1
|
Park H, Shin S, Youm C, Cheon SM. Deep learning-based detection of affected body parts in Parkinson's disease and freezing of gait using time-series imaging. Sci Rep 2024; 14:23732. [PMID: 39390087 PMCID: PMC11467382 DOI: 10.1038/s41598-024-75445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
We proposed a deep learning method using a convolutional neural network on time-series (TS) images to detect and differentiate affected body parts in people with Parkinson's disease (PD) and freezing of gait (FOG) during 360° turning tasks. The 360° turning task was performed by 90 participants (60 people with PD [30 freezers and 30 nonfreezers] and 30 age-matched older adults (controls) at their preferred speed. The position and acceleration underwent preprocessing. The analysis was expanded from temporal to visual data using TS imaging methods. According to the PD vs. controls classification, the right lower third of the lateral shank (RTIB) on the least affected side (LAS) and the right calcaneus (RHEE) on the LAS were the most relevant body segments in the position and acceleration TS images. The RHEE marker exhibited the highest accuracy in the acceleration TS images. The identified markers for the classification of freezers vs. nonfreezers vs. controls were the left lateral humeral epicondyle (LELB) on the more affected side and the left posterior superior iliac spine (LPSI). The LPSI marker in the acceleration TS images displayed the highest accuracy. This approach could be a useful supplementary tool for determining PD severity and FOG.
Collapse
Affiliation(s)
- Hwayoung Park
- Biomechanics Laboratory, Dong-A University, Saha-gu, Busan, Republic of Korea
| | - Sungtae Shin
- Department of Mechanical Engineering, College of Engineering, Dong-A University, Saha-gu, Busan, Republic of Korea
| | - Changhong Youm
- Biomechanics Laboratory, Dong-A University, Saha-gu, Busan, Republic of Korea.
- Department of Health Sciences, Dong-A University Graduate School, Saha-gu, Busan, Republic of Korea.
- Department of Healthcare and Science, College of Health Sciences, Dong-A University, 37 Nakdong‑daero, 550 Beon‑gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Sang-Myung Cheon
- Department of Neurology, School of Medicine, Dong-A University, 26 Daesingongwon-ro, Seo-gu, Busan, 49201, Republic of Korea.
| |
Collapse
|
2
|
Jiao Y, Liu Z, Li J, Su Y, Chen X. Knowledge mapping of freezing of gait in Parkinson's disease: a bibliometric analysis. Front Neurosci 2024; 18:1388326. [PMID: 39315077 PMCID: PMC11417103 DOI: 10.3389/fnins.2024.1388326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Among the disturbing motor symptoms in Parkinson's disease (PD), freezing of gait (FOG) stands out as one of the most severe challenges. It typically arises during the initiation of gait or when turning. This phenomenon not only impose a heavy burden on patients, but also on their families. We conduct a bibliometric analysis to summarize current research hotspots and trends concerning freezing of gait in Parkinson's disease (PD-FOG) over past two decades. Methods We retrieved articles and reviews published in English about PD-FOG in the Web of science Core Collection database from 2000 to 2023 on November 30,2023. The tools VOSviewer and CiteSpace facilitated a visual analysis covering various aspects such as publications, countries/regions, organizations, authors, journals, cited references, and keywords. Result This study includes 1,340 articles from 64 countries/regions. There is a growth in publications related to PD-FOG over the past two decades, maintaining a stable high output since 2018, indicating a promising research landscape in the field of PD-FOG. The United States holds a leading position in this field, with Nieuwboer A and Giladi N being two of the most influential researchers. Over the past two decades, the research hotspots for PD-FOG have primarily encompassed the kinematic characteristics, diagnosis and detection, cognitive deficits and neural connectivity, as well as therapy and rehabilitation of PD-FOG. Topics including functional connectivity, virtual reality, deep learning and machine learning will be focal points of future research. Conclusion This is the first bibliometric analysis of PD-FOG. We construct this study to summarize the research in this field over past two decades, visually show the current hotspots and trends, and offer scholars in this field concepts and strategies for subsequent studies.
Collapse
Affiliation(s)
- Yue Jiao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zaichao Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Su
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Wang B, Hu X, Ge R, Xu C, Zhang J, Gao Z, Zhao S, Polat K. Prediction of Freezing of Gait in Parkinson's disease based on multi-channel time-series neural network. Artif Intell Med 2024; 154:102932. [PMID: 39004005 DOI: 10.1016/j.artmed.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Freezing of Gait (FOG) is a noticeable symptom of Parkinson's disease, like being stuck in place and increasing the risk of falls. The wearable multi-channel sensor system is an efficient method to predict and monitor the FOG, thus warning the wearer to avoid falls and improving the quality of life. However, the existing approaches for the prediction of FOG mainly focus on a single sensor system and cannot handle the interference between multi-channel wearable sensors. Hence, we propose a novel multi-channel time-series neural network (MCT-Net) approach to merge multi-channel gait features into a comprehensive prediction framework, alerting patients to FOG symptoms in advance. Owing to the causal distributed convolution, MCT-Net is a real-time method available to give optimal prediction earlier and implemented in remote devices. Moreover, intra-channel and inter-channel transformers of MCT-Net extract and integrate different sensor position features into a unified deep learning model. Compared with four other state-of-the-art FOG prediction baselines, the proposed MCT-Net obtains 96.21% in accuracy and 80.46% in F1-score on average 2 s before FOG occurrence, demonstrating the superiority of MCT-Net.
Collapse
Affiliation(s)
| | - Xuegang Hu
- Hefei University of Technology, Hefei, China.
| | - Rongjun Ge
- Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Chenchu Xu
- Institute of Artificial Intelligence, Hefei, China; Anhui University, Hefei, China.
| | | | - Zhifan Gao
- Sun Yat-sen University, Shenzhen, China.
| | | | - Kemal Polat
- Bolu Abant Izzet Baysal University, Bolu, Turkey.
| |
Collapse
|
4
|
Elbatanouny H, Kleanthous N, Dahrouj H, Alusi S, Almajali E, Mahmoud S, Hussain A. Insights into Parkinson's Disease-Related Freezing of Gait Detection and Prediction Approaches: A Meta Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3959. [PMID: 38931743 PMCID: PMC11207947 DOI: 10.3390/s24123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's Disease (PD) is a complex neurodegenerative disorder characterized by a spectrum of motor and non-motor symptoms, prominently featuring the freezing of gait (FOG), which significantly impairs patients' quality of life. Despite extensive research, the precise mechanisms underlying FOG remain elusive, posing challenges for effective management and treatment. This paper presents a comprehensive meta-analysis of FOG prediction and detection methodologies, with a focus on the integration of wearable sensor technology and machine learning (ML) approaches. Through an exhaustive review of the literature, this study identifies key trends, datasets, preprocessing techniques, feature extraction methods, evaluation metrics, and comparative analyses between ML and non-ML approaches. The analysis also explores the utilization of cueing devices. The limited adoption of explainable AI (XAI) approaches in FOG prediction research represents a significant gap. Improving user acceptance and comprehension requires an understanding of the logic underlying algorithm predictions. Current FOG detection and prediction research has a number of limitations, which are identified in the discussion. These include issues with cueing devices, dataset constraints, ethical and privacy concerns, financial and accessibility restrictions, and the requirement for multidisciplinary collaboration. Future research avenues center on refining explainability, expanding and diversifying datasets, adhering to user requirements, and increasing detection and prediction accuracy. The findings contribute to advancing the understanding of FOG and offer valuable guidance for the development of more effective detection and prediction methodologies, ultimately benefiting individuals affected by PD.
Collapse
Affiliation(s)
- Hagar Elbatanouny
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | | | - Hayssam Dahrouj
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | - Sundus Alusi
- The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK;
| | - Eqab Almajali
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | - Soliman Mahmoud
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
- University of Khorfakkan, Khorfakkan, Sharjah 18119, United Arab Emirates
| | - Abir Hussain
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| |
Collapse
|
5
|
Li D, Hallack A, Gwilym S, Li D, Hu MT, Cantley J. Investigating gait-responsive somatosensory cueing from a wearable device to improve walking in Parkinson's disease. Biomed Eng Online 2023; 22:108. [PMID: 37974260 PMCID: PMC10652624 DOI: 10.1186/s12938-023-01167-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Freezing-of-gait (FOG) and impaired walking are common features of Parkinson's disease (PD). Provision of external stimuli (cueing) can improve gait, however, many cueing methods are simplistic, increase task loading or have limited utility in a real-world setting. Closed-loop (automated) somatosensory cueing systems have the potential to deliver personalised, discrete cues at the appropriate time, without requiring user input. Further development of cue delivery methods and FOG-detection are required to achieve this. In this feasibility study, we aimed to test if FOG-initiated vibration cues applied to the lower-leg via wearable devices can improve gait in PD, and to develop real-time FOG-detection algorithms. 17 participants with Parkinson's disease and daily FOG were recruited. During 1 h study sessions, participants undertook 4 complex walking circuits, each with a different intervention: continuous rhythmic vibration cueing (CC), responsive cueing (RC; cues initiated by the research team in response to FOG), device worn with no cueing (NC), or no device (ND). Study sessions were grouped into 3 stages/blocks (A-C), separated by a gap of several weeks, enabling improvements to circuit design and the cueing device to be implemented. Video and onboard inertial measurement unit (IMU) data were analyzed for FOG events and gait metrics. RC significantly improved circuit completion times demonstrating improved overall performance across a range of walking activities. Step frequency was significantly enhanced by RC during stages B and C. During stage C, > 10 FOG events were recorded in 45% of participants without cueing (NC), which was significantly reduced by RC. A machine learning framework achieved 83% sensitivity and 80% specificity for FOG detection using IMU data. Together, these data support the feasibility of closed-loop cueing approaches coupling real-time FOG detection with responsive somatosensory lower-leg cueing to improve gait in PD.
Collapse
Affiliation(s)
- Dongli Li
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX2 3PT, UK
| | - Andre Hallack
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX2 3PT, UK
| | - Sophie Gwilym
- Oxfordshire Neurophysiotherapy, The Bosworth Clinic, Quarry Court, Bell Lane, Cassington, OX29 4DS, UK
| | - Dongcheng Li
- Department of Computer Science, University of Texas at Dallas, Richardson, TX, 75082, USA
| | - Michele T Hu
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Division of Neurology, University of Oxford, Oxford, Oxfordshire, UK
| | - James Cantley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX2 3PT, UK.
- Division of Systems Medicine, Ninewells Hospital & Medical School, University of Dundee, James Arrott Drive, Dundee, DD1 9SY, UK.
| |
Collapse
|
6
|
Wu P, Cao B, Liang Z, Wu M. The advantages of artificial intelligence-based gait assessment in detecting, predicting, and managing Parkinson's disease. Front Aging Neurosci 2023; 15:1191378. [PMID: 37502426 PMCID: PMC10368956 DOI: 10.3389/fnagi.2023.1191378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023] Open
Abstract
Background Parkinson's disease is a neurological disorder that can cause gait disturbance, leading to mobility issues and falls. Early diagnosis and prediction of freeze episodes are essential for mitigating symptoms and monitoring the disease. Objective This review aims to evaluate the use of artificial intelligence (AI)-based gait evaluation in diagnosing and managing Parkinson's disease, and to explore the potential benefits of this technology for clinical decision-making and treatment support. Methods A thorough review of published literature was conducted to identify studies, articles, and research related to AI-based gait evaluation in Parkinson's disease. Results AI-based gait evaluation has shown promise in preventing freeze episodes, improving diagnosis, and increasing motor independence in patients with Parkinson's disease. Its advantages include higher diagnostic accuracy, continuous monitoring, and personalized therapeutic interventions. Conclusion AI-based gait evaluation systems hold great promise for managing Parkinson's disease and improving patient outcomes. They offer the potential to transform clinical decision-making and inform personalized therapies, but further research is needed to determine their effectiveness and refine their use.
Collapse
Affiliation(s)
- Peng Wu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Biwei Cao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Zhendong Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Miao Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
7
|
Guerra A, D'Onofrio V, Ferreri F, Bologna M, Antonini A. Objective measurement versus clinician-based assessment for Parkinson's disease. Expert Rev Neurother 2023; 23:689-702. [PMID: 37366316 DOI: 10.1080/14737175.2023.2229954] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Although clinician-based assessment through standardized clinical rating scales is currently the gold standard for quantifying motor impairment in Parkinson's disease (PD), it is not without limitations, including intra- and inter-rater variability and a degree of approximation. There is increasing evidence supporting the use of objective motion analyses to complement clinician-based assessment. Objective measurement tools hold significant potential for improving the accuracy of clinical and research-based evaluations of patients. AREAS COVERED The authors provide several examples from the literature demonstrating how different motion measurement tools, including optoelectronics, contactless and wearable systems allow for both the objective quantification and monitoring of key motor symptoms (such as bradykinesia, rigidity, tremor, and gait disturbances), and the identification of motor fluctuations in PD patients. Furthermore, they discuss how, from a clinician's perspective, objective measurements can help in various stages of PD management. EXPERT OPINION In our opinion, sufficient evidence supports the assertion that objective monitoring systems enable accurate evaluation of motor symptoms and complications in PD. A range of devices can be utilized not only to support diagnosis but also to monitor motor symptom during the disease progression and can become relevant in the therapeutic decision-making process.
Collapse
Affiliation(s)
- Andrea Guerra
- Parkinson and Movement Disorder Unit, Study Center on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorder Unit, Study Center on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Huang T, Li M, Huang J. Recent trends in wearable device used to detect freezing of gait and falls in people with Parkinson's disease: A systematic review. Front Aging Neurosci 2023; 15:1119956. [PMID: 36875701 PMCID: PMC9975590 DOI: 10.3389/fnagi.2023.1119956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Background The occurrence of freezing of gait (FOG) is often observed in moderate to last-stage Parkinson's disease (PD), leading to a high risk of falls. The emergence of the wearable device has offered the possibility of FOG detection and falls of patients with PD allowing high validation in a low-cost way. Objective This systematic review seeks to provide a comprehensive overview of existing literature to establish the forefront of sensors type, placement and algorithm to detect FOG and falls among patients with PD. Methods Two electronic databases were screened by title and abstract to summarize the state of art on FOG and fall detection with any wearable technology among patients with PD. To be eligible for inclusion, papers were required to be full-text articles published in English, and the last search was completed on September 26, 2022. Studies were excluded if they; (i) only examined cueing function for FOG, (ii) only used non-wearable devices to detect or predict FOG or falls, and (iii) did not provide sufficient details about the study design and results. A total of 1,748 articles were retrieved from two databases. However, only 75 articles were deemed to meet the inclusion criteria according to the title, abstract and full-text reviewed. Variable was extracted from chosen research, including authorship, details of the experimental object, type of sensor, device location, activities, year of publication, evaluation in real-time, the algorithm and detection performance. Results A total of 72 on FOG detection and 3 on fall detection were selected for data extraction. There were wide varieties of the studied population (from 1 to 131), type of sensor, placement and algorithm. The thigh and ankle were the most popular device location, and the combination of accelerometer and gyroscope was the most frequently used inertial measurement unit (IMU). Furthermore, 41.3% of the studies used the dataset as a resource to examine the validity of their algorithm. The results also showed that increasingly complex machine-learning algorithms had become the trend in FOG and fall detection. Conclusion These data support the application of the wearable device to access FOG and falls among patients with PD and controls. Machine learning algorithms and multiple types of sensors have become the recent trend in this field. Future work should consider an adequate sample size, and the experiment should be performed in a free-living environment. Moreover, a consensus on provoking FOG/fall, methods of assessing validity and algorithm are necessary.Systematic Review Registration: PROSPERO, identifier CRD42022370911.
Collapse
Affiliation(s)
- Tinghuai Huang
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, Guangdong, China
| | - Meng Li
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, Guangdong, China
| | - Jianwei Huang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Pardoel S, Nantel J, Kofman J, Lemaire ED. Prediction of Freezing of Gait in Parkinson's Disease Using Unilateral and Bilateral Plantar-Pressure Data. Front Neurol 2022; 13:831063. [PMID: 35572938 PMCID: PMC9101469 DOI: 10.3389/fneur.2022.831063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Freezing of gait (FOG) is an intermittent walking disturbance experienced by people with Parkinson's disease (PD). FOG has been linked to falling, injury, and overall reduced mobility. Wearable sensor-based devices can detect freezes already in progress and provide a cue to help the person resume walking. While this is helpful, predicting FOG episodes before onset and providing a timely cue may prevent the freeze from occurring. Wearable sensors mounted on various body parts have been used to develop FOG prediction systems. Despite the known asymmetry of PD motor symptom manifestation, the difference between the most affected side (MAS) and least affected side (LAS) is rarely considered in FOG detection and prediction studies. Methods To examine the effect of using data from the MAS, LAS, or both limbs for FOG prediction, plantar pressure data were collected during a series of walking trials and used to extract time and frequency-based features. Three datasets were created using plantar pressure data from the MAS, LAS, and both sides together. ReliefF feature selection was performed. FOG prediction models were trained using the top 5, 10, 15, 20, 25, or 30 features for each dataset. Results The best models were the MAS model with 15 features and the LAS and bilateral models with 5 features. The LAS model had the highest sensitivity (79.5%) and identified the highest percentage of FOG episodes (94.9%). The MAS model achieved the highest specificity (84.9%) and lowest false positive rate (1.9 false positives/walking trial). Overall, the bilateral model was best with 77.3% sensitivity and 82.9% specificity. In addition, the bilateral model identified 94.2% of FOG episodes an average of 0.8 s before FOG onset. Compared to the bilateral model, the LAS model had a higher false positive rate; however, the bilateral and LAS models were similar in all the other evaluation metrics. Conclusion The LAS model would have similar FOG prediction performance to the bilateral model at the cost of slightly more false positives. Given the advantages of single sensor systems, the increased false positive rate may be acceptable to people with PD. Therefore, a single plantar pressure sensor placed on the LAS could be used to develop a FOG prediction system and produce performance similar to a bilateral system.
Collapse
Affiliation(s)
- Scott Pardoel
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Julie Nantel
| | - Jonathan Kofman
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Edward D. Lemaire
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Rehabilitation Research and Development, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
10
|
Giannakopoulou KM, Roussaki I, Demestichas K. Internet of Things Technologies and Machine Learning Methods for Parkinson's Disease Diagnosis, Monitoring and Management: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:1799. [PMID: 35270944 PMCID: PMC8915040 DOI: 10.3390/s22051799] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Parkinson's disease is a chronic neurodegenerative disease that affects a large portion of the population, especially the elderly. It manifests with motor, cognitive and other types of symptoms, decreasing significantly the patients' quality of life. The recent advances in the Internet of Things and Artificial Intelligence fields, including the subdomains of machine learning and deep learning, can support Parkinson's disease patients, their caregivers and clinicians at every stage of the disease, maximizing the treatment effectiveness and minimizing the respective healthcare costs at the same time. In this review, the considered studies propose machine learning models, trained on data acquired via smart devices, wearable or non-wearable sensors and other Internet of Things technologies, to provide predictions or estimations regarding Parkinson's disease aspects. Seven hundred and seventy studies have been retrieved from three dominant academic literature databases. Finally, one hundred and twelve of them have been selected in a systematic way and have been considered in the state-of-the-art systematic review presented in this paper. These studies propose various methods, applied on various sensory data to address different Parkinson's disease-related problems. The most widely deployed sensors, the most commonly addressed problems and the best performing algorithms are highlighted. Finally, some challenges are summarized along with some future considerations and opportunities that arise.
Collapse
Affiliation(s)
- Konstantina-Maria Giannakopoulou
- School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece; (K.-M.G.); (K.D.)
- Institute of Communication and Computer Systems, 10682 Athens, Greece
| | - Ioanna Roussaki
- School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece; (K.-M.G.); (K.D.)
- Institute of Communication and Computer Systems, 10682 Athens, Greece
| | - Konstantinos Demestichas
- School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece; (K.-M.G.); (K.D.)
- Institute of Communication and Computer Systems, 10682 Athens, Greece
| |
Collapse
|
11
|
Perju-Dumbrava L, Barsan M, Leucuta DC, Popa LC, Pop C, Tohanean N, Popa SL. Artificial intelligence applications and robotic systems in Parkinson's disease (Review). Exp Ther Med 2022; 23:153. [PMID: 35069834 PMCID: PMC8753978 DOI: 10.3892/etm.2021.11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder following Alzheimer's disease. Advanced stages of PD, 4 or 5 of the Hoehn and Yahr Scale, are characterized by severe motor complications, limited mobility without assistance, risk of falling, and non-motor complications. The aim of this review was to provide a practical overview on specific artificial intelligence (AI) systems for the management of advanced stages of PD, as well as relevant technological limitations. The authors conducted a systematic search on PubMed and EMBASE with predefined keywords searching for studies published until December 2020. Full articles that satisfied the inclusion criteria were included in the systematic review. To minimize results bias, the reference list was manually searched for pertinent articles to identify any additional relevant missed publications. Exclusion criteria included the following: Other stages of PD than 4 and 5 of the Hoehn and Yahr Scale, case reports, reviews, practice guidelines, commentaries, opinions, letters, editorials, short surveys, articles in press, conference abstracts, conference papers, and abstracts published without a full article. The search identified 21 studies analyzing AI-based applications and robotic systems used for the management of advanced stages of PD, out of which 6 articles analyzed AI-based applications for autonomous management of pharmacologic therapy, 5 articles analyzed home-based telemedicine systems and 10 articles analysed robot-assisted gait training systems. The authors identified significant evidence demonstrating that current AI-based technologies are feasible for automatic management of patients with advanced stages of PD. Improving the quality of care and reducing the cost for patients and healthcare systems are the most important advantages.
Collapse
Affiliation(s)
- Lacramioara Perju-Dumbrava
- Department of Neurology, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Maria Barsan
- Department of Occupational Health, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Daniel Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Luminita C. Popa
- Department of Neurology, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristina Pop
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Nicoleta Tohanean
- Department of Neurology, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Stefan L. Popa
- Second Medical Department, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Park H, Shin S, Youm C, Cheon SM, Lee M, Noh B. Classification of Parkinson's disease with freezing of gait based on 360° turning analysis using 36 kinematic features. J Neuroeng Rehabil 2021; 18:177. [PMID: 34930373 PMCID: PMC8686361 DOI: 10.1186/s12984-021-00975-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Freezing of gait (FOG) is a sensitive problem, which is caused by motor control deficits and requires greater attention during postural transitions such as turning in people with Parkinson's disease (PD). However, the turning characteristics have not yet been extensively investigated to distinguish between people with PD with and without FOG (freezers and non-freezers) based on full-body kinematic analysis during the turning task. The objectives of this study were to identify the machine learning model that best classifies people with PD and freezers and reveal the associations between clinical characteristics and turning features based on feature selection through stepwise regression. METHODS The study recruited 77 people with PD (31 freezers and 46 non-freezers) and 34 age-matched older adults. The 360° turning task was performed at the preferred speed for the inner step of the more affected limb. All experiments on the people with PD were performed in the "Off" state of medication. The full-body kinematic features during the turning task were extracted using the three-dimensional motion capture system. These features were selected via stepwise regression. RESULTS In feature selection through stepwise regression, five and six features were identified to distinguish between people with PD and controls and between freezers and non-freezers (PD and FOG classification problem), respectively. The machine learning model accuracies revealed that the random forest (RF) model had 98.1% accuracy when using all turning features and 98.0% accuracy when using the five features selected for PD classification. In addition, RF and logistic regression showed accuracies of 79.4% when using all turning features and 72.9% when using the six selected features for FOG classification. CONCLUSION We suggest that our study leads to understanding of the turning characteristics of people with PD and freezers during the 360° turning task for the inner step of the more affected limb and may help improve the objective classification and clinical assessment by disease progression using turning features.
Collapse
Affiliation(s)
- Hwayoung Park
- Department of Health Sciences, The Graduate School of Dong-A University, Saha-gu, Busan, Republic of Korea
| | - Sungtae Shin
- Department of Mechanical Engineering, College of Engineering, Dong-A University, Saha-gu, Busan, Republic of Korea
| | - Changhong Youm
- Department of Health Sciences, The Graduate School of Dong-A University, Saha-gu, Busan, Republic of Korea.
- Department of Healthcare and Science, College of Health Sciences, Dong-A University, 37 Nakdong‑Daero, 550 Beon‑gil, Hadan 2-dong, Saha-gu, Busan, 49315, Republic of Korea.
| | - Sang-Myung Cheon
- Department of Neurology, School of Medicine, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan, 49201, Republic of Korea.
| | - Myeounggon Lee
- Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA
| | - Byungjoo Noh
- Department of Kinesiology, Jeju National University, Jeju-si, Jeju-do, Republic of Korea
| |
Collapse
|
13
|
Filtjens B, Ginis P, Nieuwboer A, Afzal MR, Spildooren J, Vanrumste B, Slaets P. Modelling and identification of characteristic kinematic features preceding freezing of gait with convolutional neural networks and layer-wise relevance propagation. BMC Med Inform Decis Mak 2021; 21:341. [PMID: 34876110 PMCID: PMC8650332 DOI: 10.1186/s12911-021-01699-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Although deep neural networks (DNNs) are showing state of the art performance in clinical gait analysis, they are considered to be black-box algorithms. In other words, there is a lack of direct understanding of a DNN's ability to identify relevant features, hindering clinical acceptance. Interpretability methods have been developed to ameliorate this concern by providing a way to explain DNN predictions. METHODS This paper proposes the use of an interpretability method to explain DNN decisions for classifying the movement that precedes freezing of gait (FOG), one of the most debilitating symptoms of Parkinson's disease (PD). The proposed two-stage pipeline consists of (1) a convolutional neural network (CNN) to model the reduction of movement present before a FOG episode, and (2) layer-wise relevance propagation (LRP) to visualize the underlying features that the CNN perceives as important to model the pathology. The CNN was trained with the sagittal plane kinematics from a motion capture dataset of fourteen PD patients with FOG. The robustness of the model predictions and learned features was further assessed on fourteen PD patients without FOG and fourteen age-matched healthy controls. RESULTS The CNN proved highly accurate in modelling the movement that precedes FOG, with 86.8% of the strides being correctly identified. However, the CNN model was unable to model the movement for one of the seven patients that froze during the protocol. The LRP interpretability case study shows that (1) the kinematic features perceived as most relevant by the CNN are the reduced peak knee flexion and the fixed ankle dorsiflexion during the swing phase, (2) very little relevance for FOG is observed in the PD patients without FOG and the healthy control subjects, and (3) the poor predictive performance of one subject is attributed to the patient's unique and severely flexed gait signature. CONCLUSIONS The proposed pipeline can aid clinicians in explaining DNN decisions in clinical gait analysis and aid machine learning practitioners in assessing the generalization of their models by ensuring that the predictions are based on meaningful kinematic features.
Collapse
Affiliation(s)
- Benjamin Filtjens
- Intelligent Mobile Platform Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
- eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
| | - Pieter Ginis
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Alice Nieuwboer
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Muhammad Raheel Afzal
- Intelligent Mobile Platform Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| | - Joke Spildooren
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Agoralaan Building A, 3590, Diepenbeek, Belgium
| | - Bart Vanrumste
- eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| | - Peter Slaets
- Intelligent Mobile Platform Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| |
Collapse
|
14
|
Shalin G, Pardoel S, Lemaire ED, Nantel J, Kofman J. Prediction and detection of freezing of gait in Parkinson's disease from plantar pressure data using long short-term memory neural-networks. J Neuroeng Rehabil 2021; 18:167. [PMID: 34838066 PMCID: PMC8626900 DOI: 10.1186/s12984-021-00958-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Freezing of gait (FOG) is a walking disturbance in advanced stage Parkinson’s disease (PD) that has been associated with increased fall risk and decreased quality of life. Freezing episodes can be mitigated or prevented with external intervention such as visual or auditory cues, activated by FOG prediction and detection systems. While most research on FOG detection and prediction has been based on inertial measurement unit (IMU) and accelerometer data, plantar-pressure data may capture subtle weight shifts unique to FOG episodes. Different machine learning algorithms have been used for FOG detection and prediction; however, long short-term memory (LSTM) deep learning methods hold an advantage when dealing with time-series data, such as sensor data. This research aimed to determine if LSTM can be used to detect and predict FOG from plantar pressure data alone, specifically for use in a real-time wearable system. Methods Plantar pressure data were collected from pressure-sensing insole sensors worn by 11 participants with PD as they walked a predefined freeze-provoking path. FOG instances were labelled, 16 features were extracted, and the dataset was balanced and normalized (z-score). The resulting datasets were classified using long short-term memory neural-network models. Separate models were trained for detection and prediction. For prediction models, data before FOG were included in the target class. Leave-one-freezer-out cross validation was used for model evaluation. In addition, the models were tested on all non-freezer data to determine model specificity. Results The best FOG detection model had 82.1% (SD 6.2%) mean sensitivity and 89.5% (SD 3.6%) mean specificity for one-freezer-held-out cross validation. Specificity improved to 93.3% (SD 4.0%) when ignoring inactive state data (standing) and analyzing the model only on active states (turning and walking). The model correctly detected 95% of freeze episodes. The best FOG prediction method achieved 72.5% (SD 13.6%) mean sensitivity and 81.2% (SD 6.8%) mean specificity for one-freezer-held-out cross validation. Conclusions Based on FOG data collected in a laboratory, the results suggest that plantar pressure data can be used for FOG detection and prediction. However, further research is required to improve FOG prediction performance, including training with a larger sample of people who experience FOG.
Collapse
Affiliation(s)
- Gaurav Shalin
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Scott Pardoel
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Edward D Lemaire
- Faculty of Medicine, University of Ottawa and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan Kofman
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
15
|
Jeon S, Lee KM, Koo S. Anomalous gait feature classification from 3-D motion capture data. IEEE J Biomed Health Inform 2021; 26:696-703. [PMID: 34347608 DOI: 10.1109/jbhi.2021.3101549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gait kinematics of an individual is affected by various factors, including age, anthropometry, gender, and disease. Detecting anomalous gait features aids in the diagnosis and treatment of gait-related diseases. The objective of this study was to develop a machine learning method for automatically classifying five anomalous gait features, i.e., toe-out, genu varum, pes planus, hindfoot valgus, and forward head posture features, from three-dimensional data on gait kinematics. Gait data and gait feature labels of 488 subjects were acquired. The orientations of the human body segments during a gait cycle were mapped to a low-dimensional latent gait vector using a variational autoencoder. A two-layer neural network was trained to classify five gait features using logistic regression and calculate an anomalous gait feature vector (AGFV). The proposed network showed balanced accuracies of 82.8% for a toe-out, 85.9% for hindfoot valgus, 80.2% for pes planus, 73.2% for genu varum, and 92.9% for forward head posture when the AGFV was rounded to the nearest zero or 1. Multiple anomalous gait features were detectable using the proposed method, which has a practical advantage over current gait indices, including the gait deviation index with a single value. The overall results confirmed the feasibility of using the proposed method for screening subjects with anomalous gait features using three-dimensional motion capture data.
Collapse
|
16
|
Cha B, Lee KH, Ryu J. Deep-Learning-Based Emergency Stop Prediction for Robotic Lower-Limb Rehabilitation Training Systems. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1120-1128. [PMID: 34106857 DOI: 10.1109/tnsre.2021.3087725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Robotic lower-limb rehabilitation training is a better alternative for the physical training efforts of a therapist due to advantages, such as intensive repetitive motions, economical therapy, and quantitative assessment of the level of motor recovery through the measurement of force and movement patterns. However, in actual robotic rehabilitation training, emergency stops occur frequently to prevent injury to patients. However, frequent stopping is a waste of time and resources of both therapists and patients. Therefore, early detection of emergency stops in real-time is essential to take appropriate actions. In this paper, we propose a novel deep-learning-based technique for detecting emergency stops as early as possible. First, a bidirectional long short-term memory prediction model was trained using only the normal joint data collected from a real robotic training system. Next, a real-time threshold-based algorithm was developed with cumulative error. The experimental results revealed a precision of 0.94, recall of 0.93, and F1 score of 0.93. Additionally, it was observed that the prediction model was robust for variations in measurement noise.
Collapse
|
17
|
Alzubaidi MS, Shah U, Dhia Zubaydi H, Dolaat K, Abd-Alrazaq AA, Ahmed A, Househ M. The Role of Neural Network for the Detection of Parkinson's Disease: A Scoping Review. Healthcare (Basel) 2021; 9:healthcare9060740. [PMID: 34208654 PMCID: PMC8235532 DOI: 10.3390/healthcare9060740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Parkinson’s Disease (PD) is a chronic neurodegenerative disorder that has been ranked second after Alzheimer’s disease worldwide. Early diagnosis of PD is crucial to combat against PD to allow patients to deal with it properly. However, there is no medical test(s) available to diagnose PD conclusively. Therefore, computer-aided diagnosis (CAD) systems offered a better solution to make the necessary data-driven decisions and assist the physician. Numerous studies were conducted to propose CAD to diagnose PD in the early stages. No comprehensive reviews have been conducted to summarize the role of AI tools to combat PD. Objective: The study aimed to explore and summarize the applications of neural networks to diagnose PD. Methods: PRISMA Extension for Scoping Reviews (PRISMA-ScR) was followed to conduct this scoping review. To identify the relevant studies, both medical databases (e.g., PubMed) and technical databases (IEEE) were searched. Three reviewers carried out the study selection and extracted the data from the included studies independently. Then, the narrative approach was adopted to synthesis the extracted data. Results: Out of 1061 studies, 91 studies satisfied the eligibility criteria in this review. About half of the included studies have implemented artificial neural networks to diagnose PD. Numerous studies included focused on the freezing of gait (FoG). Biomedical voice and signal datasets were the most commonly used data types to develop and validate these models. However, MRI- and CT-scan images were also utilized in the included studies. Conclusion: Neural networks play an integral and substantial role in combating PD. Many possible applications of neural networks were identified in this review, however, most of them are limited up to research purposes.
Collapse
Affiliation(s)
- Mahmood Saleh Alzubaidi
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 53, Qatar; (U.S.); (K.D.); (A.A.A.-A.); (A.A.)
- Correspondence: (M.S.A.); (M.H.)
| | - Uzair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 53, Qatar; (U.S.); (K.D.); (A.A.A.-A.); (A.A.)
| | - Haider Dhia Zubaydi
- National Advanced IPv6 Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Khalid Dolaat
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 53, Qatar; (U.S.); (K.D.); (A.A.A.-A.); (A.A.)
| | - Alaa A. Abd-Alrazaq
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 53, Qatar; (U.S.); (K.D.); (A.A.A.-A.); (A.A.)
| | - Arfan Ahmed
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 53, Qatar; (U.S.); (K.D.); (A.A.A.-A.); (A.A.)
| | - Mowafa Househ
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 53, Qatar; (U.S.); (K.D.); (A.A.A.-A.); (A.A.)
- Correspondence: (M.S.A.); (M.H.)
| |
Collapse
|
18
|
Akbari G, Nikkhoo M, Wang L, Chen CPC, Han DS, Lin YH, Chen HB, Cheng CH. Frailty Level Classification of the Community Elderly Using Microsoft Kinect-Based Skeleton Pose: A Machine Learning Approach. SENSORS 2021; 21:s21124017. [PMID: 34200838 PMCID: PMC8230520 DOI: 10.3390/s21124017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
Frailty is one of the most important geriatric syndromes, which can be associated with increased risk for incident disability and hospitalization. Developing a real-time classification model of elderly frailty level could be beneficial for designing a clinical predictive assessment tool. Hence, the objective of this study was to predict the elderly frailty level utilizing the machine learning approach on skeleton data acquired from a Kinect sensor. Seven hundred and eighty-seven community elderly were recruited in this study. The Kinect data were acquired from the elderly performing different functional assessment exercises including: (1) 30-s arm curl; (2) 30-s chair sit-to-stand; (3) 2-min step; and (4) gait analysis tests. The proposed methodology was successfully validated by gender classification with accuracies up to 84 percent. Regarding frailty level evaluation and prediction, the results indicated that support vector classifier (SVC) and multi-layer perceptron (MLP) are the most successful estimators in prediction of the Fried’s frailty level with median accuracies up to 97.5 percent. The high level of accuracy achieved with the proposed methodology indicates that ML modeling can identify the risk of frailty in elderly individuals based on evaluating the real-time skeletal movements using the Kinect sensor.
Collapse
Affiliation(s)
- Ghasem Akbari
- Department of Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin 341851416, Iran;
| | - Mohammad Nikkhoo
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33333, Taiwan
| | - Lizhen Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China;
| | - Carl P. C. Chen
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, Bei-Hu Branch, National Taiwan University Hospital, Taipei 10845, Taiwan;
| | - Yang-Hua Lin
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.L.); (H.-B.C.)
| | - Hung-Bin Chen
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.L.); (H.-B.C.)
| | - Chih-Hsiu Cheng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33333, Taiwan
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.L.); (H.-B.C.)
- Correspondence: ; Tel.: +886-3211-8800-3714
| |
Collapse
|
19
|
Early Detection of Freezing of Gait during Walking Using Inertial Measurement Unit and Plantar Pressure Distribution Data. SENSORS 2021; 21:s21062246. [PMID: 33806984 PMCID: PMC8004667 DOI: 10.3390/s21062246] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
Freezing of gait (FOG) is a sudden and highly disruptive gait dysfunction that appears in mid to late-stage Parkinson’s disease (PD) and can lead to falling and injury. A system that predicts freezing before it occurs or detects freezing immediately after onset would generate an opportunity for FOG prevention or mitigation and thus enhance safe mobility and quality of life. This research used accelerometer, gyroscope, and plantar pressure sensors to extract 861 features from walking data collected from 11 people with FOG. Minimum-redundancy maximum-relevance and Relief-F feature selection were performed prior to training boosted ensembles of decision trees. The binary classification models identified Total-FOG or No FOG states, wherein the Total-FOG class included data windows from 2 s before the FOG onset until the end of the FOG episode. Three feature sets were compared: plantar pressure, inertial measurement unit (IMU), and both plantar pressure and IMU features. The plantar-pressure-only model had the greatest sensitivity and the IMU-only model had the greatest specificity. The best overall model used the combination of plantar pressure and IMU features, achieving 76.4% sensitivity and 86.2% specificity. Next, the Total-FOG class components were evaluated individually (i.e., Pre-FOG windows, Freeze windows, transition windows between Pre-FOG and Freeze). The best model detected windows that contained both Pre-FOG and FOG data with 85.2% sensitivity, which is equivalent to detecting FOG less than 1 s after the freeze began. Windows of FOG data were detected with 93.4% sensitivity. The IMU and plantar pressure feature-based model slightly outperformed models that used data from a single sensor type. The model achieved early detection by identifying the transition from Pre-FOG to FOG while maintaining excellent FOG detection performance (93.4% sensitivity). Therefore, if used as part of an intelligent, real-time FOG identification and cueing system, even if the Pre-FOG state were missed, the model would perform well as a freeze detection and cueing system that could improve the mobility and independence of people with PD during their daily activities.
Collapse
|
20
|
Borzì L, Mazzetta I, Zampogna A, Suppa A, Olmo G, Irrera F. Prediction of Freezing of Gait in Parkinson's Disease Using Wearables and Machine Learning. SENSORS 2021; 21:s21020614. [PMID: 33477323 PMCID: PMC7830634 DOI: 10.3390/s21020614] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/06/2023]
Abstract
Freezing of gait (FOG) is one of the most troublesome symptoms of Parkinson’s disease, affecting more than 50% of patients in advanced stages of the disease. Wearable technology has been widely used for its automatic detection, and some papers have been recently published in the direction of its prediction. Such predictions may be used for the administration of cues, in order to prevent the occurrence of gait freezing. The aim of the present study was to propose a wearable system able to catch the typical degradation of the walking pattern preceding FOG episodes, to achieve reliable FOG prediction using machine learning algorithms and verify whether dopaminergic therapy affects the ability of our system to detect and predict FOG. Methods: A cohort of 11 Parkinson’s disease patients receiving (on) and not receiving (off) dopaminergic therapy was equipped with two inertial sensors placed on each shin, and asked to perform a timed up and go test. We performed a step-to-step segmentation of the angular velocity signals and subsequent feature extraction from both time and frequency domains. We employed a wrapper approach for feature selection and optimized different machine learning classifiers in order to catch FOG and pre-FOG episodes. Results: The implemented FOG detection algorithm achieved excellent performance in a leave-one-subject-out validation, in patients both on and off therapy. As for pre-FOG detection, the implemented classification algorithm achieved 84.1% (85.5%) sensitivity, 85.9% (86.3%) specificity and 85.5% (86.1%) accuracy in leave-one-subject-out validation, in patients on (off) therapy. When the classification model was trained with data from patients on (off) and tested on patients off (on), we found 84.0% (56.6%) sensitivity, 88.3% (92.5%) specificity and 87.4% (86.3%) accuracy. Conclusions: Machine learning models are capable of predicting FOG before its actual occurrence with adequate accuracy. The dopaminergic therapy affects pre-FOG gait patterns, thereby influencing the algorithm’s effectiveness.
Collapse
Affiliation(s)
- Luigi Borzì
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy;
- Correspondence:
| | - Ivan Mazzetta
- Department of Information Engineering, Electronics and Telecommunication, Sapienza University of Rome, 00184 Rome, Italy; (I.M.); (F.I.)
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (A.S.)
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (A.S.)
- IRCCS NEUROMED Institute, 86077 Pozzilli, Italy
| | - Gabriella Olmo
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy;
| | - Fernanda Irrera
- Department of Information Engineering, Electronics and Telecommunication, Sapienza University of Rome, 00184 Rome, Italy; (I.M.); (F.I.)
| |
Collapse
|
21
|
Shalin G, Pardoel S, Nantel J, Lemaire ED, Kofman J. Prediction of Freezing of Gait in Parkinson's Disease from Foot Plantar-Pressure Arrays using a Convolutional Neural Network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:244-247. [PMID: 33017974 DOI: 10.1109/embc44109.2020.9176382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Freezing of gait (FOG) is a sudden cessation of locomotion in advanced Parkinson's disease (PD). A FOG episode can lead to falls, decreased mobility, and decreased overall quality of life. Prediction of FOG episodes provides an opportunity for intervention and freeze prevention. A novel method of FOG prediction that uses foot plantar pressure data acquired during gait was developed and evaluated, with plantar pressure data treated as 2D images and classified using a convolutional neural network (CNN). Data from five people with PD and a history of FOG were collected during walking trials. FOG instances were identified and data preceding each freeze were labeled as Pre-FOG. Left and right foot FScan pressure frames were concatenated into a single 60x42 pressure array. Each frame was considered as an independent image and classified as Pre-FOG, FOG, or Non-FOG, using the CNN. From prediction models using different Pre-FOG durations, shorter Pre-FOG durations performed best, with Pre-FOG class sensitivity 94.3%, and specificity 95.1%. These results demonstrated that foot pressure distribution alone can be a good FOG predictor when treating each plantar pressure frame as a 2D image, and classifying the images using a CNN. Furthermore, the CNN eliminated the need for feature extraction and selection.Clinical Relevance- This research demonstrated that foot plantar pressure data can be used to predict freezing of gait occurrence, using a convolutional neural network deep learning technique. This had the added advantage of eliminating the need for feature extraction and selection.
Collapse
|
22
|
Arami A, van Asseldonk E, van der Kooij H, Burdet E. A Clustering-Based Approach to Identify Joint Impedance During Walking. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1808-1816. [PMID: 32746306 DOI: 10.1109/tnsre.2020.3005389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mechanical impedance, which changes with posture and muscle activations, characterizes how the central nervous system regulates the interaction with the environment. Traditional approaches to impedance estimation, based on averaging of movement kinetics, requires a large number of trials and may introduce bias to the estimation due to the high variability in a repeated or periodic movement. Here, we introduce a data-driven modeling technique to estimate joint impedance considering the large gait variability. The proposed method can be used to estimate impedance in both the stance and swing phases of walking. A 2-pass clustering approach is used to extract groups of unperturbed gait data and estimate candidate baselines. Then patterns of perturbed data are matched with the most similar unperturbed baseline. The kinematic and torque deviations from the baselines are regressed locally to compute joint impedance at different gait phases. Simulations using the trajectory data of a subject's gait at different speeds demonstrate a more accurate estimation of ankle stiffness and damping with the proposed clustering-based method when compared with two methods: i) using average unperturbed baselines, and ii) matching shifted and scaled average unperturbed velocity baselines. Furthermore, the proposed method requires fewer trials than methods based on average unperturbed baselines. The experimental results on human hip impedance estimation show the feasibility of clustering-based technique and verifies that it reduces the estimation variability.
Collapse
|
23
|
Pardoel S, Shalin G, Nantel J, Lemaire ED, Kofman J. Selection of Plantar-Pressure and Ankle-Acceleration Features for Freezing of Gait Detection in Parkinson's Disease using Minimum-Redundancy Maximum-Relevance. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4034-4037. [PMID: 33018884 DOI: 10.1109/embc44109.2020.9176607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Freezing of gait (FOG) is a major hindrance to daily mobility and can lead to falling in people with Parkinson's disease. While wearable accelerometers and gyroscopes have been commonly used for FOG detection, foot plantar pressure distribution could also be considered for this application, given its usefulness in previous gait-based classification. This research examined 325 plantar-pressure based features and 132 acceleration-based features extracted from the walking data of five males with Parkinson's disease who experienced FOG. A set of 61 features calculated from the time domain, Fast Fourier transform (FFT), and wavelet transform (WT) were extracted from multiple input signals; including, total ground reaction force, foot centre of pressure (COP) position, COP velocity, COP acceleration, and 3D ankle acceleration. Minimum-redundancy maximum relevance (mRMR) feature selection was used to rank all features. Plantar-pressure based features accounted for 4 of the top 5 features (ranks 2, 3, 4, 5); the remaining feature was an ankle acceleration based feature (rank 1). The three highest ranked features were the freeze index (calculated from ankle acceleration), total power in the frequency domain (calculated using the FFT from COP velocity), and mean of the WT detail coefficients (calculated from COP velocity). This preliminary analysis demonstrated that features calculated from plantar pressure, specifically COP velocity, performed comparably to ankle acceleration features. Thus, feature sets for FOG detection may benefit from plantar-pressure based features.
Collapse
|