider the cooperation of upper and lower limbs during walking, which is inconsistent with natural human stepping patterns. To deal with this problem, this study proposed a stepping-matched human EEG-BCI paradigm that involved actions of both unilateral lower and contralateral upper limbs (also referred to as compound-limbs movement). Experiments were conducted in motor execution (ME) and motor imagery (MI) conditions to validate the feasibility. Common spatial pattern (CSP) proposed subject-specific CSP (SSCSP), and filter-bank CSP (FBCSP) methods were applied for feature extraction, respectively. The best average classification results based on SSCSP indicated that the accuracies of compound-limbs paradigms in ME and MI conditions achieved 89.02% ± 12.84% and 73.70% ± 12.47%, respectively. Although they were 2.03% and 5.68% lower than those of the single-upper-limb mode that does not match human stepping patterns, they were 24.30% and 11.02% higher than those of the single-lower-limb mode. These findings indicated that the proposed compound-limbs EEG-BCI paradigm is feasible for decoding human stepping intention and thus provides a potential way for natural human control of walking assistance devices.
Collapse
|
5
|
Liu X, Wang K, Liu F, Zhao W, Liu J. 3D Convolution neural network with multiscale spatial and temporal cues for motor imagery EEG classification. Cogn Neurodyn 2023; 17:1357-1380. [PMID: 37786651 PMCID: PMC10542086 DOI: 10.1007/s11571-022-09906-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 10/04/2023] Open
Abstract
Recently, deep learning-based methods have achieved meaningful results in the Motor imagery electroencephalogram (MI EEG) classification. However, because of the low signal-to-noise ratio and the various characteristics of brain activities among subjects, these methods lack a subject adaptive feature extraction mechanism. Another issue is that they neglect important spatial topological information and the global temporal variation trend of MI EEG signals. These issues limit the classification accuracy. Here, we propose an end-to-end 3D CNN to extract multiscale spatial and temporal dependent features for improving the accuracy performance of 4-class MI EEG classification. The proposed method adaptively assigns higher weights to motor-related spatial channels and temporal sampling cues than the motor-unrelated ones across all brain regions, which can prevent influences caused by biological and environmental artifacts. Experimental evaluation reveals that the proposed method achieved an average classification accuracy of 93.06% and 97.05% on two commonly used datasets, demonstrating excellent performance and robustness for different subjects compared to other state-of-the-art methods.In order to verify the real-time performance in actual applications, the proposed method is applied to control the robot based on MI EEG signals. The proposed approach effectively addresses the issues of existing methods, improves the classification accuracy and the performance of BCI system, and has great application prospects.
Collapse
Affiliation(s)
- Xiuling Liu
- College of Electronic and Information Engineering, Hebei University, Baoding, 071002 China
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, 071002 China
| | - Kaidong Wang
- College of Electronic and Information Engineering, Hebei University, Baoding, 071002 China
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, 071002 China
| | - Fengshuang Liu
- College of Electronic and Information Engineering, Hebei University, Baoding, 071002 China
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, 071002 China
| | - Wei Zhao
- College of Computer and Cyber Security, Hebei Normal University, Street, Shijiazhuang, 050024 China
| | - Jing Liu
- College of Computer and Cyber Security, Hebei Normal University, Street, Shijiazhuang, 050024 China
| |
Collapse
|
6
|
Deep stacked least square support matrix machine with adaptive multi-layer transfer for EEG classification. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Cho JH, Jeong JH, Lee SW. NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:13279-13292. [PMID: 34748509 DOI: 10.1109/tcyb.2021.3122969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain-computer interfaces (BCIs) have been widely employed to identify and estimate a user's intention to trigger a robotic device by decoding motor imagery (MI) from an electroencephalogram (EEG). However, developing a BCI system driven by MI related to natural hand-grasp tasks is challenging due to its high complexity. Although numerous BCI studies have successfully decoded large body parts, such as the movement intention of both hands, arms, or legs, research on MI decoding of high-level behaviors such as hand grasping is essential to further expand the versatility of MI-based BCIs. In this study, we propose NeuroGrasp, a dual-stage deep learning framework that decodes multiple hand grasping from EEG signals under the MI paradigm. The proposed method effectively uses an EEG and electromyography (EMG)-based learning, such that EEG-based inference at test phase becomes possible. The EMG guidance during model training allows BCIs to predict hand grasp types from EEG signals accurately. Consequently, NeuroGrasp improved classification performance offline, and demonstrated a stable classification performance online. Across 12 subjects, we obtained an average offline classification accuracy of 0.68 (±0.09) in four-grasp-type classifications and 0.86 (±0.04) in two-grasp category classifications. In addition, we obtained an average online classification accuracy of 0.65 (±0.09) and 0.79 (±0.09) across six high-performance subjects. Because the proposed method has demonstrated a stable classification performance when evaluated either online or offline, in the future, we expect that the proposed method could contribute to different BCI applications, including robotic hands or neuroprosthetics for handling everyday objects.
Collapse
|
8
|
Camargo-Vargas D, Callejas-Cuervo M, Mazzoleni S. Brain-Computer Interfaces Systems for Upper and Lower Limb Rehabilitation: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:4312. [PMID: 34202546 PMCID: PMC8271710 DOI: 10.3390/s21134312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022]
Abstract
In recent years, various studies have demonstrated the potential of electroencephalographic (EEG) signals for the development of brain-computer interfaces (BCIs) in the rehabilitation of human limbs. This article is a systematic review of the state of the art and opportunities in the development of BCIs for the rehabilitation of upper and lower limbs of the human body. The systematic review was conducted in databases considering using EEG signals, interface proposals to rehabilitate upper/lower limbs using motor intention or movement assistance and utilizing virtual environments in feedback. Studies that did not specify which processing system was used were excluded. Analyses of the design processing or reviews were excluded as well. It was identified that 11 corresponded to applications to rehabilitate upper limbs, six to lower limbs, and one to both. Likewise, six combined visual/auditory feedback, two haptic/visual, and two visual/auditory/haptic. In addition, four had fully immersive virtual reality (VR), three semi-immersive VR, and 11 non-immersive VR. In summary, the studies have demonstrated that using EEG signals, and user feedback offer benefits including cost, effectiveness, better training, user motivation and there is a need to continue developing interfaces that are accessible to users, and that integrate feedback techniques.
Collapse
Affiliation(s)
- Daniela Camargo-Vargas
- Software Research Group, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150002, Colombia;
| | - Mauro Callejas-Cuervo
- School of Computer Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150002, Colombia
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy;
| |
Collapse
|
9
|
Liu X, Lv L, Shen Y, Xiong P, Yang J, Liu J. Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification. J Neural Eng 2021; 18. [PMID: 33395676 DOI: 10.1088/1741-2552/abd82b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Motor imagery (MI) electroencephalography (EEG) classification is regarded as a promising technology for brain--computer interface (BCI) systems, which help people to communicate with the outside world using neural activities. However, decoding human intent accurately is a challenging task because of its small signal-to-noise ratio and non-stationary characteristics. Methods that directly extract features from raw EEG signals ignores key frequency domain information. One of the challenges in MI classification tasks is finding a way to supplement the frequency domain information ignored by the raw EEG signal. APPROACH In this study, we fuse different models using their complementary characteristics to develop a multiscale space-time-frequency feature-guided multitask learning convolutional neural network (CNN) architecture. The proposed method consists of four modules: the space-time feature-based representation module, time-frequency feature-based representation module, multimodal fused feature-guided generation module, and classification module. The proposed framework is based on multitask learning. The four modules are trained using three tasks simultaneously and jointly optimised. RESULTS The proposed method is evaluated using three public challenge datasets. Through quantitative analysis, we demonstrate that our proposed method outperforms most state-of-the-art machine learning and deep learning techniques for EEG classification, thereby demonstrating the robustness and effectiveness of our method. Moreover, the proposed method is employed to realize control of robot based on EEG signal, verifying its feasibility in real-time applications. SIGNIFICANCE To the best of our knowledge, a deep CNN architecture that fuses different input cases, which have complementary characteristics, has not been applied to BCI tasks. Because of the interaction of the three tasks in the multitask learning architecture, our method can improve the generalisation and accuracy of subject-dependent and subject-independent methods with limited annotated data.
Collapse
Affiliation(s)
- Xiuling Liu
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China, Baoding, Hebei, 071002, CHINA
| | - Linyang Lv
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China, Baoding, Hebei, 071002, CHINA
| | - Yonglong Shen
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China, Baoding, Hebei, 071002, CHINA
| | - Peng Xiong
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China, Baoding, 071002, CHINA
| | - Jianli Yang
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China, Baoding, Hebei, 071002, CHINA
| | - Jing Liu
- Hebei Normal University, No.20 Road East. 2nd Ring South, Shijiazhuang, 050024, CHINA
| |
Collapse
|
10
|
Gong S, Xing K, Cichocki A, Li J. Deep Learning in EEG: Advance of the Last Ten-Year Critical Period. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3079712] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Al-Saegh A, Dawwd SA, Abdul-Jabbar JM. Deep learning for motor imagery EEG-based classification: A review. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102172] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Ren Y, Zhang S, Wang J, Li R. TSC-MI: A Temporal Spatial Convolution Neural Network Fused with Mutual Information for Motor Imagery Based EEG Classification. Brain Inform 2021. [DOI: 10.1007/978-3-030-86993-9_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Hang W, Feng W, Liang S, Wang Q, Liu X, Choi KS. Deep stacked support matrix machine based representation learning for motor imagery EEG classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 193:105466. [PMID: 32283388 DOI: 10.1016/j.cmpb.2020.105466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/18/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Electroencephalograph (EEG) classification is an important technology that can establish a mapping relationship between EEG features and cognitive tasks. Emerging matrix classifiers have been successfully applied to motor imagery (MI) EEG classification, but they belong to shallow classifiers, making powerful stacked generalization principle not exploited for automatically learning deep EEG features. To learn the high-level representation and abstraction, we proposed a novel deep stacked support matrix machine (DSSMM) to improve the performance of existing shallow matrix classifiers in EEG classification. METHODS The main idea of our framework is founded on the stacked generalization principle, where support matrix machine (SMM) is introduced as the basic building block of deep stacked network. The weak predictions of all previous layers obtained via SMM are randomly projected to help move apart the manifold of the original input EEG feature, and then the newly generated features are fed into the next layer of DSSMM. The framework only involves an efficient feed-forward rather than parameter fine-tuning with backpropagation, each layer of which is a convex optimization problem, thus simplifying the objective function solving process. RESULTS Extensive experiments on three public EEG datasets and a self-collected EEG dataset are conducted. Experimental results demonstrate that our DSSMM outperforms the available state-of-the-art methods. CONCLUSION The proposed DSSMM inherits the characteristic of matrix classifiers that can learn the structural information of data as well as the powerful capability of deep representation learning, which makes it adapted to classify complex matrix-form EEG data.
Collapse
Affiliation(s)
- Wenlong Hang
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China; CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Wei Feng
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Shuang Liang
- Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210093, China.
| | - Qiong Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Xuejun Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Kup-Sze Choi
- School of Nursing, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
14
|
Jeong JH, Shim KH, Kim DJ, Lee SW. Brain-Controlled Robotic Arm System Based on Multi-Directional CNN-BiLSTM Network Using EEG Signals. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1226-1238. [DOI: 10.1109/tnsre.2020.2981659] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Rim B, Sung NJ, Min S, Hong M. Deep Learning in Physiological Signal Data: A Survey. SENSORS (BASEL, SWITZERLAND) 2020; 20:E969. [PMID: 32054042 PMCID: PMC7071412 DOI: 10.3390/s20040969] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
Abstract
Deep Learning (DL), a successful promising approach for discriminative and generative tasks, has recently proved its high potential in 2D medical imaging analysis; however, physiological data in the form of 1D signals have yet to be beneficially exploited from this novel approach to fulfil the desired medical tasks. Therefore, in this paper we survey the latest scientific research on deep learning in physiological signal data such as electromyogram (EMG), electrocardiogram (ECG), electroencephalogram (EEG), and electrooculogram (EOG). We found 147 papers published between January 2018 and October 2019 inclusive from various journals and publishers. The objective of this paper is to conduct a detailed study to comprehend, categorize, and compare the key parameters of the deep-learning approaches that have been used in physiological signal analysis for various medical applications. The key parameters of deep-learning approach that we review are the input data type, deep-learning task, deep-learning model, training architecture, and dataset sources. Those are the main key parameters that affect system performance. We taxonomize the research works using deep-learning method in physiological signal analysis based on: (1) physiological signal data perspective, such as data modality and medical application; and (2) deep-learning concept perspective such as training architecture and dataset sources.
Collapse
Affiliation(s)
- Beanbonyka Rim
- Department of Computer Science, Soonchunhyang University, Asan 31538, Korea
| | - Nak-Jun Sung
- Department of Computer Science, Soonchunhyang University, Asan 31538, Korea
| | - Sedong Min
- Department of Medical IT Engineering, Soonchunhyang University, Asan 31538, Korea
| | - Min Hong
- Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
16
|
Li Y, Zhang XR, Zhang B, Lei MY, Cui WG, Guo YZ. A Channel-Projection Mixed-Scale Convolutional Neural Network for Motor Imagery EEG Decoding. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1170-1180. [PMID: 31071048 DOI: 10.1109/tnsre.2019.2915621] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Motor imagery electroencephalography (EEG) decoding is an essential part of brain-computer interfaces (BCIs) which help motor-disabled patients to communicate with the outside world by external devices. Recently, deep learning algorithms using decomposed spectrums of EEG as inputs may omit important spatial dependencies and different temporal scale information, thus generated the poor decoding performance. In this paper, we propose an end-to-end EEG decoding framework, which employs raw multi-channel EEG as inputs, to boost decoding accuracy by the channel-projection mixed-scale convolutional neural network (CP-MixedNet) aided by amplitude-perturbation data augmentation. Specifically, the first block in CP-MixedNet is designed to learn primary spatial and temporal representations from EEG signals. The mixed-scale convolutional block is then used to capture mixed-scale temporal information, which effectively reduces the number of training parameters when expanding reception fields of the network. Finally, based on the features extracted in previous blocks, the classification block is constructed to classify EEG tasks. The experiments are implemented on two public EEG datasets (BCI competition IV 2a and High gamma dataset) to validate the effectiveness of the proposed approach compared to the state-of-the-art methods. The competitive results demonstrate that our proposed method is a promising solution to improve the decoding performance of motor imagery BCIs.
Collapse
|