1
|
Hu Y, Xiong R, Pan S, Huang K. A narrative review of vagus nerve stimulation in stroke. J Cent Nerv Syst Dis 2024; 16:11795735241303069. [PMID: 39677973 PMCID: PMC11645777 DOI: 10.1177/11795735241303069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Stroke is a significant health concern impacting society and the health care system. Reperfusion therapy for acute ischemic stroke and standard rehabilitative therapies may not always be effective at improving post-stroke neurological function, and developing alternative strategies is particularly important. Vagus nerve stimulation (VNS) is a treatment option currently approved by the Food and Drug Administration (FDA) for intractable epilepsy, refractory depression, primary headache disorders, obesity, and moderate to severe upper-limb motor dysfunction in chronic ischemic stroke patients. Moreover, VNS has demonstrated potential efficacy in various conditions, including autoimmune diseases, disorders of consciousness, Alzheimer's disease, Parkinson's disease, traumatic brain injury, stroke, and other diseases. Although the popularity and application of VNS continue to increase rapidly, the field generally lacks a consensus on the optimal stimulation parameters. The stimulation parameters for VNS are directly related to the clinical outcome, and determining the optimal stimulation conditions for VNS has become an essential concern in its clinical application. This review summarizes the current evidence on VNS for stroke in preclinical models and clinical trials in humans, paying attention to the current types and stimulation parameters of VNS, highlighting the mechanistic pathways involved in the beneficial effects of VNS, critically evaluating clinical implementation challenges and proposing some suggestions for its future research directions. Achieving safe and effective clinical transformation of VNS requires further animal and clinical studies to determine the optimal stimulation parameters and therapeutic mechanisms.
Collapse
Affiliation(s)
- Yanhong Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiqi Xiong
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Qasemi A, Aminian A, Erfanian A. Real-time prediction of bladder urine leakage using fuzzy inference system and dual Kalman filtering in cats. Sci Rep 2024; 14:3879. [PMID: 38365925 PMCID: PMC10873426 DOI: 10.1038/s41598-024-53629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
The use of electrical stimulation devices to manage bladder incontinence relies on the application of continuous inhibitory stimulation. However, continuous stimulation can result in tissue fatigue and increased delivered charge. Here, we employ a real-time algorithm to provide a short-time prediction of urine leakage using the high-resolution power spectrum of the bladder pressure during the presence of non-voiding contractions (NVC) in normal and overactive bladder (OAB) cats. The proposed method is threshold-free and does not require pre-training. The analysis revealed that there is a significant difference between voiding contraction (VC) and NVC pressures as well as band powers (0.5-5 Hz) during both normal and OAB conditions. Also, most of the first leakage points occurred after the maximum VC pressure, while all of them were observed subsequent to the maximum VC spectral power. Kalman-Fuzzy method predicted urine leakage on average 2.2 s and 1.6 s before its occurrence and an average of 2.0 s and 1.1 s after the contraction started with success rates of 94.2% and 100% in normal and OAB cats, respectively. This work presents a promising approach for developing a neuroprosthesis device, with on-demand stimulation to control bladder incontinence.
Collapse
Affiliation(s)
- Amirhossein Qasemi
- Department of Biomedical Engineering, School of Electrical Engineering, Iran Neural Technology Research Center, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Alireza Aminian
- Department of Biomedical Engineering, School of Electrical Engineering, Iran Neural Technology Research Center, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Abbas Erfanian
- Department of Biomedical Engineering, School of Electrical Engineering, Iran Neural Technology Research Center, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
3
|
Payne SC, Osborne PB, Thompson A, Eiber CD, Keast JR, Fallon JB. Selective recording of physiologically evoked neural activity in a mixed autonomic nerve using a minimally invasive array. APL Bioeng 2023; 7:046110. [PMID: 37928642 PMCID: PMC10625482 DOI: 10.1063/5.0164951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Real-time closed-loop control of neuromodulation devices requires long-term monitoring of neural activity in the peripheral nervous system. Although many signal extraction methods exist, few are both clinically viable and designed for extracting small signals from fragile peripheral visceral nerves. Here, we report that our minimally invasive recording and analysis technology extracts low to negative signal to noise ratio (SNR) neural activity from a visceral nerve with a high degree of specificity for fiber type and class. Complex activity was recorded from the rat pelvic nerve that was physiologically evoked during controlled bladder filling and voiding, in an extensively characterized in vivo model that provided an excellent test bed to validate our technology. Urethane-anesthetized male rats (n = 12) were implanted with a four-electrode planar array and the bladder instrumented for continuous-flow cystometry, which measures urodynamic function by recording bladder pressure changes during constant infusion of saline. We demonstrated that differential bipolar recordings and cross-correlation analyses extracts afferent and efferent activity, and discriminated between subpopulations of fibers based on conduction velocity. Integrated Aδ afferent fiber activity correlated with bladder pressure during voiding (r2: 0.66 ± 0.06) and was not affected by activating nociceptive afferents with intravesical capsaicin (r2: 0.59 ± 0.14, P = 0.54, and n = 3). Collectively, these results demonstrate our minimally invasive recording and analysis technology is selective in extracting mixed neural activity with low/negative SNR. Furthermore, integrated afferent activity reliably correlates with bladder pressure and is a promising first step in developing closed-loop technology for bladder control.
Collapse
Affiliation(s)
| | - Peregrine B. Osborne
- Department of Anatomy and Physiology, University of Melbourne, Victoria 3010, Australia
| | | | - Calvin D. Eiber
- Department of Anatomy and Physiology, University of Melbourne, Victoria 3010, Australia
| | - Janet R. Keast
- Department of Anatomy and Physiology, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
4
|
Ravishankar B, Vasdev RMS, Timm GW, Elliott S, Nakib NA, Johnson M, Nelson DE. Objective Quantification of Detrusor Overactivity Using Spectral Measures of Cystometry Data. Urology 2023; 174:206-211. [PMID: 36708933 DOI: 10.1016/j.urology.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To develop scalable objective methods for differentiating patients with and without detrusor overactivity (DO) using quantitative Fast Fourier Transform (FFT)-based measures and routinely captured cystometry data. METHODS Retrospective cystometry data were collected as prevoid vesical and abdominal pressure signals from 18 DO and 10 SUI (non-DO) cystometry recordings. Data were filtered and divided into two equal-duration segments, Early and Late Fill, representing the first and second halves of filling. FFT was applied, followed by subtraction of abdominal spectra from vesical spectra. Spectral Power (SP) and Weighted Average Frequency (WAF) measures were calculated for each segment spectra within 1-6 cycles min-1. RESULTS Compared to non-DO, the mean SP was significantly higher in DO patients for both Early and Late Fill segments. WAF was significantly lower in DO patients for both segments. Changes in spectral pressures appeared to be linked to the presence of detrusor contractions (DCs) and were especially visible when DCs were present in the Early Fill segments of cystometry. CONCLUSION FFT-based spectral measures derived from routinely captured cystometry data are significantly different between DO and non-DO patients. This preliminary method is clinically scalable and can be further developed to facilitate the detection of DO, classify disease phenotype, and capture therapeutic efficacy.
Collapse
Affiliation(s)
- Bhaskar Ravishankar
- Department of Electrical Engineering, University of Minnesota Twin Cities, Minneapolis, MN; Department of Urology, University of Minnesota Twin Cities, Minneapolis, MN
| | - Ranveer M S Vasdev
- Department of Urology, University of Minnesota Twin Cities, Minneapolis, MN; Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN
| | - Gerald W Timm
- Department of Electrical Engineering, University of Minnesota Twin Cities, Minneapolis, MN; Department of Urology, University of Minnesota Twin Cities, Minneapolis, MN
| | - Sean Elliott
- Department of Urology, University of Minnesota Twin Cities, Minneapolis, MN
| | - Nissrine A Nakib
- Department of Urology, University of Minnesota Twin Cities, Minneapolis, MN
| | - Matthew Johnson
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN
| | - Dwight E Nelson
- Department of Urology, University of Minnesota Twin Cities, Minneapolis, MN.
| |
Collapse
|
5
|
Sun Y, Chao S, Ouyang H, Zhang W, Luo W, Nie Q, Wang J, Luo C, Ni G, Zhang L, Yang J, Feng H, Mao G, Li Z. Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment. Sci Bull (Beijing) 2022; 67:1284-1294. [PMID: 36546158 DOI: 10.1016/j.scib.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023]
Abstract
Atrial fibrillation is an "invisible killer" of human health. It often induces high-risk diseases, such as myocardial infarction, stroke, and heart failure. Fortunately, atrial fibrillation can be diagnosed and treated early. Low-level vagus nerve stimulation (LL-VNS) is a promising therapeutic method for atrial fibrillation. However, some fundamental challenges still need to be overcome in terms of flexibility, miniaturization, and long-term service of bioelectric stimulation devices. Here, we designed a closed-loop self-powered LL-VNS system that can monitor the patient's pulse wave status in real time and conduct stimulation impulses automatically during the development of atrial fibrillation. The implant is a hybrid nanogenerator (H-NG), which is flexible, light weight, and simple, even without electronic circuits, components, and batteries. The maximum output of the H-NG was 14.8 V and 17.8 μA (peak to peak). In the in vivo effect verification study, the atrial fibrillation duration significantly decreased by 90% after LL-VNS therapy, and myocardial fibrosis and atrial connexin levels were effectively improved. Notably, the anti-inflammatory effect triggered by mediating the NF-κB and AP-1 pathways in our therapeutic system is observed. Overall, this implantable bioelectronic device is expected to be used for self-powerability, intelligentization, portability for management, and therapy of chronic diseases.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neurosurgery, General Hospital of Armed Police Forces, Anhui Medical University, Hefei 230032, China; Department of Neurosurgery, The Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Shengyu Chao
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Ouyang
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyi Zhang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qingbin Nie
- Department of Neurosurgery, The Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Jianing Wang
- Department of Neurosurgery, General Hospital of Armed Police Forces, Anhui Medical University, Hefei 230032, China; Department of Neurosurgery, The Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Changyi Luo
- Department of Neurosurgery, General Hospital of Armed Police Forces, Anhui Medical University, Hefei 230032, China; Department of Neurosurgery, The Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Gongang Ni
- Department of Neurosurgery, General Hospital of Armed Police Forces, Anhui Medical University, Hefei 230032, China; Department of Neurosurgery, The Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Lingyu Zhang
- Department of Neurosurgery, General Hospital of Armed Police Forces, Anhui Medical University, Hefei 230032, China; Department of Neurosurgery, The Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China.
| | - Hongqing Feng
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gengsheng Mao
- Department of Neurosurgery, General Hospital of Armed Police Forces, Anhui Medical University, Hefei 230032, China; Department of Neurosurgery, The Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100039, China.
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning 530004, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Sevcencu C. Single-interface bioelectronic medicines - concept, clinical applications and preclinical data. J Neural Eng 2022; 19. [PMID: 35533654 DOI: 10.1088/1741-2552/ac6e08] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/08/2022] [Indexed: 11/12/2022]
Abstract
Presently, large groups of patients with various diseases are either intolerant, or irresponsive to drug therapies and also intractable by surgery. For several diseases, one option which is available for such patients is the implantable neurostimulation therapy. However, lacking closed-loop control and selective stimulation capabilities, the present neurostimulation therapies are not optimal and are therefore used as only "third" therapeutic options when a disease cannot be treated by drugs or surgery. Addressing those limitations, a next generation class of closed-loop controlled and selective neurostimulators generically named bioelectronic medicines seems within reach. A sub-class of such devices is meant to monitor and treat impaired functions by intercepting, analyzing and modulating neural signals involved in the regulation of such functions using just one neural interface for those purposes. The primary objective of this review is to provide a first broad perspective on this type of single-interface devices for bioelectronic therapies. For this purpose, the concept, clinical applications and preclinical studies for further developments with such devices are here analyzed in a narrative manner.
Collapse
Affiliation(s)
- Cristian Sevcencu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca, 400293, ROMANIA
| |
Collapse
|
7
|
Closed-loop sacral neuromodulation for bladder function using dorsal root ganglia sensory feedback in an anesthetized feline model. Med Biol Eng Comput 2022; 60:1527-1540. [PMID: 35349032 PMCID: PMC9124066 DOI: 10.1007/s11517-022-02554-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Overactive bladder patients suffer from a frequent, uncontrollable urge to urinate, which can lead to a poor quality of life. We aim to improve open-loop sacral neuromodulation therapy by developing a conditional stimulation paradigm using neural recordings from dorsal root ganglia (DRG) as sensory feedback. Experiments were performed in 5 anesthetized felines. We implemented a Kalman filter-based algorithm to estimate the bladder pressure in real-time using sacral-level DRG neural recordings and initiated sacral root electrical stimulation when the algorithm detected an increase in bladder pressure. Closed-loop neuromodulation was performed during continuous cystometry and compared to bladder fills with continuous and no stimulation. Overall, closed-loop stimulation increased bladder capacity by 13.8% over no stimulation (p < 0.001) and reduced stimulation time versus continuous stimulation by 57.7%. High-confidence bladder single units had a reduced sensitivity during stimulation, with lower linear trendline fits and higher pressure thresholds for firing observed during stimulation trials. This study demonstrates the utility of decoding bladder pressure from neural activity for closed-loop control of sacral neuromodulation. An underlying mechanism for sacral neuromodulation may be a reduction in bladder sensory neuron activity during stimulation. Real-time validation during behavioral studies is necessary prior to clinical translation of closed-loop sacral neuromodulation.
Collapse
|
8
|
Multitask neural networks for predicting bladder pressure with time series data. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Eiber CD, Payne SC, Biscola NP, Havton LA, Keast JR, Osborne PB, Fallon JB. Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces. J Neural Eng 2021; 18. [PMID: 34740201 DOI: 10.1088/1741-2552/ac36e2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022]
Abstract
Objective.Neuromodulation of visceral nerves is being intensively studied for treating a wide range of conditions, but effective translation requires increasing the efficacy and predictability of neural interface performance. Here we use computational models of rat visceral nerve to predict how neuroanatomical variability could affect both electrical stimulation and recording with an experimental planar neural interface.Approach.We developed a hybrid computational pipeline,VisceralNerveEnsembleRecording andStimulation (ViNERS), to couple finite-element modelling of extracellular electrical fields with biophysical simulations of individual axons. Anatomical properties of fascicles and axons in rat pelvic and vagus nerves were measured or obtained from public datasets. To validate ViNERS, we simulated pelvic nerve stimulation and recording with an experimental four-electrode planar array.Main results.Axon diameters measured from pelvic nerve were used to model a population of myelinated and unmyelinated axons and simulate recordings of electrically evoked single-unit field potentials (SUFPs). Across visceral nerve fascicles of increasing size, our simulations predicted an increase in stimulation threshold and a decrease in SUFP amplitude. Simulated threshold changes were dominated by changes in perineurium thickness, which correlates with fascicle diameter. We also demonstrated that ViNERS could simulate recordings of electrically-evoked compound action potentials (ECAPs) that were qualitatively similar to pelvic nerve recording made with the array used for simulation.Significance.We introduce ViNERS as a new open-source computational tool for modelling large-scale stimulation and recording from visceral nerves. ViNERS predicts how neuroanatomical variation in rat pelvic nerve affects stimulation and recording with an experimental planar electrode array. We show ViNERS can simulate ECAPS that capture features of our recordings, but our results suggest the underlying NEURON models need to be further refined and specifically adapted to accurately simulate visceral nerve axons.
Collapse
Affiliation(s)
- Calvin D Eiber
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Sophie C Payne
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, The University of Melbourne, Victoria, Australia
| | - Natalia P Biscola
- Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Leif A Havton
- Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Janet R Keast
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, The University of Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Majerus SJA, Offutt SJ, Brink TS, Vasoli V, Mcadams I, Damaser MS, Zirpel L. Feasibility of Real-Time Conditional Sacral Neuromodulation Using Wireless Bladder Pressure Sensor. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2067-2075. [PMID: 34606460 PMCID: PMC9359615 DOI: 10.1109/tnsre.2021.3117518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Continuous sacral neuromodulation (SNM) is used to treat overactive bladder, reducing urine leakage and increasing capacity. Conditional SNM applies stimulation in response to changing bladder conditions, and is an opportunity to study neuromodulation effects in various disease states. A key advantage of this approach is saving power consumed by stimulation pulses. This study demonstrated feasibility of automatically applying neuromodulation using a wireless bladder pressure sensor, a real-time control algorithm, and the Medtronic Summit™ RC+S neurostimulation research system. This study tested feasibility of four conditional SNM paradigms over five days in 4 female sheep. Primary outcomes assessed proof of concept of closed-loop system function. While the bladder pressure sensor correlated only weakly to simultaneous catheter-based pressure measurement (correlation 0.26-0.89, median r=0.52), the sensor and algorithm were accurate enough to automatically trigger SNM appropriately. The neurostimulator executed 98.5% of transmitted stimulation commands with a median latency of 72 ms (n=1,206), suggesting that rapid decision-making and control is feasible with this platform. On average, bladder capacity increased for continuous SNM and algorithm-controlled paradigms. Some animals responded more strongly to conditional SNM, suggesting that treatment could be individualized. Future research in conditional SNM may elucidate the physiologic underpinnings of differential response and enable clinical translation.
Collapse
|
11
|
Welle EJ, Woods JE, Jiman AA, Richie JM, Bottorff EC, Ouyang Z, Seymour JP, Patel PR, Bruns TM, Chestek CA. Sharpened and Mechanically Durable Carbon Fiber Electrode Arrays for Neural Recording. IEEE Trans Neural Syst Rehabil Eng 2021; 29:993-1003. [PMID: 34014825 PMCID: PMC8459724 DOI: 10.1109/tnsre.2021.3082056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bioelectric medicine treatments target disorders of the nervous system unresponsive to pharmacological methods. While current stimulation paradigms effectively treat many disorders, the underlying mechanisms are relatively unknown, and current neuroscience recording electrodes are often limited in their specificity to gross averages across many neurons or axons. Here, we develop a novel, durable carbon fiber electrode array adaptable to many neural structures for precise neural recording. Carbon fibers ( [Formula: see text] diameter) were sharpened using a reproducible blowtorchmethod that uses the reflection of fibers against the surface of a water bath. The arrays were developed by partially embedding carbon fibers in medical-grade silicone to improve durability. We recorded acute spontaneous electrophysiology from the rat cervical vagus nerve (CVN), feline dorsal root ganglia (DRG), and rat brain. Blowtorching resulted in fibers of 72.3 ± 33.5-degree tip angle with [Formula: see text] exposed carbon. Observable neural clusters were recorded using sharpened carbon fiber electrodes fromrat CVN ( [Formula: see text]), feline DRG ( [Formula: see text]), and rat brain ( [Formula: see text]). Recordings from the feline DRG included physiologically relevant signals from increased bladder pressure and cutaneous brushing. These results suggest that this carbon fiber array is a uniquely durable and adaptable neural recordingdevice. In the future, this device may be useful as a bioelectric medicine tool for diagnosis and closed-loop neural control of therapeutic treatments and monitoring systems.
Collapse
|
12
|
Sperry ZJ, Na K, Jun J, Madden LR, Socha A, Yoon E, Seymour JP, Bruns TM. High-density neural recordings from feline sacral dorsal root ganglia with thin-film array. J Neural Eng 2021; 18. [PMID: 33545709 DOI: 10.1088/1741-2552/abe398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/05/2021] [Indexed: 12/26/2022]
Abstract
Objective. Dorsal root ganglia (DRG) are promising sites for recording sensory activity. Current technologies for DRG recording are stiff and typically do not have sufficient site density for high-fidelity neural data techniques.Approach. In acute experiments, we demonstrate single-unit neural recordings in sacral DRG of anesthetized felines using a 4.5µm thick, high-density flexible polyimide microelectrode array with 60 sites and 30-40µm site spacing. We delivered arrays into DRG with ultrananocrystalline diamond shuttles designed for high stiffness affording a smaller footprint. We recorded neural activity during sensory activation, including cutaneous brushing and bladder filling, as well as during electrical stimulation of the pudendal nerve and anal sphincter. We used specialized neural signal analysis software to sort densely packed neural signals.Main results. We successfully delivered arrays in five of six experiments and recorded single-unit sensory activity in four experiments. The median neural signal amplitude was 55μV peak-to-peak and the maximum unique units recorded at one array position was 260, with 157 driven by sensory or electrical stimulation. In one experiment, we used the neural analysis software to track eight sorted single units as the array was retracted ∼500μm.Significance. This study is the first demonstration of ultrathin, flexible, high-density electronics delivered into DRG, with capabilities for recording and tracking sensory information that are a significant improvement over conventional DRG interfaces.
Collapse
Affiliation(s)
- Zachariah J Sperry
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Kyounghwan Na
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America
| | - James Jun
- Flatiron Institute, Simons Foundation, New York City, NY, United States of America
| | - Lauren R Madden
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Alec Socha
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America.,Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America
| | - Eusik Yoon
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America.,Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - John P Seymour
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America.,University of Texas Health Science Center, Department of Neurosurgery, Houston, TX, United States of America.,Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States of America
| | - Tim M Bruns
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
13
|
Cracchiolo M, Ottaviani MM, Panarese A, Strauss I, Vallone F, Mazzoni A, Micera S. Bioelectronic medicine for the autonomic nervous system: clinical applications and perspectives. J Neural Eng 2021; 18. [PMID: 33592597 DOI: 10.1088/1741-2552/abe6b9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine (BM) is an emerging new approach for developing novel neuromodulation therapies for pathologies that have been previously treated with pharmacological approaches. In this review, we will focus on the neuromodulation of autonomic nervous system (ANS) activity with implantable devices, a field of BM that has already demonstrated the ability to treat a variety of conditions, from inflammation to metabolic and cognitive disorders. Recent discoveries about immune responses to ANS stimulation are the laying foundation for a new field holding great potential for medical advancement and therapies and involving an increasing number of research groups around the world, with funding from international public agencies and private investors. Here, we summarize the current achievements and future perspectives for clinical applications of neural decoding and stimulation of the ANS. First, we present the main clinical results achieved so far by different BM approaches and discuss the challenges encountered in fully exploiting the potential of neuromodulatory strategies. Then, we present current preclinical studies aimed at overcoming the present limitations by looking for optimal anatomical targets, developing novel neural interface technology, and conceiving more efficient signal processing strategies. Finally, we explore the prospects for translating these advancements into clinical practice.
Collapse
Affiliation(s)
- Marina Cracchiolo
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Matteo Maria Ottaviani
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandro Panarese
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ivo Strauss
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Vallone
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
14
|
Lubba CH, Ouyang A, Jones NS, Bruns TM, Schultz S. Bladder pressure encoding by sacral dorsal root ganglion fibres: implications for decoding. J Neural Eng 2020; 18. [PMID: 33202396 DOI: 10.1088/1741-2552/abcb14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/17/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE We aim at characterising the encoding of bladder pressure (intravesical pressure) by a population of sensory fibres. This research is motivated by the possibility to restore bladder function in elderly patients or after spinal cord injury using implanted devices, so called bioelectronic medicines. For these devices, nerve-based estimation of intravesical pressure can enable a personalized and on-demand stimulation paradigm, which has promise of being more effective and efficient. In this context, a better understanding of the encoding strategies employed by the body might in the future be exploited by informed decoding algorithms that enable a precise and robust bladder-pressure estimation. APPROACH To this end, we apply information theory to microelectrode-array recordings from the cat sacral dorsal root ganglion while filling the bladder, conduct surrogate data studies to augment the data we have, and finally decode pressure in a simple informed approach. MAIN RESULTS We find an encoding scheme by different main bladder neuron types that we divide into three response types (slow tonic, phasic, and derivative fibres). We show that an encoding by different bladder neuron types, each represented by multiple cells, offers reliability through within-type redundancy and high information rates through semi-independence of different types. Our subsequent decoding study shows a more robust decoding from mean responses of homogeneous cell pools. SIGNIFICANCE We have here, for the first time, established a link between an information theoretic analysis of the encoding of intravesical pressure by a population of sensory neurons to an informed decoding paradigm. We show that even a simple adapted decoder can exploit the redundancy in the population to be more robust against cell loss. This work thus paves the way towards principled encoding studies in the periphery and towards a new generation of informed peripheral nerve decoders for bioelectronic medicines.
Collapse
Affiliation(s)
- Carl Henning Lubba
- Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Aileen Ouyang
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan, UNITED STATES
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan, UNITED STATES
| | - Simon Schultz
- Imperial College London, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
15
|
Xu JJ, Yousuf Z, Ouyang Z, Kennedy E, Lester PA, Martin T, Bruns TM. Anesthetic agents affect urodynamic parameters and anesthetic depth at doses necessary to facilitate preclinical testing in felines. Sci Rep 2020; 10:11401. [PMID: 32647241 PMCID: PMC7347647 DOI: 10.1038/s41598-020-68395-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023] Open
Abstract
Urodynamic studies, used to understand bladder function, diagnose bladder disease, and develop treatments for dysfunctions, are ideally performed with awake subjects. However, in small and medium-sized animal models, anesthesia is often required for these procedures and can be a research confounder. This study compared the effects of select survival agents (dexmedetomidine, alfaxalone, and propofol) on urodynamic (Δpressure, bladder capacity, bladder compliance, non-voiding contractions, bladder pressure slopes) and anesthetic (change in heart rate [∆HR], average heart rate [HR], reflexes, induction/recovery times) parameters in repeated cystometrograms across five adult male cats. The urodynamic parameters under isoflurane and α-chloralose were also examined in terminal procedures for four cats. Δpressure was greatest with propofol, bladder capacity was highest with α-chloralose, non-voiding contractions were greatest with α-chloralose. Propofol and dexmedetomidine had the highest bladder pressure slopes during the initial and final portions of the cystometrograms respectively. Cats progressed to a deeper plane of anesthesia (lower HR, smaller ΔHR, decreased reflexes) under dexmedetomidine, compared to propofol and alfaxalone. Time to induction was shortest with propofol, and time to recovery was shortest with dexmedetomidine. These agent-specific differences in urodynamic and anesthetic parameters in cats will facilitate appropriate study-specific anesthetic choices.
Collapse
Affiliation(s)
- Jiajie Jessica Xu
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Zuha Yousuf
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA
| | - Zhonghua Ouyang
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA
| | - Eric Kennedy
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA
| | - Patrick A Lester
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tara Martin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tim M Bruns
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA. .,Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Sperry ZJ, Graham RD, Peck-Dimit N, Lempka SF, Bruns TM. Spatial models of cell distribution in human lumbar dorsal root ganglia. J Comp Neurol 2020; 528:1644-1659. [PMID: 31872433 DOI: 10.1002/cne.24848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Dorsal root ganglia (DRG), which contain the somata of primary sensory neurons, have increasingly been considered as novel targets for clinical neural interfaces, both for neuroprosthetic and pain applications. Effective use of either neural recording or stimulation technologies requires an appropriate spatial position relative to the target neural element, whether axon or cell body. However, the internal three-dimensional spatial organization of human DRG neural fibers and somata has not been quantitatively described. In this study, we analyzed 202 cross-sectional images across the length of 31 human L4 and L5 DRG from 10 donors. We used a custom semi-automated graphical user interface to identify the locations of neural elements in the images and normalize the output to a consistent spatial reference for direct comparison by spinal level. By applying a recursive partitioning algorithm, we found that the highest density of cell bodies at both spinal levels could be found in the inner 85% of DRG length, the outer-most 25-30% radially, and the dorsal-most 69-76%. While axonal density was fairly homogeneous across the DRG length, there was a distinct low density region in the outer 7-11% radially. These findings are consistent with previous qualitative reports of neural distribution in DRG. The quantitative measurements we provide will enable improved targeting of future neural interface technologies and DRG-focused pharmaceutical therapies, and provide a rigorous anatomical description of the bridge between the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Zachariah J Sperry
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Nicholas Peck-Dimit
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan.,Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Groenendijk IM, Groen J, Scheepe JR, Blok BFM. Acute effect of sacral neuromodulation for treatment of detrusor overactivity on urodynamic parameters. Neurourol Urodyn 2019; 39:695-701. [PMID: 31804759 PMCID: PMC7028062 DOI: 10.1002/nau.24252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/27/2019] [Indexed: 01/21/2023]
Abstract
Aim The aim of this study is to evaluate the acute effects of sacral neuromodulation (SNM) on various urodynamic parameters. Methods Patients with overactive bladder and detrusor overactivity (DO) who were planned for percutaneous nerve evaluation (PNE) were included. Directly after the PNE, a urodynamic study (UDS) was performed. The stimulation was turned off during the first UDS (UDS 1), and during the second filling cycle, stimulation was turned on (UDS 2). The UDS was followed by a test phase of 1 week and the bladder diaries were evaluated during an outpatient clinic visit. Primary outcome measures were the differences in UDS parameter values with SNM off and on. Results Ten female patients were included in the study and completed the study protocol. Eight patients showed ≥50% improvement of symptoms following a test phase. There were no differences between UDS 1 and UDS 2 in the UDS parameters; bladder volume at first sensation, bladder volume at first DO, highest DO pressure, bladder capacity, maximum flow rate, and pressure at maximum flow rate. Discussion None of the aforementioned urodynamic parameters was influenced by acute SNM in patients who responded to SNM. To the best of our knowledge, this is the first study investigating the acute effects of SNM on bladder function.
Collapse
Affiliation(s)
| | - Jan Groen
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Bertil F M Blok
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|